Abstract

The feasibility of population inversion, by impurity-scattering enhancement of the acoustic-phonon-limited lower-laser-level intersubband relaxation rate, is theoretically investigated in nonpolar three-level SiGe/Si systems. The dependence of the acoustic-phonon depopulating rate on the barrier thickness and the effect of the position of a δ-doped region on the impurity scattering are treated rigorously. A 10-Å-doped region with a 1010 or a 5×1010 cm-2 sheet carrier density enhances the acoustic-phonon-limited depopulating rate by more than one or two orders of magnitude, respectively. Thus for equal barrier widths between the depopulating and the lasing levels, the depopulating rate becomes at least an order of magnitude (1010 cm-2 doping) or a factor of 2–4 (5×1010 cm-2 doping) faster than the lasing transition's acoustic- or optical-phonon limit, respectively. This allows for the design of nonpolar intersubband lasers, in which population inversion between discrete valence-band states is achieved by impurity-scattering enhancement of the acoustic-phonon-limited depopulating rate.

© 1997 Optical Society of America

Full Article  |  PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (5)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (14)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription