Abstract

Third-harmonic (TH) generation for an ArF excimer laser in a hydrogen (H2) gas jet was investigated. When the ArF laser radiation was tuned into a two-photon resonance in H2, enhanced efficiency for TH was observed. Optimum experimental conditions of efficient TH generation for our apparatus such as gas-jet density and energy fluence of the laser were obtained. Calculation of the phase-matching condition including absorption led to an optimum gas-jet profile for TH generation. Absolute TH energy of 1-µJ pulse was measured by two different methods. The proposed narrow-band extreme-ultraviolet source with a commercial excimer laser with a high repetition rate should be useful not only for scientific applications but also for industrial applications such as laser processing.

© 1997 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. F. Reintjes, “Coherent ultraviolet and vacuum ultraviolet sources,” in Laser Handbook, M. Bass and M. L. Stitch, eds. (North-Holland, Amsterdam, 1985), Vol. 5, p. 1.
  2. A. McPherson, G. Gibson, H. Jara, U. Johann, T. S. Luk, I. A. McIntyre, K. Boyer, and C. K. Rhodes, “Studies of multiphoton production of vacuum-ultraviolet radiation in the rare gases,” J. Opt. Soc. Am. B 4, 595 (1987).
    [CrossRef]
  3. K. Miyazaki and H. Tanaka, “High-order harmonic generation in the tunneling regime,” Phys. Rev. A 52, 3007 (1995).
    [CrossRef] [PubMed]
  4. W. Ubachs, K. S. E. Eikema, and W. Hogervorst, “Narrow-band extreme-ultraviolet laser radiation tunable in the range 90.5–95 nm,” Appl. Phys. B 57, 411 (1993).
    [CrossRef]
  5. K. S. E. Eikema, W. Ubachs, W. Vassen, and W. Hogervorst, “Precision measurements in helium at 58 nm: ground state Lamb shift and the 1 1S–2 1P transition isotope shift,” Appl. Phys. B 57 411 (1993).
    [CrossRef]
  6. Y. Hirakawa, T. Okada, M. Maeda, and K. Muraoka, “Reso-nant third-harmonic generation of ArF laser in H2 and Kr gas jet at 64 nm,” Jpn. J. Appl. Phys. Lett. 29, L958 (1990).
    [CrossRef]
  7. Y. Hirakawa, K. Muraoka, T. Okada, and M. Maeda, “Generation of tunable coherent XUV radiation in a hydrogen gas jet by two-photon resonant four-wave mixing,” Opt. Commun. 84, 365 (1991).
    [CrossRef]
  8. Y. Hirakawa, A. Nagai, K. Muraoka, T. Okada, and M. Maeda, “Generation of tunable coherent extreme-ultraviolet radiation at wavelengths as low as 66 nm by resonant four-wave mixing,” Opt. Lett. 18, 735 (1993).
    [CrossRef] [PubMed]
  9. D. J. Klinger, J. Boker, and C. K. Rhodes, “Collisional and radiative properties of the H2E, F1 Σg+ state,” Phys. Rev. A 21, 607 (1980).
    [CrossRef]
  10. S. D. Bethune and C. T. Rettner, “Optical harmonic generation in nonlinear gaseous media with application to frequency tripling in free-jet expansions,” IEEE J. Quantum Electron. QE-23, 1348 (1987).
    [CrossRef]
  11. Y. Hirakawa, A. Nagai, K. Muraoka, T. Okada, and M. Maeda, “Absolute density measurement of a pulsed H2 gas jet used for extreme ultraviolet generation by nonlinear frequency conversion,” Jpn. J. Appl. Phys. Lett. 33, L183 (1994).
    [CrossRef]
  12. M. Maeda, T. Okada, Y. Hirakawa, M. Uchiumi, and K. Muraoka, “Resonant multiphoton ionization of H2 by ArF laser and application to atmospheric molecules,” Jpn. J. Appl. Phys. Lett. 35, L2672 (1996).
    [CrossRef]
  13. G. Hilber, A. Lago, and R. Wallenstein, “Broadly tunable vacuum-ultraviolet/extreme-ultraviolet radiation generated by resonant third-order frequency conversion in krypton,” J. Opt. Soc. Am. B 4, 1753 (1987).
    [CrossRef]
  14. H. Pummer, T. Srinivasan, H. Egger, K. Boyer, T. S. Luk, and C. K. Rhodes, “Third-harmonic generation using an ultrahigh-spectral-brightness ArF* source,” Opt. Lett. 7, 93 (1982).
    [CrossRef] [PubMed]

