Abstract

Linear propagation of light was investigated by using a white-light Michelson interferometer. This method gives the full information on the deformation of broadband optical pulses by the passage through samples in the linear regime. We observed the delay of pulse propagation for cobalt chloride in pyridine, free-induction decay signal for oxazine 1 in methanol, and the increase of peak velocity for nigrosine in water. By Fourier analysis of the interferograms, complex optical constants of the samples were also obtained.

© 1997 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. F. Barbara, W. H. Knox, B. A. Mourou, and A. H. Zewail, eds., Ultrafast Phenomena IX (Springer-Verlag, Berlin, 1994).
  2. W. H. Knox, N. M. Pearson, K. D. Li, and C. A. Hirlimann, “Interferometric measurements of femtosecond group delay in optical components,” Opt. Lett. 7, 574–576 (1988).
    [CrossRef]
  3. K. Naganuma, K. Mogi, and H. Yamada, “Group-delay measurement using the Fourier transform of an interferometric cross correlation generated by white light,” Opt. Lett. 15, 393–395 (1990).
    [CrossRef] [PubMed]
  4. M. Beck and I. A. Walmsley, “Measurement of group delay with high temporal and spectral resolution,” Opt. Lett. 15, 492–494 (1990).
    [CrossRef] [PubMed]
  5. K. Naganuma and Y. Sakai, “Interferometric measurement of wavelength dispersion on femtosecond laser cavities,” Opt. Lett. 19, 487–489 (1994).
    [CrossRef] [PubMed]
  6. R. G. Brewer and R. L. Shoemaker, “Optical free induction decay,” Phys. Rev. A 6, 2001–2007 (1972).
    [CrossRef]
  7. N. Tsurumachi, T. Fuji, S. Kawato, T. Hattori, and H. Nakatsuka, “Interferometric observation of femtosecond free induction decay,” Opt. Lett. 19, 1867–1869 (1994).
    [CrossRef] [PubMed]
  8. L. Brillouin, Wave Propagation and Group Velocity (Academic, New York, 1960).
  9. F. R. Faxvog, C. N. Y. Chow, T. Bieber, and J. A. Carruthers, “Measured pulse velocity greater than c in a neon absorption cell,” Appl. Phys. Lett. 17, 192–193 (1970).
    [CrossRef]
  10. C. G. B. Garrett and D. E. McCumber, “Propagation of a Gaussian light pulse through an anomalous dispersion medium,” Phys. Rev. A 1, 305–313 (1971).
    [CrossRef]
  11. M. D. Crisp, “Concept of group velocity in resonant pulse propagation,” Phys. Rev. A 4, 2104–2108 (1971).
    [CrossRef]
  12. S. Chu and S. Wong, “Linear pulse propagation in an absorbing medium,” Phys. Rev. Lett. 48, 738–741 (1982).
    [CrossRef]
  13. M. Tanaka, M. Fujiwara, and H. Ikegami, “Propagation of a Gaussian wave packet in an absorbing medium,” Phys. Rev. A 34, 4851–4858 (1986).
    [CrossRef] [PubMed]
  14. Y. Amagishi, H. Nakagawa, and M. Tanaka, “Ion-Neutral collision effect on an Alfv́en Wave,” Phys. Rev. Lett. 71, 360–363 (1993).
    [CrossRef] [PubMed]

1994 (2)

1993 (1)

Y. Amagishi, H. Nakagawa, and M. Tanaka, “Ion-Neutral collision effect on an Alfv́en Wave,” Phys. Rev. Lett. 71, 360–363 (1993).
[CrossRef] [PubMed]

1990 (2)

1988 (1)

W. H. Knox, N. M. Pearson, K. D. Li, and C. A. Hirlimann, “Interferometric measurements of femtosecond group delay in optical components,” Opt. Lett. 7, 574–576 (1988).
[CrossRef]

1986 (1)

M. Tanaka, M. Fujiwara, and H. Ikegami, “Propagation of a Gaussian wave packet in an absorbing medium,” Phys. Rev. A 34, 4851–4858 (1986).
[CrossRef] [PubMed]

1982 (1)

S. Chu and S. Wong, “Linear pulse propagation in an absorbing medium,” Phys. Rev. Lett. 48, 738–741 (1982).
[CrossRef]

1972 (1)

R. G. Brewer and R. L. Shoemaker, “Optical free induction decay,” Phys. Rev. A 6, 2001–2007 (1972).
[CrossRef]

1971 (2)

C. G. B. Garrett and D. E. McCumber, “Propagation of a Gaussian light pulse through an anomalous dispersion medium,” Phys. Rev. A 1, 305–313 (1971).
[CrossRef]

M. D. Crisp, “Concept of group velocity in resonant pulse propagation,” Phys. Rev. A 4, 2104–2108 (1971).
[CrossRef]

1970 (1)

F. R. Faxvog, C. N. Y. Chow, T. Bieber, and J. A. Carruthers, “Measured pulse velocity greater than c in a neon absorption cell,” Appl. Phys. Lett. 17, 192–193 (1970).
[CrossRef]

Amagishi, Y.

