Abstract

A slope efficiency of 40% from an Er3+:LiYF4 laser is demonstrated under pulsed Ti:sapphire pumping at 973 nm. With reduction of the pump-pulse duration a significant decrease of the slope efficiency and an increase of the threshold is observed in the experiment and confirmed with high accuracy in a computer simulation. This behavior is due to interionic upconversion from the lower laser level, which leads to energy recycling into the upper laser level. The upconversion rate is negative at threshold but increases strongly with rising pump-pulse energy, thus enhancing the slope efficiency. The conditions are derived that are necessary for achieving the high slope efficiency of the energy-recycling regime.

© 1997 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. L. Jacques and G. Gofstein, Laser–Tissue Interaction II, S. L. Jacques, ed., Proc. SPIE1427, 63 (1991).
    [CrossRef]
  2. M. Ith, H. Pratisto, H. J. Altermatt, M. Frenz, and H. P. Weber, Appl. Phys. B 59, 621 (1994).
    [CrossRef]
  3. H. Chou and H. P. Jenssen, in Tunable Solid State Lasers, M. L. Shand and H. P. Jenssen, eds., Vol. 5 of OSA Proceeding Series (Optical Society of America, Washington, D.C., 1989), p. 167.
  4. M. Pollnau, Th. Graf, J. E. Balmer, W. Lüthy, and H. P. Weber, Phys. Rev. A 49, 3990 (1994).
    [CrossRef] [PubMed]
  5. T. Jensen, A. Diening, G. Huber, and B. H. T. Chai, Opt. Lett. 21, 585 (1996).
    [CrossRef] [PubMed]
  6. R. C. Stoneman and L. Esterowitz, Opt. Lett. 17, 816 (1992).
    [CrossRef] [PubMed]
  7. M. Pollnau, W. Lüthy, H. P. Weber, K. Krämer, H. U. Güdel, and R. A. McFarlane, Appl. Phys. B 62, 339 (1996).
    [CrossRef]
  8. J. Rubin, A. Brenier, R. Moncorgé, and C. Pedrini, J. Lumin. 36, 39 (1986).
    [CrossRef]
  9. D. S. Knowles and H. P. Jenssen, IEEE J. Quantum Electron. 28, 1197 (1992).
    [CrossRef]
  10. R. Brede, T. Danger, E. Heumann, G. Huber, and B. H. T. Chai, Appl. Phys. Lett. 63, 729 (1993).
    [CrossRef]
  11. C. Li, Y. Guyot, C. Linarès, R. Moncorgé, and M. F. Joubert, in Advanced Solid-State Lasers and Compact Blue-Green Lasers, Vol. 2 of 1993 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1993), p. 423.
  12. M. Pollnau, W. Lüthy, and H. P. Weber, J. Appl. Phys. 77, 6128 (1995).
    [CrossRef]
  13. J. Koetke and G. Huber, Appl. Phys. B 61, 151 (1995).
    [CrossRef]
  14. A. M. Prokhorov, V. I. Zhekov, T. M. Murina, and N. N. Platnov, Laser Phys. 3, 79 (1993).

1996 (2)

T. Jensen, A. Diening, G. Huber, and B. H. T. Chai, Opt. Lett. 21, 585 (1996).
[CrossRef] [PubMed]

M. Pollnau, W. Lüthy, H. P. Weber, K. Krämer, H. U. Güdel, and R. A. McFarlane, Appl. Phys. B 62, 339 (1996).
[CrossRef]

1995 (2)

M. Pollnau, W. Lüthy, and H. P. Weber, J. Appl. Phys. 77, 6128 (1995).
[CrossRef]

J. Koetke and G. Huber, Appl. Phys. B 61, 151 (1995).
[CrossRef]

1994 (2)

M. Ith, H. Pratisto, H. J. Altermatt, M. Frenz, and H. P. Weber, Appl. Phys. B 59, 621 (1994).
[CrossRef]

M. Pollnau, Th. Graf, J. E. Balmer, W. Lüthy, and H. P. Weber, Phys. Rev. A 49, 3990 (1994).
[CrossRef] [PubMed]

1993 (2)

