Abstract

Strong two-photon-absorption (TPA) based nonlinear optical properties of a new chromophore, N, N-diphenyl-7-[2-(4-pyridinyl) ethenyl]-9,9-di-n-decyl-fluoren-2-amine (AF-50) has been experimentally studied. Under excitation with 10-Hz, 8-ns, and 800-nm laser pulses, the TPA cross section and the TPA-induced frequency-upconverted emission spectra are measured for AF-50 solutions in various solvents. The most attractive feature of this chromophore is its remarkably high value of the molecular TPA cross section (78×10-20 cm2/GW in benzene solution). Based on this feature, superior optical power limiting and stabilization performance has been demonstrated in a 1-cm-long AF-50 solution sample with concentration of d0=0.045 M/L. The nonlinear transmission of the measured sample decreased from 0.93 to 0.3 when the input-beam intensity increased from 10 MW/cm2 to 360 MW/cm2; the relative intensity fluctuation of the output laser pulses was reduced to one third of that of the input laser beam.

© 1997 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. W. Rapp and B. Gronau, “Laser emission from two xanthene dyes via double-photon excitation,” Chem. Phys. Lett. 8, 529–531 (1971).
    [CrossRef]
  2. A. S. Kwok, A. Serpenguzel, W. F. Hsien, R. K. Chang, and J. B. Gillespie, “Two-photon-pumped lasing in microdroplets,” Opt. Lett. 17, 1435–1437 (1992).
    [CrossRef] [PubMed]
  3. A. Mukherjee, “Two-photon pumped upconverted lasing in dye-doped polymer waveguide,” Appl. Phys. Lett. 62, 3423–3425 (1993).
    [CrossRef]
  4. C. W. Tang, S. A. Van Slyke, and C. H. Chen, “Electroluminescence of doped organic thin film,” J. Appl. Phys. 65, 3610–3616 (1989).
    [CrossRef]
  5. J. H. Burroughes, D. D. C. Bradley, A. R. Brown, R. N. Marks, K. Mackay, R. H. Friend, P. L. Burns, and A. B. Holmes, “Light-emitting diode based on conjugated polymers,” Nature (London) 347, 539–541 (1990).
    [CrossRef]
  6. D. Braun, G. Gustafsson, D. McBranch, and A. J. Heeger, “Electroluminescence and electrical transport in poly(3-octylthiophene) diode,” J. Appl. Phys. 72, 564–568 (1992).
    [CrossRef]
  7. L. W. Tutt and T. F. Boggess, “A review of optical limiting mechanisms and devices using organics, fullerence, semiconductors, and other materials,” Prog. Quantum Electron. 17, 299–338 (1993).
    [CrossRef]
  8. T. J. Bunning, L. V. Natarajan, M. G. Schmitt, B. L. Epling, and R. L. Crane, “Optical limiting in solution of diphenyl polyenes,” Appl. Opt. 30, 4341–4349 (1991).
    [CrossRef] [PubMed]
  9. E. W. Van Stryland, Y. Y. Wu, D. J. Hagan, M. J. Soileau, and K. Mansour, “Optical limiting with semiconductors,” J. Opt. Soc. Am. B 5, 1980–1988 (1988).
    [CrossRef]
  10. W. Denk, J. H. Strickler, and W. W. Webb, “Two-photon laser scanning fluorescence microscopy,” Science 248, 73–76 (1990).
    [CrossRef] [PubMed]
  11. W. Denk, K. R. Delaney, A. Gelperin, D. Kleinfeld, B. W. Strowlridge, D. W. Tank, and R. W. Yuste, “Anatomical and functional imaging of neurons using 2-photon laser scanning microscopy,” J. Neuroscience Methods 54, 151–162 (1994).
    [CrossRef]
  12. S. W. Hell, P. E. Hanninen, A. Kuusisto, M. Schrader, and E. Soini, “Annular aperture two-photon excitation microscopy,” Opt. Commun. 117, 20–24 (1995).
    [CrossRef]
  13. W. E. Moerner and S. M. Silence, “Polymetric photorefractive materials,” Chem. Rev. 94, 127–155 (1994).
    [CrossRef]
  14. S. Ducharme, J. C. Scott, R. J. Twieg, and W. E. Moerner, “Observation of the photorefractive effect in a polymer,” Phys. Rev. Lett. 66, 1846–1849 (1991).
    [CrossRef] [PubMed]
  15. Y. P. Cui, Y. Zhang, and P. N. Prasad, “Photorefractive effect in a new organic system of doped nonlinear polymer,” Appl. Phys. Lett. 61, 2132–2134 (1992).
    [CrossRef]
  16. K. Meerhoz, B. L. Volodin, Sandalphon, B. Kippelen, and N. Peyghambarian, “A photorefractive polymer with high optical gain and diffraction efficiency near 100%,” Nature (London) 371, 497–500 (1994).
    [CrossRef]
  17. G. S. He, G. C. Xu, P. N. Prasad, B. A. Reinhardt, J. C. Bhatt, R. McKellar, and A. G. Dillard, “Two-photon absorption and optical-limiting properties of novel organic compounds,” Opt. Lett. 20, 435–437 (1995).
    [CrossRef] [PubMed]
  18. G. S. He, R. Gvishi, P. N. Prasad, and B. A. Reinhardt, “Two-photon absorption based optical limiting and stabilization in organic molecule-doped solid materials,” Opt. Commun. 117, 133–136 (1995).
    [CrossRef]
  19. G. S. He, J. D. Bhawalkar, C. F. Zhao, and P. N. Prasad, “Optical limiting effect in a two-photon absorption dye doped solid matrix,” Appl. Phys. Lett. 67, 2433–2435 (1995).
    [CrossRef]
  20. G. S. He, J. D. Bhawalkar, C. F. Zhao, C. K. Park, and P. N. Prasad, “Two-photon-pumped cavity lasing in a dye-solution-filled hollow-fiber system,” Opt. Lett. 20, 2393–2395 (1995).
    [CrossRef] [PubMed]
  21. G. S. He, J. D. Bhawalkar, C. F. Zhao, and P. N. Prasad, “Properties of two-photon pumped cavity lasing in a novel dye doped solid materials,” IEEE J. Quantum Electron. 32, 749–755 (1996).
    [CrossRef]
  22. J. D. Bhawalkar, G. S. He, C. K. Park, C. F. Zhao, G. Ruland, and P. N. Prasad, “Efficient, two-photon pumped green upconverted cavity lasing in a new dye,” Opt. Commun. 124, 33–37 (1996).
    [CrossRef]
  23. G. S. He, J. D. Bhawalkar, C. F. Zhao, C. K. Park, and P. N. Prasad, “Upconversion dye-doped polymer fiber laser,” Appl. Phys. Lett. 68, 3549–3551 (1996).
    [CrossRef]
  24. J. D. Bhawalkar, J. Swiatkiewicz, G. S. He, P. N. Prasad, S. J. Pan, J. K. Samarabandu, W. S. Liou, and P. C. Cheng, “3-D multiphoton laser scanning confocal microscopy as a probe for subsurface defects in polymer,” in Conference on Laser and Electro-Optics, 1996 OSA Technical Digest Series, Vol. 9 (Optical Society of America, Washington, D.C., 1996), pp. 19–20.
  25. P. C. Cheng, S. J. Pan, J. D. Bhawalkar, J. Swiatkiewicz, J. K. Samarabandu, W. S. Liou, G. S. He, and P. N. Prasad, “Two-photon generated three-dimensional photo-bleached patterns in a polymer matrix,” Scanning 18, 3–4 (1996).
  26. M. Sheik-Bahae, A. A. Said, Y. Y. Wu, T. H. Wei, D. J. Hagan, and E. W. Van Stryland, “Simple and sensitive technique for determining refractive nonlinearities,” in Conference on Lasers and Electro-Optics, 1989 OSA Technical Digest Series, Vol. 11 (Optical Society of America, Washington, D.C., 1989), paper THH4.

1996

G. S. He, J. D. Bhawalkar, C. F. Zhao, and P. N. Prasad, “Properties of two-photon pumped cavity lasing in a novel dye doped solid materials,” IEEE J. Quantum Electron. 32, 749–755 (1996).
[CrossRef]

J. D. Bhawalkar, G. S. He, C. K. Park, C. F. Zhao, G. Ruland, and P. N. Prasad, “Efficient, two-photon pumped green upconverted cavity lasing in a new dye,” Opt. Commun. 124, 33–37 (1996).
[CrossRef]

G. S. He, J. D. Bhawalkar, C. F. Zhao, C. K. Park, and P. N. Prasad, “Upconversion dye-doped polymer fiber laser,” Appl. Phys. Lett. 68, 3549–3551 (1996).
[CrossRef]

P. C. Cheng, S. J. Pan, J. D. Bhawalkar, J. Swiatkiewicz, J. K. Samarabandu, W. S. Liou, G. S. He, and P. N. Prasad, “Two-photon generated three-dimensional photo-bleached patterns in a polymer matrix,” Scanning 18, 3–4 (1996).

1995

S. W. Hell, P. E. Hanninen, A. Kuusisto, M. Schrader, and E. Soini, “Annular aperture two-photon excitation microscopy,” Opt. Commun. 117, 20–24 (1995).
[CrossRef]

G. S. He, G. C. Xu, P. N. Prasad, B. A. Reinhardt, J. C. Bhatt, R. McKellar, and A. G. Dillard, “Two-photon absorption and optical-limiting properties of novel organic compounds,” Opt. Lett. 20, 435–437 (1995).
[CrossRef] [PubMed]

G. S. He, R. Gvishi, P. N. Prasad, and B. A. Reinhardt, “Two-photon absorption based optical limiting and stabilization in organic molecule-doped solid materials,” Opt. Commun. 117, 133–136 (1995).
[CrossRef]

G. S. He, J. D. Bhawalkar, C. F. Zhao, and P. N. Prasad, “Optical limiting effect in a two-photon absorption dye doped solid matrix,” Appl. Phys. Lett. 67, 2433–2435 (1995).
[CrossRef]

G. S. He, J. D. Bhawalkar, C. F. Zhao, C. K. Park, and P. N. Prasad, “Two-photon-pumped cavity lasing in a dye-solution-filled hollow-fiber system,” Opt. Lett. 20, 2393–2395 (1995).
[CrossRef] [PubMed]

1994

W. E. Moerner and S. M. Silence, “Polymetric photorefractive materials,” Chem. Rev. 94, 127–155 (1994).
[CrossRef]

W. Denk, K. R. Delaney, A. Gelperin, D. Kleinfeld, B. W. Strowlridge, D. W. Tank, and R. W. Yuste, “Anatomical and functional imaging of neurons using 2-photon laser scanning microscopy,” J. Neuroscience Methods 54, 151–162 (1994).
[CrossRef]

K. Meerhoz, B. L. Volodin, Sandalphon, B. Kippelen, and N. Peyghambarian, “A photorefractive polymer with high optical gain and diffraction efficiency near 100%,” Nature (London) 371, 497–500 (1994).
[CrossRef]

1993

A. Mukherjee, “Two-photon pumped upconverted lasing in dye-doped polymer waveguide,” Appl. Phys. Lett. 62, 3423–3425 (1993).
[CrossRef]

L. W. Tutt and T. F. Boggess, “A review of optical limiting mechanisms and devices using organics, fullerence, semiconductors, and other materials,” Prog. Quantum Electron. 17, 299–338 (1993).
[CrossRef]

1992

D. Braun, G. Gustafsson, D. McBranch, and A. J. Heeger, “Electroluminescence and electrical transport in poly(3-octylthiophene) diode,” J. Appl. Phys. 72, 564–568 (1992).
[CrossRef]

A. S. Kwok, A. Serpenguzel, W. F. Hsien, R. K. Chang, and J. B. Gillespie, “Two-photon-pumped lasing in microdroplets,” Opt. Lett. 17, 1435–1437 (1992).
[CrossRef] [PubMed]

Y. P. Cui, Y. Zhang, and P. N. Prasad, “Photorefractive effect in a new organic system of doped nonlinear polymer,” Appl. Phys. Lett. 61, 2132–2134 (1992).
[CrossRef]

1991

T. J. Bunning, L. V. Natarajan, M. G. Schmitt, B. L. Epling, and R. L. Crane, “Optical limiting in solution of diphenyl polyenes,” Appl. Opt. 30, 4341–4349 (1991).
[CrossRef] [PubMed]

S. Ducharme, J. C. Scott, R. J. Twieg, and W. E. Moerner, “Observation of the photorefractive effect in a polymer,” Phys. Rev. Lett. 66, 1846–1849 (1991).
[CrossRef] [PubMed]

1990

W. Denk, J. H. Strickler, and W. W. Webb, “Two-photon laser scanning fluorescence microscopy,” Science 248, 73–76 (1990).
[CrossRef] [PubMed]

J. H. Burroughes, D. D. C. Bradley, A. R. Brown, R. N. Marks, K. Mackay, R. H. Friend, P. L. Burns, and A. B. Holmes, “Light-emitting diode based on conjugated polymers,” Nature (London) 347, 539–541 (1990).
[CrossRef]

1989

C. W. Tang, S. A. Van Slyke, and C. H. Chen, “Electroluminescence of doped organic thin film,” J. Appl. Phys. 65, 3610–3616 (1989).
[CrossRef]

1988

1971

W. Rapp and B. Gronau, “Laser emission from two xanthene dyes via double-photon excitation,” Chem. Phys. Lett. 8, 529–531 (1971).
[CrossRef]

Bhatt, J. C.

Bhawalkar, J. D.

G. S. He, J. D. Bhawalkar, C. F. Zhao, and P. N. Prasad, “Properties of two-photon pumped cavity lasing in a novel dye doped solid materials,” IEEE J. Quantum Electron. 32, 749–755 (1996).
[CrossRef]

J. D. Bhawalkar, G. S. He, C. K. Park, C. F. Zhao, G. Ruland, and P. N. Prasad, “Efficient, two-photon pumped green upconverted cavity lasing in a new dye,” Opt. Commun. 124, 33–37 (1996).
[CrossRef]

G. S. He, J. D. Bhawalkar, C. F. Zhao, C. K. Park, and P. N. Prasad, “Upconversion dye-doped polymer fiber laser,” Appl. Phys. Lett. 68, 3549–3551 (1996).
[CrossRef]

P. C. Cheng, S. J. Pan, J. D. Bhawalkar, J. Swiatkiewicz, J. K. Samarabandu, W. S. Liou, G. S. He, and P. N. Prasad, “Two-photon generated three-dimensional photo-bleached patterns in a polymer matrix,” Scanning 18, 3–4 (1996).

G. S. He, J. D. Bhawalkar, C. F. Zhao, and P. N. Prasad, “Optical limiting effect in a two-photon absorption dye doped solid matrix,” Appl. Phys. Lett. 67, 2433–2435 (1995).
[CrossRef]

G. S. He, J. D. Bhawalkar, C. F. Zhao, C. K. Park, and P. N. Prasad, “Two-photon-pumped cavity lasing in a dye-solution-filled hollow-fiber system,” Opt. Lett. 20, 2393–2395 (1995).
[CrossRef] [PubMed]

Boggess, T. F.

L. W. Tutt and T. F. Boggess, “A review of optical limiting mechanisms and devices using organics, fullerence, semiconductors, and other materials,” Prog. Quantum Electron. 17, 299–338 (1993).
[CrossRef]

Bradley, D. D. C.

J. H. Burroughes, D. D. C. Bradley, A. R. Brown, R. N. Marks, K. Mackay, R. H. Friend, P. L. Burns, and A. B. Holmes, “Light-emitting diode based on conjugated polymers,” Nature (London) 347, 539–541 (1990).
[CrossRef]

Braun, D.

D. Braun, G. Gustafsson, D. McBranch, and A. J. Heeger, “Electroluminescence and electrical transport in poly(3-octylthiophene) diode,” J. Appl. Phys. 72, 564–568 (1992).
[CrossRef]

Brown, A. R.

J. H. Burroughes, D. D. C. Bradley, A. R. Brown, R. N. Marks, K. Mackay, R. H. Friend, P. L. Burns, and A. B. Holmes, “Light-emitting diode based on conjugated polymers,” Nature (London) 347, 539–541 (1990).
[CrossRef]

Bunning, T. J.

Burns, P. L.

J. H. Burroughes, D. D. C. Bradley, A. R. Brown, R. N. Marks, K. Mackay, R. H. Friend, P. L. Burns, and A. B. Holmes, “Light-emitting diode based on conjugated polymers,” Nature (London) 347, 539–541 (1990).
[CrossRef]

Burroughes, J. H.

J. H. Burroughes, D. D. C. Bradley, A. R. Brown, R. N. Marks, K. Mackay, R. H. Friend, P. L. Burns, and A. B. Holmes, “Light-emitting diode based on conjugated polymers,” Nature (London) 347, 539–541 (1990).
[CrossRef]

Chang, R. K.

Chen, C. H.

C. W. Tang, S. A. Van Slyke, and C. H. Chen, “Electroluminescence of doped organic thin film,” J. Appl. Phys. 65, 3610–3616 (1989).
[CrossRef]

Cheng, P. C.

P. C. Cheng, S. J. Pan, J. D. Bhawalkar, J. Swiatkiewicz, J. K. Samarabandu, W. S. Liou, G. S. He, and P. N. Prasad, “Two-photon generated three-dimensional photo-bleached patterns in a polymer matrix,” Scanning 18, 3–4 (1996).

Crane, R. L.

Cui, Y. P.

Y. P. Cui, Y. Zhang, and P. N. Prasad, “Photorefractive effect in a new organic system of doped nonlinear polymer,” Appl. Phys. Lett. 61, 2132–2134 (1992).
[CrossRef]

Delaney, K. R.

W. Denk, K. R. Delaney, A. Gelperin, D. Kleinfeld, B. W. Strowlridge, D. W. Tank, and R. W. Yuste, “Anatomical and functional imaging of neurons using 2-photon laser scanning microscopy,” J. Neuroscience Methods 54, 151–162 (1994).
[CrossRef]

Denk, W.

W. Denk, K. R. Delaney, A. Gelperin, D. Kleinfeld, B. W. Strowlridge, D. W. Tank, and R. W. Yuste, “Anatomical and functional imaging of neurons using 2-photon laser scanning microscopy,” J. Neuroscience Methods 54, 151–162 (1994).
[CrossRef]

W. Denk, J. H. Strickler, and W. W. Webb, “Two-photon laser scanning fluorescence microscopy,” Science 248, 73–76 (1990).
[CrossRef] [PubMed]

Dillard, A. G.

Ducharme, S.

S. Ducharme, J. C. Scott, R. J. Twieg, and W. E. Moerner, “Observation of the photorefractive effect in a polymer,” Phys. Rev. Lett. 66, 1846–1849 (1991).
[CrossRef] [PubMed]

Epling, B. L.

Friend, R. H.

J. H. Burroughes, D. D. C. Bradley, A. R. Brown, R. N. Marks, K. Mackay, R. H. Friend, P. L. Burns, and A. B. Holmes, “Light-emitting diode based on conjugated polymers,” Nature (London) 347, 539–541 (1990).
[CrossRef]

Gelperin, A.

W. Denk, K. R. Delaney, A. Gelperin, D. Kleinfeld, B. W. Strowlridge, D. W. Tank, and R. W. Yuste, “Anatomical and functional imaging of neurons using 2-photon laser scanning microscopy,” J. Neuroscience Methods 54, 151–162 (1994).
[CrossRef]

Gillespie, J. B.

Gronau, B.

W. Rapp and B. Gronau, “Laser emission from two xanthene dyes via double-photon excitation,” Chem. Phys. Lett. 8, 529–531 (1971).
[CrossRef]

Gustafsson, G.

D. Braun, G. Gustafsson, D. McBranch, and A. J. Heeger, “Electroluminescence and electrical transport in poly(3-octylthiophene) diode,” J. Appl. Phys. 72, 564–568 (1992).
[CrossRef]

Gvishi, R.

G. S. He, R. Gvishi, P. N. Prasad, and B. A. Reinhardt, “Two-photon absorption based optical limiting and stabilization in organic molecule-doped solid materials,” Opt. Commun. 117, 133–136 (1995).
[CrossRef]

Hagan, D. J.

Hanninen, P. E.

S. W. Hell, P. E. Hanninen, A. Kuusisto, M. Schrader, and E. Soini, “Annular aperture two-photon excitation microscopy,” Opt. Commun. 117, 20–24 (1995).
[CrossRef]

He, G. S.

G. S. He, J. D. Bhawalkar, C. F. Zhao, C. K. Park, and P. N. Prasad, “Upconversion dye-doped polymer fiber laser,” Appl. Phys. Lett. 68, 3549–3551 (1996).
[CrossRef]

P. C. Cheng, S. J. Pan, J. D. Bhawalkar, J. Swiatkiewicz, J. K. Samarabandu, W. S. Liou, G. S. He, and P. N. Prasad, “Two-photon generated three-dimensional photo-bleached patterns in a polymer matrix,” Scanning 18, 3–4 (1996).

G. S. He, J. D. Bhawalkar, C. F. Zhao, and P. N. Prasad, “Properties of two-photon pumped cavity lasing in a novel dye doped solid materials,” IEEE J. Quantum Electron. 32, 749–755 (1996).
[CrossRef]

J. D. Bhawalkar, G. S. He, C. K. Park, C. F. Zhao, G. Ruland, and P. N. Prasad, “Efficient, two-photon pumped green upconverted cavity lasing in a new dye,” Opt. Commun. 124, 33–37 (1996).
[CrossRef]

G. S. He, J. D. Bhawalkar, C. F. Zhao, C. K. Park, and P. N. Prasad, “Two-photon-pumped cavity lasing in a dye-solution-filled hollow-fiber system,” Opt. Lett. 20, 2393–2395 (1995).
[CrossRef] [PubMed]

G. S. He, J. D. Bhawalkar, C. F. Zhao, and P. N. Prasad, “Optical limiting effect in a two-photon absorption dye doped solid matrix,” Appl. Phys. Lett. 67, 2433–2435 (1995).
[CrossRef]

G. S. He, R. Gvishi, P. N. Prasad, and B. A. Reinhardt, “Two-photon absorption based optical limiting and stabilization in organic molecule-doped solid materials,” Opt. Commun. 117, 133–136 (1995).
[CrossRef]

G. S. He, G. C. Xu, P. N. Prasad, B. A. Reinhardt, J. C. Bhatt, R. McKellar, and A. G. Dillard, “Two-photon absorption and optical-limiting properties of novel organic compounds,” Opt. Lett. 20, 435–437 (1995).
[CrossRef] [PubMed]

Heeger, A. J.

D. Braun, G. Gustafsson, D. McBranch, and A. J. Heeger, “Electroluminescence and electrical transport in poly(3-octylthiophene) diode,” J. Appl. Phys. 72, 564–568 (1992).
[CrossRef]

Hell, S. W.

S. W. Hell, P. E. Hanninen, A. Kuusisto, M. Schrader, and E. Soini, “Annular aperture two-photon excitation microscopy,” Opt. Commun. 117, 20–24 (1995).
[CrossRef]

Holmes, A. B.

J. H. Burroughes, D. D. C. Bradley, A. R. Brown, R. N. Marks, K. Mackay, R. H. Friend, P. L. Burns, and A. B. Holmes, “Light-emitting diode based on conjugated polymers,” Nature (London) 347, 539–541 (1990).
[CrossRef]

Hsien, W. F.

Kippelen, B.

K. Meerhoz, B. L. Volodin, Sandalphon, B. Kippelen, and N. Peyghambarian, “A photorefractive polymer with high optical gain and diffraction efficiency near 100%,” Nature (London) 371, 497–500 (1994).
[CrossRef]

Kleinfeld, D.

W. Denk, K. R. Delaney, A. Gelperin, D. Kleinfeld, B. W. Strowlridge, D. W. Tank, and R. W. Yuste, “Anatomical and functional imaging of neurons using 2-photon laser scanning microscopy,” J. Neuroscience Methods 54, 151–162 (1994).
[CrossRef]

Kuusisto, A.

S. W. Hell, P. E. Hanninen, A. Kuusisto, M. Schrader, and E. Soini, “Annular aperture two-photon excitation microscopy,” Opt. Commun. 117, 20–24 (1995).
[CrossRef]

Kwok, A. S.

Liou, W. S.

P. C. Cheng, S. J. Pan, J. D. Bhawalkar, J. Swiatkiewicz, J. K. Samarabandu, W. S. Liou, G. S. He, and P. N. Prasad, “Two-photon generated three-dimensional photo-bleached patterns in a polymer matrix,” Scanning 18, 3–4 (1996).

Mackay, K.

J. H. Burroughes, D. D. C. Bradley, A. R. Brown, R. N. Marks, K. Mackay, R. H. Friend, P. L. Burns, and A. B. Holmes, “Light-emitting diode based on conjugated polymers,” Nature (London) 347, 539–541 (1990).
[CrossRef]

Mansour, K.

Marks, R. N.

J. H. Burroughes, D. D. C. Bradley, A. R. Brown, R. N. Marks, K. Mackay, R. H. Friend, P. L. Burns, and A. B. Holmes, “Light-emitting diode based on conjugated polymers,” Nature (London) 347, 539–541 (1990).
[CrossRef]

McBranch, D.

D. Braun, G. Gustafsson, D. McBranch, and A. J. Heeger, “Electroluminescence and electrical transport in poly(3-octylthiophene) diode,” J. Appl. Phys. 72, 564–568 (1992).
[CrossRef]

McKellar, R.

Meerhoz, K.

K. Meerhoz, B. L. Volodin, Sandalphon, B. Kippelen, and N. Peyghambarian, “A photorefractive polymer with high optical gain and diffraction efficiency near 100%,” Nature (London) 371, 497–500 (1994).
[CrossRef]

Moerner, W. E.

W. E. Moerner and S. M. Silence, “Polymetric photorefractive materials,” Chem. Rev. 94, 127–155 (1994).
[CrossRef]

S. Ducharme, J. C. Scott, R. J. Twieg, and W. E. Moerner, “Observation of the photorefractive effect in a polymer,” Phys. Rev. Lett. 66, 1846–1849 (1991).
[CrossRef] [PubMed]

Mukherjee, A.

A. Mukherjee, “Two-photon pumped upconverted lasing in dye-doped polymer waveguide,” Appl. Phys. Lett. 62, 3423–3425 (1993).
[CrossRef]

Natarajan, L. V.

Pan, S. J.

P. C. Cheng, S. J. Pan, J. D. Bhawalkar, J. Swiatkiewicz, J. K. Samarabandu, W. S. Liou, G. S. He, and P. N. Prasad, “Two-photon generated three-dimensional photo-bleached patterns in a polymer matrix,” Scanning 18, 3–4 (1996).

Park, C. K.

G. S. He, J. D. Bhawalkar, C. F. Zhao, C. K. Park, and P. N. Prasad, “Upconversion dye-doped polymer fiber laser,” Appl. Phys. Lett. 68, 3549–3551 (1996).
[CrossRef]

J. D. Bhawalkar, G. S. He, C. K. Park, C. F. Zhao, G. Ruland, and P. N. Prasad, “Efficient, two-photon pumped green upconverted cavity lasing in a new dye,” Opt. Commun. 124, 33–37 (1996).
[CrossRef]

G. S. He, J. D. Bhawalkar, C. F. Zhao, C. K. Park, and P. N. Prasad, “Two-photon-pumped cavity lasing in a dye-solution-filled hollow-fiber system,” Opt. Lett. 20, 2393–2395 (1995).
[CrossRef] [PubMed]

Peyghambarian, N.

K. Meerhoz, B. L. Volodin, Sandalphon, B. Kippelen, and N. Peyghambarian, “A photorefractive polymer with high optical gain and diffraction efficiency near 100%,” Nature (London) 371, 497–500 (1994).
[CrossRef]

Prasad, P. N.

G. S. He, J. D. Bhawalkar, C. F. Zhao, C. K. Park, and P. N. Prasad, “Upconversion dye-doped polymer fiber laser,” Appl. Phys. Lett. 68, 3549–3551 (1996).
[CrossRef]

G. S. He, J. D. Bhawalkar, C. F. Zhao, and P. N. Prasad, “Properties of two-photon pumped cavity lasing in a novel dye doped solid materials,” IEEE J. Quantum Electron. 32, 749–755 (1996).
[CrossRef]

J. D. Bhawalkar, G. S. He, C. K. Park, C. F. Zhao, G. Ruland, and P. N. Prasad, “Efficient, two-photon pumped green upconverted cavity lasing in a new dye,” Opt. Commun. 124, 33–37 (1996).
[CrossRef]

P. C. Cheng, S. J. Pan, J. D. Bhawalkar, J. Swiatkiewicz, J. K. Samarabandu, W. S. Liou, G. S. He, and P. N. Prasad, “Two-photon generated three-dimensional photo-bleached patterns in a polymer matrix,” Scanning 18, 3–4 (1996).