1996 (1)

M. Maeda, T. Okada, Y. Hirakawa, M. Uchiumi, and K. Muraoka, “Resonant multiphoton ionization of H2 by ArF laser and application to atmospheric molecules,” Jpn. J. Appl. Phys. Lett. 35, L2672 (1996).
[CrossRef]

1995 (1)

K. Miyazaki and H. Tanaka, “High-order harmonic generation in the tunneling regime,” Phys. Rev. A 52, 3007 (1995).
[CrossRef] [PubMed]

1994 (1)

Y. Hirakawa, A. Nagai, K. Muraoka, T. Okada, and M. Maeda, “Absolute density measurement of a pulsed H2 gas jet used for extreme ultraviolet generation by nonlinear frequency conversion,” Jpn. J. Appl. Phys. Lett. 33, L183 (1994).
[CrossRef]

1993 (3)

W. Ubachs, K. S. E. Eikema, and W. Hogervorst, “Narrow-band extreme-ultraviolet laser radiation tunable in the range 90.5–95 nm,” Appl. Phys. B 57, 411 (1993).
[CrossRef]

K. S. E. Eikema, W. Ubachs, W. Vassen, and W. Hogervorst, “Precision measurements in helium at 58 nm: ground state Lamb shift and the 1 1S–2 1P transition isotope shift,” Appl. Phys. B 57 411 (1993).
[CrossRef]

Y. Hirakawa, A. Nagai, K. Muraoka, T. Okada, and M. Maeda, “Generation of tunable coherent extreme-ultraviolet radiation at wavelengths as low as 66 nm by resonant four-wave mixing,” Opt. Lett. 18, 735 (1993).
[CrossRef] [PubMed]

1991 (1)

Y. Hirakawa, K. Muraoka, T. Okada, and M. Maeda, “Generation of tunable coherent XUV radiation in a hydrogen gas jet by two-photon resonant four-wave mixing,” Opt. Commun. 84, 365 (1991).
[CrossRef]

1990 (1)

Y. Hirakawa, T. Okada, M. Maeda, and K. Muraoka, “Reso-nant third-harmonic generation of ArF laser in H2 and Kr gas jet at 64 nm,” Jpn. J. Appl. Phys. Lett. 29, L958 (1990).
[CrossRef]

1987 (3)

1982 (1)

1980 (1)

D. J. Klinger, J. Boker, and C. K. Rhodes, “Collisional and radiative properties of the H2E, F1 Σg+ state,” Phys. Rev. A 21, 607 (1980).
[CrossRef]

Bethune, S. D.

S. D. Bethune and C. T. Rettner, “Optical harmonic generation in nonlinear gaseous media with application to frequency tripling in free-jet expansions,” IEEE J. Quantum Electron. QE-23, 1348 (1987).
[CrossRef]

Boker, J.

D. J. Klinger, J. Boker, and C. K. Rhodes, “Collisional and radiative properties of the H2E, F1 Σg+ state,” Phys. Rev. A 21, 607 (1980).
[CrossRef]

Boyer, K.

Egger, H.

Eikema, K. S. E.

W. Ubachs, K. S. E. Eikema, and W. Hogervorst, “Narrow-band extreme-ultraviolet laser radiation tunable in the range 90.5–95 nm,” Appl. Phys. B 57, 411 (1993).
[CrossRef]

K. S. E. Eikema, W. Ubachs, W. Vassen, and W. Hogervorst, “Precision measurements in helium at 58 nm: ground state Lamb shift and the 1 1S–2 1P transition isotope shift,” Appl. Phys. B 57 411 (1993).
[CrossRef]

Gibson, G.

Hilber, G.

Hirakawa, Y.

M. Maeda, T. Okada, Y. Hirakawa, M. Uchiumi, and K. Muraoka, “Resonant multiphoton ionization of H2 by ArF laser and application to atmospheric molecules,” Jpn. J. Appl. Phys. Lett. 35, L2672 (1996).
[CrossRef]

Y. Hirakawa, A. Nagai, K. Muraoka, T. Okada, and M. Maeda, “Absolute density measurement of a pulsed H2 gas jet used for extreme ultraviolet generation by nonlinear frequency conversion,” Jpn. J. Appl. Phys. Lett. 33, L183 (1994).
[CrossRef]

Y. Hirakawa, A. Nagai, K. Muraoka, T. Okada, and M. Maeda, “Generation of tunable coherent extreme-ultraviolet radiation at wavelengths as low as 66 nm by resonant four-wave mixing,” Opt. Lett. 18, 735 (1993).
[CrossRef] [PubMed]

Y. Hirakawa, K. Muraoka, T. Okada, and M. Maeda, “Generation of tunable coherent XUV radiation in a hydrogen gas jet by two-photon resonant four-wave mixing,” Opt. Commun. 84, 365 (1991).
[CrossRef]

Y. Hirakawa, T. Okada, M. Maeda, and K. Muraoka, “Reso-nant third-harmonic generation of ArF laser in H2 and Kr gas jet at 64 nm,” Jpn. J. Appl. Phys. Lett. 29, L958 (1990).
[CrossRef]

Hogervorst, W.

K. S. E. Eikema, W. Ubachs, W. Vassen, and W. Hogervorst, “Precision measurements in helium at 58 nm: ground state Lamb shift and the 1 1S–2 1P transition isotope shift,” Appl. Phys. B 57 411 (1993).
[CrossRef]

W. Ubachs, K. S. E. Eikema, and W. Hogervorst, “Narrow-band extreme-ultraviolet laser radiation tunable in the range 90.5–95 nm,” Appl. Phys. B 57, 411 (1993).
[CrossRef]

Jara, H.

Johann, U.

Klinger, D. J.

D. J. Klinger, J. Boker, and C. K. Rhodes, “Collisional and radiative properties of the H2E, F1 Σg+ state,” Phys. Rev. A 21, 607 (1980).
[CrossRef]

Lago, A.

Luk, T. S.

Maeda, M.

M. Maeda, T. Okada, Y. Hirakawa, M. Uchiumi, and K. Muraoka, “Resonant multiphoton ionization of H2 by ArF laser and application to atmospheric molecules,” Jpn. J. Appl. Phys. Lett. 35, L2672 (1996).
[CrossRef]

Y. Hirakawa, A. Nagai, K. Muraoka, T. Okada, and M. Maeda, “Absolute density measurement of a pulsed H2 gas jet used for extreme ultraviolet generation by nonlinear frequency conversion,” Jpn. J. Appl. Phys. Lett. 33, L183 (1994).
[CrossRef]

Y. Hirakawa, A. Nagai, K. Muraoka, T. Okada, and M. Maeda, “Generation of tunable coherent extreme-ultraviolet radiation at wavelengths as low as 66 nm by resonant four-wave mixing,” Opt. Lett. 18, 735 (1993).
[CrossRef] [PubMed]

Y. Hirakawa, K. Muraoka, T. Okada, and M. Maeda, “Generation of tunable coherent XUV radiation in a hydrogen gas jet by two-photon resonant four-wave mixing,” Opt. Commun. 84, 365 (1991).
[CrossRef]

Y. Hirakawa, T. Okada, M. Maeda, and K. Muraoka, “Reso-nant third-harmonic generation of ArF laser in H2 and Kr gas jet at 64 nm,” Jpn. J. Appl. Phys. Lett. 29, L958 (1990).
[CrossRef]

McIntyre, I. A.

McPherson, A.

Miyazaki, K.

K. Miyazaki and H. Tanaka, “High-order harmonic generation in the tunneling regime,” Phys. Rev. A 52, 3007 (1995).
[CrossRef] [PubMed]

Muraoka, and K.

Y. Hirakawa, T. Okada, M. Maeda, and K. Muraoka, “Reso-nant third-harmonic generation of ArF laser in H2 and Kr gas jet at 64 nm,” Jpn. J. Appl. Phys. Lett. 29, L958 (1990).
[CrossRef]

Muraoka, K.

M. Maeda, T. Okada, Y. Hirakawa, M. Uchiumi, and K. Muraoka, “Resonant multiphoton ionization of H2 by ArF laser and application to atmospheric molecules,” Jpn. J. Appl. Phys. Lett. 35, L2672 (1996).
[CrossRef]

Y. Hirakawa, A. Nagai, K. Muraoka, T. Okada, and M. Maeda, “Absolute density measurement of a pulsed H2 gas jet used for extreme ultraviolet generation by nonlinear frequency conversion,” Jpn. J. Appl. Phys. Lett. 33, L183 (1994).
[CrossRef]

Y. Hirakawa, A. Nagai, K. Muraoka, T. Okada, and M. Maeda, “Generation of tunable coherent extreme-ultraviolet radiation at wavelengths as low as 66 nm by resonant four-wave mixing,” Opt. Lett. 18, 735 (1993).
[CrossRef] [PubMed]

Y. Hirakawa, K. Muraoka, T. Okada, and M. Maeda, “Generation of tunable coherent XUV radiation in a hydrogen gas jet by two-photon resonant four-wave mixing,” Opt. Commun. 84, 365 (1991).
[CrossRef]

Nagai, A.

Y. Hirakawa, A. Nagai, K. Muraoka, T. Okada, and M. Maeda, “Absolute density measurement of a pulsed H2 gas jet used for extreme ultraviolet generation by nonlinear frequency conversion,” Jpn. J. Appl. Phys. Lett. 33, L183 (1994).
[CrossRef]

Y. Hirakawa, A. Nagai, K. Muraoka, T. Okada, and M. Maeda, “Generation of tunable coherent extreme-ultraviolet radiation at wavelengths as low as 66 nm by resonant four-wave mixing,” Opt. Lett. 18, 735 (1993).
[CrossRef] [PubMed]

Okada, T.

M. Maeda, T. Okada, Y. Hirakawa, M. Uchiumi, and K. Muraoka, “Resonant multiphoton ionization of H2 by ArF laser and application to atmospheric molecules,” Jpn. J. Appl. Phys. Lett. 35, L2672 (1996).
[CrossRef]

Y. Hirakawa, A. Nagai, K. Muraoka, T. Okada, and M. Maeda, “Absolute density measurement of a pulsed H2 gas jet used for extreme ultraviolet generation by nonlinear frequency conversion,” Jpn. J. Appl. Phys. Lett. 33, L183 (1994).
[CrossRef]

Y. Hirakawa, A. Nagai, K. Muraoka, T. Okada, and M. Maeda, “Generation of tunable coherent extreme-ultraviolet radiation at wavelengths as low as 66 nm by resonant four-wave mixing,” Opt. Lett. 18, 735 (1993).
[CrossRef] [PubMed]

Y. Hirakawa, K. Muraoka, T. Okada, and M. Maeda, “Generation of tunable coherent XUV radiation in a hydrogen gas jet by two-photon resonant four-wave mixing,” Opt. Commun. 84, 365 (1991).
[CrossRef]

Y. Hirakawa, T. Okada, M. Maeda, and K. Muraoka, “Reso-nant third-harmonic generation of ArF laser in H2 and Kr gas jet at 64 nm,” Jpn. J. Appl. Phys. Lett. 29, L958 (1990).
[CrossRef]

Pummer, H.

Rettner, C. T.

S. D. Bethune and C. T. Rettner, “Optical harmonic generation in nonlinear gaseous media with application to frequency tripling in free-jet expansions,” IEEE J. Quantum Electron. QE-23, 1348 (1987).
[CrossRef]

Rhodes, C. K.

Srinivasan, T.

Tanaka, H.

K. Miyazaki and H. Tanaka, “High-order harmonic generation in the tunneling regime,” Phys. Rev. A 52, 3007 (1995).
[CrossRef] [PubMed]

Ubachs, W.

W. Ubachs, K. S. E. Eikema, and W. Hogervorst, “Narrow-band extreme-ultraviolet laser radiation tunable in the range 90.5–95 nm,” Appl. Phys. B 57, 411 (1993).
[CrossRef]

K. S. E. Eikema, W. Ubachs, W. Vassen, and W. Hogervorst, “Precision measurements in helium at 58 nm: ground state Lamb shift and the 1 1S–2 1P transition isotope shift,” Appl. Phys. B 57 411 (1993).
[CrossRef]

Uchiumi, M.

M. Maeda, T. Okada, Y. Hirakawa, M. Uchiumi, and K. Muraoka, “Resonant multiphoton ionization of H2 by ArF laser and application to atmospheric molecules,” Jpn. J. Appl. Phys. Lett. 35, L2672 (1996).
[CrossRef]

Vassen, W.

K. S. E. Eikema, W. Ubachs, W. Vassen, and W. Hogervorst, “Precision measurements in helium at 58 nm: ground state Lamb shift and the 1 1S–2 1P transition isotope shift,” Appl. Phys. B 57 411 (1993).
[CrossRef]

Wallenstein, R.