R. Brede, T. Danger, E. Heumann, G. Huber, and B. H. T. Chai, Appl. Phys. Lett. 63, 729 (1993).
[CrossRef]

A. M. Prokhorov, V. I. Zhekov, T. M. Murina, and N. N. Platnov, Laser Phys. 3, 79 (1993).

1992 (2)

D. S. Knowles and H. P. Jenssen, IEEE J. Quantum Electron. 28, 1197 (1992).
[CrossRef]

R. C. Stoneman and L. Esterowitz, Opt. Lett. 17, 816 (1992).
[CrossRef] [PubMed]

1986 (1)

J. Rubin, A. Brenier, R. Moncorgé, and C. Pedrini, J. Lumin. 36, 39 (1986).
[CrossRef]

Altermatt, H. J.

M. Ith, H. Pratisto, H. J. Altermatt, M. Frenz, and H. P. Weber, Appl. Phys. B 59, 621 (1994).
[CrossRef]

Balmer, J. E.

M. Pollnau, Th. Graf, J. E. Balmer, W. Lüthy, and H. P. Weber, Phys. Rev. A 49, 3990 (1994).
[CrossRef] [PubMed]

Brede, R.

R. Brede, T. Danger, E. Heumann, G. Huber, and B. H. T. Chai, Appl. Phys. Lett. 63, 729 (1993).
[CrossRef]

Brenier, A.

J. Rubin, A. Brenier, R. Moncorgé, and C. Pedrini, J. Lumin. 36, 39 (1986).
[CrossRef]

Chai, B. H. T.

T. Jensen, A. Diening, G. Huber, and B. H. T. Chai, Opt. Lett. 21, 585 (1996).
[CrossRef] [PubMed]

R. Brede, T. Danger, E. Heumann, G. Huber, and B. H. T. Chai, Appl. Phys. Lett. 63, 729 (1993).
[CrossRef]

Chou, H.

H. Chou and H. P. Jenssen, in Tunable Solid State Lasers, M. L. Shand and H. P. Jenssen, eds., Vol. 5 of OSA Proceeding Series (Optical Society of America, Washington, D.C., 1989), p. 167.

Danger, T.

R. Brede, T. Danger, E. Heumann, G. Huber, and B. H. T. Chai, Appl. Phys. Lett. 63, 729 (1993).
[CrossRef]

Diening, A.

Esterowitz, L.

Frenz, M.

M. Ith, H. Pratisto, H. J. Altermatt, M. Frenz, and H. P. Weber, Appl. Phys. B 59, 621 (1994).
[CrossRef]

Gofstein, G.

S. L. Jacques and G. Gofstein, Laser–Tissue Interaction II, S. L. Jacques, ed., Proc. SPIE1427, 63 (1991).
[CrossRef]

Graf, Th.

M. Pollnau, Th. Graf, J. E. Balmer, W. Lüthy, and H. P. Weber, Phys. Rev. A 49, 3990 (1994).
[CrossRef] [PubMed]

Güdel, H. U.

M. Pollnau, W. Lüthy, H. P. Weber, K. Krämer, H. U. Güdel, and R. A. McFarlane, Appl. Phys. B 62, 339 (1996).
[CrossRef]

Guyot, Y.

C. Li, Y. Guyot, C. Linarès, R. Moncorgé, and M. F. Joubert, in Advanced Solid-State Lasers and Compact Blue-Green Lasers, Vol. 2 of 1993 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1993), p. 423.

Heumann, E.

R. Brede, T. Danger, E. Heumann, G. Huber, and B. H. T. Chai, Appl. Phys. Lett. 63, 729 (1993).
[CrossRef]

Huber, G.

T. Jensen, A. Diening, G. Huber, and B. H. T. Chai, Opt. Lett. 21, 585 (1996).
[CrossRef] [PubMed]

J. Koetke and G. Huber, Appl. Phys. B 61, 151 (1995).
[CrossRef]

R. Brede, T. Danger, E. Heumann, G. Huber, and B. H. T. Chai, Appl. Phys. Lett. 63, 729 (1993).
[CrossRef]

Ith, M.