G. S. He, J. D. Bhawalkar, C. F. Zhao, C. K. Park, and P. N. Prasad, “Two-photon-pumped cavity lasing in a dye-solution-filled hollow-fiber system,” Opt. Lett. 20, 2393–2395 (1995).
[CrossRef] [PubMed]

G. S. He, J. D. Bhawalkar, C. F. Zhao, and P. N. Prasad, “Optical limiting effect in a two-photon absorption dye doped solid matrix,” Appl. Phys. Lett. 67, 2433–2435 (1995).
[CrossRef]

G. S. He, G. C. Xu, P. N. Prasad, B. A. Reinhardt, J. C. Bhatt, R. McKellar, and A. G. Dillard, “Two-photon absorption and optical-limiting properties of novel organic compounds,” Opt. Lett. 20, 435–437 (1995).
[CrossRef] [PubMed]

G. S. He, R. Gvishi, P. N. Prasad, and B. A. Reinhardt, “Two-photon absorption based optical limiting and stabilization in organic molecule-doped solid materials,” Opt. Commun. 117, 133–136 (1995).
[CrossRef]

Y. P. Cui, Y. Zhang, and P. N. Prasad, “Photorefractive effect in a new organic system of doped nonlinear polymer,” Appl. Phys. Lett. 61, 2132–2134 (1992).
[CrossRef]

Rapp, W.

W. Rapp and B. Gronau, “Laser emission from two xanthene dyes via double-photon excitation,” Chem. Phys. Lett. 8, 529–531 (1971).
[CrossRef]

Reinhardt, B. A.

G. S. He, R. Gvishi, P. N. Prasad, and B. A. Reinhardt, “Two-photon absorption based optical limiting and stabilization in organic molecule-doped solid materials,” Opt. Commun. 117, 133–136 (1995).
[CrossRef]

G. S. He, G. C. Xu, P. N. Prasad, B. A. Reinhardt, J. C. Bhatt, R. McKellar, and A. G. Dillard, “Two-photon absorption and optical-limiting properties of novel organic compounds,” Opt. Lett. 20, 435–437 (1995).
[CrossRef] [PubMed]

Ruland, G.

J. D. Bhawalkar, G. S. He, C. K. Park, C. F. Zhao, G. Ruland, and P. N. Prasad, “Efficient, two-photon pumped green upconverted cavity lasing in a new dye,” Opt. Commun. 124, 33–37 (1996).
[CrossRef]

Samarabandu, J. K.

P. C. Cheng, S. J. Pan, J. D. Bhawalkar, J. Swiatkiewicz, J. K. Samarabandu, W. S. Liou, G. S. He, and P. N. Prasad, “Two-photon generated three-dimensional photo-bleached patterns in a polymer matrix,” Scanning 18, 3–4 (1996).

Sandalphon,

K. Meerhoz, B. L. Volodin, Sandalphon, B. Kippelen, and N. Peyghambarian, “A photorefractive polymer with high optical gain and diffraction efficiency near 100%,” Nature (London) 371, 497–500 (1994).
[CrossRef]

Schmitt, M. G.

Schrader, M.

S. W. Hell, P. E. Hanninen, A. Kuusisto, M. Schrader, and E. Soini, “Annular aperture two-photon excitation microscopy,” Opt. Commun. 117, 20–24 (1995).
[CrossRef]

Scott, J. C.

S. Ducharme, J. C. Scott, R. J. Twieg, and W. E. Moerner, “Observation of the photorefractive effect in a polymer,” Phys. Rev. Lett. 66, 1846–1849 (1991).
[CrossRef] [PubMed]

Serpenguzel, A.

Silence, S. M.

W. E. Moerner and S. M. Silence, “Polymetric photorefractive materials,” Chem. Rev. 94, 127–155 (1994).
[CrossRef]

Soileau, M. J.

Soini, E.

S. W. Hell, P. E. Hanninen, A. Kuusisto, M. Schrader, and E. Soini, “Annular aperture two-photon excitation microscopy,” Opt. Commun. 117, 20–24 (1995).
[CrossRef]

Strickler, J. H.

W. Denk, J. H. Strickler, and W. W. Webb, “Two-photon laser scanning fluorescence microscopy,” Science 248, 73–76 (1990).
[CrossRef] [PubMed]

Strowlridge, B. W.

W. Denk, K. R. Delaney, A. Gelperin, D. Kleinfeld, B. W. Strowlridge, D. W. Tank, and R. W. Yuste, “Anatomical and functional imaging of neurons using 2-photon laser scanning microscopy,” J. Neuroscience Methods 54, 151–162 (1994).
[CrossRef]

Swiatkiewicz, J.

P. C. Cheng, S. J. Pan, J. D. Bhawalkar, J. Swiatkiewicz, J. K. Samarabandu, W. S. Liou, G. S. He, and P. N. Prasad, “Two-photon generated three-dimensional photo-bleached patterns in a polymer matrix,” Scanning 18, 3–4 (1996).

Tang, C. W.

C. W. Tang, S. A. Van Slyke, and C. H. Chen, “Electroluminescence of doped organic thin film,” J. Appl. Phys. 65, 3610–3616 (1989).
[CrossRef]

Tank, D. W.

W. Denk, K. R. Delaney, A. Gelperin, D. Kleinfeld, B. W. Strowlridge, D. W. Tank, and R. W. Yuste, “Anatomical and functional imaging of neurons using 2-photon laser scanning microscopy,” J. Neuroscience Methods 54, 151–162 (1994).
[CrossRef]

Tutt, L. W.

L. W. Tutt and T. F. Boggess, “A review of optical limiting mechanisms and devices using organics, fullerence, semiconductors, and other materials,” Prog. Quantum Electron. 17, 299–338 (1993).
[CrossRef]

Twieg, R. J.

S. Ducharme, J. C. Scott, R. J. Twieg, and W. E. Moerner, “Observation of the photorefractive effect in a polymer,” Phys. Rev. Lett. 66, 1846–1849 (1991).
[CrossRef] [PubMed]

Van Slyke, S. A.