Appl. Phys. B (2)

W. Ubachs, K. S. E. Eikema, and W. Hogervorst, “Narrow-band extreme-ultraviolet laser radiation tunable in the range 90.5–95 nm,” Appl. Phys. B 57, 411 (1993).
[CrossRef]

K. S. E. Eikema, W. Ubachs, W. Vassen, and W. Hogervorst, “Precision measurements in helium at 58 nm: ground state Lamb shift and the 1 1S–2 1P transition isotope shift,” Appl. Phys. B 57 411 (1993).
[CrossRef]

IEEE J. Quantum Electron. (1)

S. D. Bethune and C. T. Rettner, “Optical harmonic generation in nonlinear gaseous media with application to frequency tripling in free-jet expansions,” IEEE J. Quantum Electron. QE-23, 1348 (1987).
[CrossRef]

J. Opt. Soc. Am. B (2)

Jpn. J. Appl. Phys. Lett. (3)

Y. Hirakawa, A. Nagai, K. Muraoka, T. Okada, and M. Maeda, “Absolute density measurement of a pulsed H2 gas jet used for extreme ultraviolet generation by nonlinear frequency conversion,” Jpn. J. Appl. Phys. Lett. 33, L183 (1994).
[CrossRef]

M. Maeda, T. Okada, Y. Hirakawa, M. Uchiumi, and K. Muraoka, “Resonant multiphoton ionization of H2 by ArF laser and application to atmospheric molecules,” Jpn. J. Appl. Phys. Lett. 35, L2672 (1996).
[CrossRef]

Y. Hirakawa, T. Okada, M. Maeda, and K. Muraoka, “Reso-nant third-harmonic generation of ArF laser in H2 and Kr gas jet at 64 nm,” Jpn. J. Appl. Phys. Lett. 29, L958 (1990).
[CrossRef]

Opt. Commun. (1)

Y. Hirakawa, K. Muraoka, T. Okada, and M. Maeda, “Generation of tunable coherent XUV radiation in a hydrogen gas jet by two-photon resonant four-wave mixing,” Opt. Commun. 84, 365 (1991).
[CrossRef]

Opt. Lett. (2)

Phys. Rev. A (2)

D. J. Klinger, J. Boker, and C. K. Rhodes, “Collisional and radiative properties of the H2E, F1 Σg+ state,” Phys. Rev. A 21, 607 (1980).
[CrossRef]

K. Miyazaki and H. Tanaka, “High-order harmonic generation in the tunneling regime,” Phys. Rev. A 52, 3007 (1995).
[CrossRef] [PubMed]

Other (1)

J. F. Reintjes, “Coherent ultraviolet and vacuum ultraviolet sources,” in Laser Handbook, M. Bass and M. L. Stitch, eds. (North-Holland, Amsterdam, 1985), Vol. 5, p. 1.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Experimental setup for resonant TH generation.

Fig. 2
Fig. 2

Energy diagram of the hydrogen molecule, which was used as a nonlinear medium.

Fig. 3
Fig. 3

TH and fluorescence tuning characteristics with an ArF laser tuning curve.

Fig. 4
Fig. 4

Dependencies of TH and fluorescence intensities on the backing pressure of the valve.

Fig. 5
Fig. 5

Dependencies of TH and fluorescence intensities on the ArF laser fluence.

Fig. 6
Fig. 6

Dependence of TH intensity on the distance from the nozzle orifice in the case of without any absorption (dotted curve) and with absorption by the Kr gas jet on the TH (solid curve).

Fig. 7
Fig. 7

Dependence of TH intensity on the ArF laser fluence under the optimum conditions measured by the EMT and the ion-collection electrode.

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

ITHN2χ(3)2Efun3F,
FΔk, b, x, z1, z2=2ϕbz1z2 expz1z3ik1-α12dz×Sx, z1+i2z/b2×expzz2ik3-α32dzdz2,
S(x, z)=cos4[tan-1(z/x)].
ITHNx, z2F
=N01+γ-1Mx2/21/γ-1Sx, z2F,
M(x)=3.26(x/D-0.075)2/3-0.61(x/D-0.075)-2/3,
ITHITH=x1x2z1z2 exp-σTHy1y2Nx, y, zdydxdz,

Metrics