Y. Amagishi, H. Nakagawa, and M. Tanaka, “Ion-Neutral collision effect on an Alfv́en Wave,” Phys. Rev. Lett. 71, 360–363 (1993).
[CrossRef] [PubMed]

Beck, M.

Bieber, T.

F. R. Faxvog, C. N. Y. Chow, T. Bieber, and J. A. Carruthers, “Measured pulse velocity greater than c in a neon absorption cell,” Appl. Phys. Lett. 17, 192–193 (1970).
[CrossRef]

Brewer, R. G.

R. G. Brewer and R. L. Shoemaker, “Optical free induction decay,” Phys. Rev. A 6, 2001–2007 (1972).
[CrossRef]

Carruthers, J. A.

F. R. Faxvog, C. N. Y. Chow, T. Bieber, and J. A. Carruthers, “Measured pulse velocity greater than c in a neon absorption cell,” Appl. Phys. Lett. 17, 192–193 (1970).
[CrossRef]

Chow, C. N. Y.

F. R. Faxvog, C. N. Y. Chow, T. Bieber, and J. A. Carruthers, “Measured pulse velocity greater than c in a neon absorption cell,” Appl. Phys. Lett. 17, 192–193 (1970).
[CrossRef]

Chu, S.

S. Chu and S. Wong, “Linear pulse propagation in an absorbing medium,” Phys. Rev. Lett. 48, 738–741 (1982).
[CrossRef]

Crisp, M. D.

M. D. Crisp, “Concept of group velocity in resonant pulse propagation,” Phys. Rev. A 4, 2104–2108 (1971).
[CrossRef]

Faxvog, F. R.

F. R. Faxvog, C. N. Y. Chow, T. Bieber, and J. A. Carruthers, “Measured pulse velocity greater than c in a neon absorption cell,” Appl. Phys. Lett. 17, 192–193 (1970).
[CrossRef]

Fuji, T.

Fujiwara, M.

M. Tanaka, M. Fujiwara, and H. Ikegami, “Propagation of a Gaussian wave packet in an absorbing medium,” Phys. Rev. A 34, 4851–4858 (1986).
[CrossRef] [PubMed]

Garrett, C. G. B.

C. G. B. Garrett and D. E. McCumber, “Propagation of a Gaussian light pulse through an anomalous dispersion medium,” Phys. Rev. A 1, 305–313 (1971).
[CrossRef]

Hattori, T.

Hirlimann, C. A.

W. H. Knox, N. M. Pearson, K. D. Li, and C. A. Hirlimann, “Interferometric measurements of femtosecond group delay in optical components,” Opt. Lett. 7, 574–576 (1988).
[CrossRef]

Ikegami, H.

M. Tanaka, M. Fujiwara, and H. Ikegami, “Propagation of a Gaussian wave packet in an absorbing medium,” Phys. Rev. A 34, 4851–4858 (1986).
[CrossRef] [PubMed]

Kawato, S.

Knox, W. H.

W. H. Knox, N. M. Pearson, K. D. Li, and C. A. Hirlimann, “Interferometric measurements of femtosecond group delay in optical components,” Opt. Lett. 7, 574–576 (1988).
[CrossRef]

Li, K. D.

W. H. Knox, N. M. Pearson, K. D. Li, and C. A. Hirlimann, “Interferometric measurements of femtosecond group delay in optical components,” Opt. Lett. 7, 574–576 (1988).
[CrossRef]

McCumber, D. E.

C. G. B. Garrett and D. E. McCumber, “Propagation of a Gaussian light pulse through an anomalous dispersion medium,” Phys. Rev. A 1, 305–313 (1971).
[CrossRef]

Mogi, K.

Naganuma, K.

Nakagawa, H.

Y. Amagishi, H. Nakagawa, and M. Tanaka, “Ion-Neutral collision effect on an Alfv́en Wave,” Phys. Rev. Lett. 71, 360–363 (1993).
[CrossRef] [PubMed]

Nakatsuka, H.

Pearson, N. M.

W. H. Knox, N. M. Pearson, K. D. Li, and C. A. Hirlimann, “Interferometric measurements of femtosecond group delay in optical components,” Opt. Lett. 7, 574–576 (1988).
[CrossRef]

Sakai, Y.

Shoemaker, R. L.