C. W. Tang, S. A. Van Slyke, and C. H. Chen, “Electroluminescence of doped organic thin film,” J. Appl. Phys. 65, 3610–3616 (1989).
[CrossRef]

Van Stryland, E. W.

Volodin, B. L.

K. Meerhoz, B. L. Volodin, Sandalphon, B. Kippelen, and N. Peyghambarian, “A photorefractive polymer with high optical gain and diffraction efficiency near 100%,” Nature (London) 371, 497–500 (1994).
[CrossRef]

Webb, W. W.

W. Denk, J. H. Strickler, and W. W. Webb, “Two-photon laser scanning fluorescence microscopy,” Science 248, 73–76 (1990).
[CrossRef] [PubMed]

Wu, Y. Y.

Xu, G. C.

Yuste, R. W.

W. Denk, K. R. Delaney, A. Gelperin, D. Kleinfeld, B. W. Strowlridge, D. W. Tank, and R. W. Yuste, “Anatomical and functional imaging of neurons using 2-photon laser scanning microscopy,” J. Neuroscience Methods 54, 151–162 (1994).
[CrossRef]

Zhang, Y.

Y. P. Cui, Y. Zhang, and P. N. Prasad, “Photorefractive effect in a new organic system of doped nonlinear polymer,” Appl. Phys. Lett. 61, 2132–2134 (1992).
[CrossRef]

Zhao, C. F.

G. S. He, J. D. Bhawalkar, C. F. Zhao, C. K. Park, and P. N. Prasad, “Upconversion dye-doped polymer fiber laser,” Appl. Phys. Lett. 68, 3549–3551 (1996).
[CrossRef]

G. S. He, J. D. Bhawalkar, C. F. Zhao, and P. N. Prasad, “Properties of two-photon pumped cavity lasing in a novel dye doped solid materials,” IEEE J. Quantum Electron. 32, 749–755 (1996).
[CrossRef]

J. D. Bhawalkar, G. S. He, C. K. Park, C. F. Zhao, G. Ruland, and P. N. Prasad, “Efficient, two-photon pumped green upconverted cavity lasing in a new dye,” Opt. Commun. 124, 33–37 (1996).
[CrossRef]

G. S. He, J. D. Bhawalkar, C. F. Zhao, and P. N. Prasad, “Optical limiting effect in a two-photon absorption dye doped solid matrix,” Appl. Phys. Lett. 67, 2433–2435 (1995).
[CrossRef]

G. S. He, J. D. Bhawalkar, C. F. Zhao, C. K. Park, and P. N. Prasad, “Two-photon-pumped cavity lasing in a dye-solution-filled hollow-fiber system,” Opt. Lett. 20, 2393–2395 (1995).
[CrossRef] [PubMed]

Appl. Opt.

Appl. Phys. Lett.

A. Mukherjee, “Two-photon pumped upconverted lasing in dye-doped polymer waveguide,” Appl. Phys. Lett. 62, 3423–3425 (1993).
[CrossRef]

Y. P. Cui, Y. Zhang, and P. N. Prasad, “Photorefractive effect in a new organic system of doped nonlinear polymer,” Appl. Phys. Lett. 61, 2132–2134 (1992).
[CrossRef]

G. S. He, J. D. Bhawalkar, C. F. Zhao, and P. N. Prasad, “Optical limiting effect in a two-photon absorption dye doped solid matrix,” Appl. Phys. Lett. 67, 2433–2435 (1995).
[CrossRef]

G. S. He, J. D. Bhawalkar, C. F. Zhao, C. K. Park, and P. N. Prasad, “Upconversion dye-doped polymer fiber laser,” Appl. Phys. Lett. 68, 3549–3551 (1996).
[CrossRef]

Chem. Phys. Lett.

W. Rapp and B. Gronau, “Laser emission from two xanthene dyes via double-photon excitation,” Chem. Phys. Lett. 8, 529–531 (1971).
[CrossRef]

Chem. Rev.

W. E. Moerner and S. M. Silence, “Polymetric photorefractive materials,” Chem. Rev. 94, 127–155 (1994).
[CrossRef]

IEEE J. Quantum Electron.

G. S. He, J. D. Bhawalkar, C. F. Zhao, and P. N. Prasad, “Properties of two-photon pumped cavity lasing in a novel dye doped solid materials,” IEEE J. Quantum Electron. 32, 749–755 (1996).
[CrossRef]

J. Appl. Phys.

C. W. Tang, S. A. Van Slyke, and C. H. Chen, “Electroluminescence of doped organic thin film,” J. Appl. Phys. 65, 3610–3616 (1989).
[CrossRef]

D. Braun, G. Gustafsson, D. McBranch, and A. J. Heeger, “Electroluminescence and electrical transport in poly(3-octylthiophene) diode,” J. Appl. Phys. 72, 564–568 (1992).
[CrossRef]

J. Neuroscience Methods

W. Denk, K. R. Delaney, A. Gelperin, D. Kleinfeld, B. W. Strowlridge, D. W. Tank, and R. W. Yuste, “Anatomical and functional imaging of neurons using 2-photon laser scanning microscopy,” J. Neuroscience Methods 54, 151–162 (1994).
[CrossRef]

J. Opt. Soc. Am. B

Nature (London)

J. H. Burroughes, D. D. C. Bradley, A. R. Brown, R. N. Marks, K. Mackay, R. H. Friend, P. L. Burns, and A. B. Holmes, “Light-emitting diode based on conjugated polymers,” Nature (London) 347, 539–541 (1990).
[CrossRef]

K. Meerhoz, B. L. Volodin, Sandalphon, B. Kippelen, and N. Peyghambarian, “A photorefractive polymer with high optical gain and diffraction efficiency near 100%,” Nature (London) 371, 497–500 (1994).
[CrossRef]

Opt. Commun.

S. W. Hell, P. E. Hanninen, A. Kuusisto, M. Schrader, and E. Soini, “Annular aperture two-photon excitation microscopy,” Opt. Commun. 117, 20–24 (1995).
[CrossRef]

J. D. Bhawalkar, G. S. He, C. K. Park, C. F. Zhao, G. Ruland, and P. N. Prasad, “Efficient, two-photon pumped green upconverted cavity lasing in a new dye,” Opt. Commun. 124, 33–37 (1996).
[CrossRef]

G. S. He, R. Gvishi, P. N. Prasad, and B. A. Reinhardt, “Two-photon absorption based optical limiting and stabilization in organic molecule-doped solid materials,” Opt. Commun. 117, 133–136 (1995).
[CrossRef]

Opt. Lett.

Phys. Rev. Lett.

S. Ducharme, J. C. Scott, R. J. Twieg, and W. E. Moerner, “Observation of the photorefractive effect in a polymer,” Phys. Rev. Lett. 66, 1846–1849 (1991).
[CrossRef] [PubMed]

Prog. Quantum Electron.

L. W. Tutt and T. F. Boggess, “A review of optical limiting mechanisms and devices using organics, fullerence, semiconductors, and other materials,” Prog. Quantum Electron. 17, 299–338 (1993).
[CrossRef]

Scanning

P. C. Cheng, S. J. Pan, J. D. Bhawalkar, J. Swiatkiewicz, J. K. Samarabandu, W. S. Liou, G. S. He, and P. N. Prasad, “Two-photon generated three-dimensional photo-bleached patterns in a polymer matrix,” Scanning 18, 3–4 (1996).

Science

W. Denk, J. H. Strickler, and W. W. Webb, “Two-photon laser scanning fluorescence microscopy,” Science 248, 73–76 (1990).
[CrossRef] [PubMed]

Other

M. Sheik-Bahae, A. A. Said, Y. Y. Wu, T. H. Wei, D. J. Hagan, and E. W. Van Stryland, “Simple and sensitive technique for determining refractive nonlinearities,” in Conference on Lasers and Electro-Optics, 1989 OSA Technical Digest Series, Vol. 11 (Optical Society of America, Washington, D.C., 1989), paper THH4.

J. D. Bhawalkar, J. Swiatkiewicz, G. S. He, P. N. Prasad, S. J. Pan, J. K. Samarabandu, W. S. Liou, and P. C. Cheng, “3-D multiphoton laser scanning confocal microscopy as a probe for subsurface defects in polymer,” in Conference on Laser and Electro-Optics, 1996 OSA Technical Digest Series, Vol. 9 (Optical Society of America, Washington, D.C., 1996), pp. 19–20.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (14)

Fig. 1
Fig. 1

Linear absorption spectra of (a) an AF-50 solution in benzene of concentration d0=0.00044 M/L and (b) a pure benzene sample. The thickness of the sample is 1 mm and the chemical structure of the solute is shown in the top-right corner.

Fig. 2
Fig. 2

Linear absorption spectra of 1-mm-path AF-50 solutions in different solvents with the same concentration of d0=0.00044 M/L.

Fig. 3
Fig. 3

Linear absorption spectra of three AF-50 solution (in benzene) samples with different concentration and path length. The baselines of curves (a) and (b) were shifted.

Fig. 4
Fig. 4

Single-photon-excited fluorescence spectra of 1-mm-path AF-50 solutions in different solvents with the same concentration of d0=0.00044 M/L and excited by the 390-nm radiation.

Fig. 5
Fig. 5

Single-photon excited fluorescence spectra of 1-mm-path AF-50 solutions in benzene with different concentration values and excited by the 390-nm radiation.

Fig. 6
Fig. 6

Single-photon-excitation spectrum of a AF-50 solution in benzene monitored at the 460-nm emission.

Fig. 7
Fig. 7

Experimental setup for nonlinear absorption and Z-scan measurements.

Fig. 8
Fig. 8

Measured nonlinear absorption coefficients as a function of the input intensity in a 1-cm-path AF-50 solution in benzene of concentration d0=0.045 M/L.

Fig. 9
Fig. 9

Two-photon excited fluorescence spectra of 1-mm-path AF-50 solutions in different solvents with the same concentration of d0=0.00044 M/L and excited by the 800-nm laser radiation.

Fig. 10
Fig. 10

Relative two-photon excited fluorescence emission of 1-mm-path AF-50 solutions in benzene as a function of the 800-nm excitation intensity for various concentration values.

Fig. 11
Fig. 11

Measured apparent transmission of a 1-cm-path AF-50 solution in benzene of concentration d0=0.045 M/L as a function of the Z-scan distance under different opening sizes of the iris.

Fig. 12
Fig. 12

Measured nonlinear transmission of a 1-cm-path AF-50 solution in benzene of d0=0.045 M/L as a function of the input intensity of the 800-nm laser beam.

Fig. 13
Fig. 13

Measured output intensity as a function of the input intensity based on a 1-cm-path AF-50 solution sample in benzene of d0=0.045 M/L. The solid curve is the theoretical data with a best-fit parameter of β=21 cm/GW.

Fig. 14
Fig. 14

(a) Measured instantaneous peak intensity fluctuation of the input laser pulses and (b) measured instantaneous peak intensity fluctuation of the output laser pulses. The repetition rate of the laser pulses was 2 Hz, and the average input intensity level was 250 MW/cm2.

Tables (2)

Tables Icon

Table 1 Solvent Effect on the TPA Cross Section σ2 of AF-50

Tables Icon

Table 2 TPA Cross Section (σ2) Values and Two-Photon Pumped Lasing for Dye Compounds in Solution Phase

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

dI/dz+αI+βI2=0,
I(z)=I(0)exp(-αz)1+(β/α)I(0)-(β/α)I(0)exp(-αz),
I(z)=I(0)exp(-αz)1+βzI(0),
T(z)=I(z)/I(0)=exp(-αz)1+βzI(0)=T01+βzI(0)=T0Ti.
Ti=[ln(1+I0l0β)]/I0l0β.
β=σ2N0=σ2NAd0×10-3.
I0(1-Ti)=I01-ln(1+I0l0σ2NAd0×10-3)I0l0σ2NAd0×10-3,

Metrics