M. Ith, H. Pratisto, H. J. Altermatt, M. Frenz, and H. P. Weber, Appl. Phys. B 59, 621 (1994).
[CrossRef]

Jacques, S. L.

S. L. Jacques and G. Gofstein, Laser–Tissue Interaction II, S. L. Jacques, ed., Proc. SPIE1427, 63 (1991).
[CrossRef]

Jensen, T.

Jenssen, H. P.

D. S. Knowles and H. P. Jenssen, IEEE J. Quantum Electron. 28, 1197 (1992).
[CrossRef]

H. Chou and H. P. Jenssen, in Tunable Solid State Lasers, M. L. Shand and H. P. Jenssen, eds., Vol. 5 of OSA Proceeding Series (Optical Society of America, Washington, D.C., 1989), p. 167.

Joubert, M. F.

C. Li, Y. Guyot, C. Linarès, R. Moncorgé, and M. F. Joubert, in Advanced Solid-State Lasers and Compact Blue-Green Lasers, Vol. 2 of 1993 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1993), p. 423.

Knowles, D. S.

D. S. Knowles and H. P. Jenssen, IEEE J. Quantum Electron. 28, 1197 (1992).
[CrossRef]

Koetke, J.

J. Koetke and G. Huber, Appl. Phys. B 61, 151 (1995).
[CrossRef]

Krämer, K.

M. Pollnau, W. Lüthy, H. P. Weber, K. Krämer, H. U. Güdel, and R. A. McFarlane, Appl. Phys. B 62, 339 (1996).
[CrossRef]

Li, C.

C. Li, Y. Guyot, C. Linarès, R. Moncorgé, and M. F. Joubert, in Advanced Solid-State Lasers and Compact Blue-Green Lasers, Vol. 2 of 1993 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1993), p. 423.

Linarès, C.

C. Li, Y. Guyot, C. Linarès, R. Moncorgé, and M. F. Joubert, in Advanced Solid-State Lasers and Compact Blue-Green Lasers, Vol. 2 of 1993 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1993), p. 423.

Lüthy, W.

M. Pollnau, W. Lüthy, H. P. Weber, K. Krämer, H. U. Güdel, and R. A. McFarlane, Appl. Phys. B 62, 339 (1996).
[CrossRef]

M. Pollnau, W. Lüthy, and H. P. Weber, J. Appl. Phys. 77, 6128 (1995).
[CrossRef]

M. Pollnau, Th. Graf, J. E. Balmer, W. Lüthy, and H. P. Weber, Phys. Rev. A 49, 3990 (1994).
[CrossRef] [PubMed]

McFarlane, R. A.

M. Pollnau, W. Lüthy, H. P. Weber, K. Krämer, H. U. Güdel, and R. A. McFarlane, Appl. Phys. B 62, 339 (1996).
[CrossRef]

Moncorgé, R.

J. Rubin, A. Brenier, R. Moncorgé, and C. Pedrini, J. Lumin. 36, 39 (1986).
[CrossRef]

C. Li, Y. Guyot, C. Linarès, R. Moncorgé, and M. F. Joubert, in Advanced Solid-State Lasers and Compact Blue-Green Lasers, Vol. 2 of 1993 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1993), p. 423.

Murina, T. M.

A. M. Prokhorov, V. I. Zhekov, T. M. Murina, and N. N. Platnov, Laser Phys. 3, 79 (1993).

Pedrini, C.

J. Rubin, A. Brenier, R. Moncorgé, and C. Pedrini, J. Lumin. 36, 39 (1986).
[CrossRef]

Platnov, N. N.

A. M. Prokhorov, V. I. Zhekov, T. M. Murina, and N. N. Platnov, Laser Phys. 3, 79 (1993).

Pollnau, M.

M. Pollnau, W. Lüthy, H. P. Weber, K. Krämer, H. U. Güdel, and R. A. McFarlane, Appl. Phys. B 62, 339 (1996).
[CrossRef]

M. Pollnau, W. Lüthy, and H. P. Weber, J. Appl. Phys. 77, 6128 (1995).
[CrossRef]

M. Pollnau, Th. Graf, J. E. Balmer, W. Lüthy, and H. P. Weber, Phys. Rev. A 49, 3990 (1994).
[CrossRef] [PubMed]

Pratisto, H.

M. Ith, H. Pratisto, H. J. Altermatt, M. Frenz, and H. P. Weber, Appl. Phys. B 59, 621 (1994).
[CrossRef]

Prokhorov, A. M.

A. M. Prokhorov, V. I. Zhekov, T. M. Murina, and N. N. Platnov, Laser Phys. 3, 79 (1993).

Rubin, J.

J. Rubin, A. Brenier, R. Moncorgé, and C. Pedrini, J. Lumin. 36, 39 (1986).
[CrossRef]

Stoneman, R. C.

Weber, H. P.

M. Pollnau, W. Lüthy, H. P. Weber, K. Krämer, H. U. Güdel, and R. A. McFarlane, Appl. Phys. B 62, 339 (1996).
[CrossRef]

M. Pollnau, W. Lüthy, and H. P. Weber, J. Appl. Phys. 77, 6128 (1995).
[CrossRef]

M. Pollnau, Th. Graf, J. E. Balmer, W. Lüthy, and H. P. Weber, Phys. Rev. A 49, 3990 (1994).
[CrossRef] [PubMed]

M. Ith, H. Pratisto, H. J. Altermatt, M. Frenz, and H. P. Weber, Appl. Phys. B 59, 621 (1994).
[CrossRef]

Zhekov, V. I.

A. M. Prokhorov, V. I. Zhekov, T. M. Murina, and N. N. Platnov, Laser Phys. 3, 79 (1993).

Appl. Phys. B (3)

M. Ith, H. Pratisto, H. J. Altermatt, M. Frenz, and H. P. Weber, Appl. Phys. B 59, 621 (1994).
[CrossRef]

M. Pollnau, W. Lüthy, H. P. Weber, K. Krämer, H. U. Güdel, and R. A. McFarlane, Appl. Phys. B 62, 339 (1996).
[CrossRef]

J. Koetke and G. Huber, Appl. Phys. B 61, 151 (1995).
[CrossRef]

Appl. Phys. Lett. (1)

R. Brede, T. Danger, E. Heumann, G. Huber, and B. H. T. Chai, Appl. Phys. Lett. 63, 729 (1993).
[CrossRef]

IEEE J. Quantum Electron. (1)

D. S. Knowles and H. P. Jenssen, IEEE J. Quantum Electron. 28, 1197 (1992).
[CrossRef]

J. Appl. Phys. (1)

M. Pollnau, W. Lüthy, and H. P. Weber, J. Appl. Phys. 77, 6128 (1995).
[CrossRef]

J. Lumin. (1)

J. Rubin, A. Brenier, R. Moncorgé, and C. Pedrini, J. Lumin. 36, 39 (1986).
[CrossRef]

Laser Phys. (1)

A. M. Prokhorov, V. I. Zhekov, T. M. Murina, and N. N. Platnov, Laser Phys. 3, 79 (1993).

Opt. Lett. (2)

Phys. Rev. A (1)

M. Pollnau, Th. Graf, J. E. Balmer, W. Lüthy, and H. P. Weber, Phys. Rev. A 49, 3990 (1994).
[CrossRef] [PubMed]

Other (3)

S. L. Jacques and G. Gofstein, Laser–Tissue Interaction II, S. L. Jacques, ed., Proc. SPIE1427, 63 (1991).
[CrossRef]

H. Chou and H. P. Jenssen, in Tunable Solid State Lasers, M. L. Shand and H. P. Jenssen, eds., Vol. 5 of OSA Proceeding Series (Optical Society of America, Washington, D.C., 1989), p. 167.

C. Li, Y. Guyot, C. Linarès, R. Moncorgé, and M. F. Joubert, in Advanced Solid-State Lasers and Compact Blue-Green Lasers, Vol. 2 of 1993 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1993), p. 423.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Experimental arrangement.

Fig. 2
Fig. 2

Energy-level scheme of Er3+:LiYF4, indicating the important excitation mechanisms of the system.

Fig. 3
Fig. 3

Output versus input power of an Er3+:LiYF4 laser under Ti:sapphire-laser excitation (20-ms pump pulses). A maximum slope efficiency of 40% is experimentally demonstrated. The threshold of the laser is 13 mW. The slope threshold is 60 mW (triangle).

Fig. 4
Fig. 4

Slope threshold as a function of the pump-pulse duration. The slope threshold is defined as the zero point of the progression line of the linear input–output slope (cf. triangle in Fig. 3). Data obtained in the experiment and from the computer simulation are compared. The dashed curve indicates the behavior if the pump-pulse duration were short compared with the relevant relaxation-time constants. Data are valid for a pump-beam radius of 40 µm.

Fig. 5
Fig. 5

Slope efficiency as a function of the pump-pulse energy (experimental data: 1.8 mJ=180-mW input power ×10-ms pump-pulse duration). Data obtained in the experiment and from the computer simulation are compared. Data are valid for a pump-beam radius of 40 µm.

Fig. 6
Fig. 6

Effective lifetimes of upper laser level (solid curve) and lower laser level (dashed curve) versus pump-pulse energy. These values include the depletion rates of radiative and multiphonon decay as well as interionic upconversion, as discussed in the text. Data are valid for a pump-beam radius of 40 µm.

Fig. 7
Fig. 7

Population densities of the  4I11/2 upper laser level (solid curve) and the  4I13/2 lower laser level (dashed curve) versus pump-pulse energy. Data are valid for a pump-beam radius of 40 µm.

Fig. 8
Fig. 8

Important transition rates versus pump-pulse energy. The rates of the processes denoted with W11 and W22 are the sums of normal and inverse upconversion processes. The following processes that have significant rates are not shown in the figure: The multiphonon rate  4F7/2 2H11/2/4S3/2 and the cross-relaxation rate W50 are comparable to the rate W22. The transition rates  4I11/2 4I13/2 and  4I13/2 4I15/2 are smaller than the rate  4I11/2 4I15/2, which is denoted by 2 > 0. The ESA rate at the pump-pulse energy of 1.2 mJ is only approximately 2% of the GSA rate. Data are valid for a pump-beam radius of 40 µm.

Tables (1)

Tables Icon

Table 1 Parameters of the Interionic Processes and Their Inverse Processes Used in the Simulation

Equations (12)

Equations on this page are rendered with MathJax. Learn more.

dN6/dt=R26-τ6-1N6+W22N22-W60N6N0,
dN5/dt=-τ5-1N5+β65τ6-1N6-W50N5N0+W13N1N3,
dN4/dt=-τ4-1N4+i=56(βi4τi-1Ni),
dN3/dt=-τ3-1N3+i=46(βi3τi-1Ni)+W50N5N0-W13N1N3+W11N12-W30N3N0,
dN2/dt=R02-R26-τ2-1N2+i=36(βi2τi-1Ni)-2W22N22+2W60N6N0-RSE,
dN1/dt=-τ1-1N1+i=26(βi1τi-1Ni)+W50N5N0-W13N1N3-2W11N12+2W30N3N0+RSE,
dN0/dt=-R02+i=16(βi0τi-1Ni)-W50N5N0+W13N1N3+W11N12-W30N3N0+W22N22-W60N6N0,
dϕ/dt=(l/lopt)(Pγβ21τ2-1N2+RSE)+ln[(1-L)Rf1Rf2]cϕ/(2lopt).
RSE=[b2N2-(g2/g1)b1N1]σ21cϕ.
Rij=σijNiσ02N02+σ26N26{1-exp[(σ02N0+σ26N2)l]}λp/(hclπω2)ηPin.
Pout=0.5cϕ(hc/λl)πω2(1-Rf1Rf2).
1/τeff=1/τi+WiiNi,

Metrics