R. G. Brewer and R. L. Shoemaker, “Optical free induction decay,” Phys. Rev. A 6, 2001–2007 (1972).
[CrossRef]

Tanaka, M.

Y. Amagishi, H. Nakagawa, and M. Tanaka, “Ion-Neutral collision effect on an Alfv́en Wave,” Phys. Rev. Lett. 71, 360–363 (1993).
[CrossRef] [PubMed]

M. Tanaka, M. Fujiwara, and H. Ikegami, “Propagation of a Gaussian wave packet in an absorbing medium,” Phys. Rev. A 34, 4851–4858 (1986).
[CrossRef] [PubMed]

Tsurumachi, N.

Walmsley, I. A.

Wong, S.

S. Chu and S. Wong, “Linear pulse propagation in an absorbing medium,” Phys. Rev. Lett. 48, 738–741 (1982).
[CrossRef]

Yamada, H.

Appl. Phys. Lett. (1)

F. R. Faxvog, C. N. Y. Chow, T. Bieber, and J. A. Carruthers, “Measured pulse velocity greater than c in a neon absorption cell,” Appl. Phys. Lett. 17, 192–193 (1970).
[CrossRef]

Opt. Lett. (5)

Phys. Rev. A (4)

R. G. Brewer and R. L. Shoemaker, “Optical free induction decay,” Phys. Rev. A 6, 2001–2007 (1972).
[CrossRef]

M. Tanaka, M. Fujiwara, and H. Ikegami, “Propagation of a Gaussian wave packet in an absorbing medium,” Phys. Rev. A 34, 4851–4858 (1986).
[CrossRef] [PubMed]

C. G. B. Garrett and D. E. McCumber, “Propagation of a Gaussian light pulse through an anomalous dispersion medium,” Phys. Rev. A 1, 305–313 (1971).
[CrossRef]

M. D. Crisp, “Concept of group velocity in resonant pulse propagation,” Phys. Rev. A 4, 2104–2108 (1971).
[CrossRef]

Phys. Rev. Lett. (2)

S. Chu and S. Wong, “Linear pulse propagation in an absorbing medium,” Phys. Rev. Lett. 48, 738–741 (1982).
[CrossRef]

Y. Amagishi, H. Nakagawa, and M. Tanaka, “Ion-Neutral collision effect on an Alfv́en Wave,” Phys. Rev. Lett. 71, 360–363 (1993).
[CrossRef] [PubMed]

Other (2)

L. Brillouin, Wave Propagation and Group Velocity (Academic, New York, 1960).

P. F. Barbara, W. H. Knox, B. A. Mourou, and A. H. Zewail, eds., Ultrafast Phenomena IX (Springer-Verlag, Berlin, 1994).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Schematic of the white-light Michelson interferometer.

Fig. 2
Fig. 2

Autocorrelation (dashed curve), and cross correlation (solid curves) of CoCl2 in pyridine. The concentrations of CoCl2 are indicated.

Fig. 3
Fig. 3

Refractive-index spectrum of CoCl2 in pyridine obtained from the measured interferograms. The concentrations of CoCl2 are indicated.

Fig. 4
Fig. 4

Absorption spectrum of oxazine 1 in methanol (solid curve) and spectrum of the incident light (dotted curve).

Fig. 5
Fig. 5

Autocorrelation (dashed curve), and cross correlation (solid curve) of oxazine 1 in methanol (1.2×10-4 M).

Fig. 6
Fig. 6

Absorption spectrum (solid curve) and spectrum of refractive index (dashed curve) of oxazine 1 in methanol obtained from the measured interferograms. The absorption spectrum (dotted curve) obtained with conventional grating spectrometer is also shown.

Fig. 7
Fig. 7

Spectrum of incident light (dashed curve) and absorption spectrum (solid curve) of nigrosine in water (1.3×10-3 M).

Fig. 8
Fig. 8

Autocorrelation (dashed curve), and cross correlation (solid curves) of nigrosine in water. The concentrations of nigrosine are indicated.

Equations (11)

Equations on this page are rendered with MathJax. Learn more.

CA(τ)=E*(t)E(t+τ),
E(t)=- dth(t-t)E(t),
CC(τ)=E*(t)E(t+τ).
CC(τ)=- dτh(τ-τ)CA(τ).
h˜(ω)=E˜(ω)/E˜(ω),
h˜(ω)=C˜C(ω)/C˜A(ω),
C˜(ω)=2iJ1Aωcc˜(ω).
Aλ.
h˜(ω)=C˜C(ω)/C˜A(ω),
CC(τ)=- dτh(τ-τ)CA(τ),
vg=dωdk=cn(ω)+ω(dn(ω)/dω),

Metrics