Abstract

Morphology-dependent resonances (MDR's) of polystyrene microspheres were excited by an optical fiber coupler. For optical elimination of the air–cladding interface at the optical fiber coupler surface, the microsphere was immersed in an index-matching oil. MDR's were observed, even though the relative refractive index between the microsphere and the oil was only 1.09. The observed MDR spectra are in good agreement with the generalized Lorenz–Mie theory and the localization principle. The scattering efficiency into each MDR is estimated as a function of the impact parameter by means of generalized Lorenz–Mie theory.

© 1997 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. W. Barber and R. K. Chang, eds., Optical Effects Associated with Small Particles (World Scientific, Singapore, 1988), pp. 3–61.
  2. E. M. Purcell, “Spontaneous emission probabilities at radio frequencies,” Phys. Rev. 69, 681 (1946).
  3. S. C. Ching, H. M. Lai, and K. Young, “Dielectric microspheres as optical cavities: thermal spectrum and density of states,” J. Opt. Soc. Am. B 4, 1995 (1987).
    [CrossRef]
  4. S. C. Ching, H. M. Lai, and K. Young, “Dielectric microspheres as optical cavities: Einstein A and B coefficients and level shift,” J. Opt. Soc. Am. B 4, 2004 (1987).
    [CrossRef]
  5. D. S. Benincasa, P. W. Barber, J.-Z. Zhang, W.-F. Hsieh, and R. K. Chang, “Spatial distribution of the internal and near-field intensities of large cylindrical and spherical scatterers,” Appl. Opt. 26, 1348 (1987).
    [CrossRef] [PubMed]
  6. E. E. M. Khaled, S. C. Hill, and P. W. Barber, “Internal electric energy in a spherical particle illuminated with a plane wave or off-axis Gaussian beam,” Appl. Opt. 33, 524 (1994).
    [CrossRef] [PubMed]
  7. J.-Z. Zhang, D. H. Leach, and R. K. Chang, “Photon lifetime within a droplet: temporal determination of elastic and stimulated Raman scattering,” Opt. Lett. 13, 270 (1988).
    [CrossRef] [PubMed]
  8. J. P. Barton, D. R. Alexander, and S. A. Schaub, “Internal and near-surface electromagnetic fields for a spherical particle irradiated by a focused laser beam,” J. Appl. Phys. 64, 1632 (1988).
    [CrossRef]
  9. J. A. Lock and G. Gouesbet, “Rigorous justification of the localized approximation to the beam shape coefficients in generalized Lorenz–Mie theory. I. On-axis beams,” J. Opt. Soc. Am. A 11, 2503 (1994).
    [CrossRef]
  10. G. Gouesbet and J. A. Lock, “Rigorous justification of the localized approximation to the beam shape coefficients in generalized Lorenz–Mie theory. II. Off-axis beams,” J. Opt. Soc. Am. A 11, 2516 (1994).
    [CrossRef]
  11. A. Serpengüzel, S. Arnold, and G. Griffel, “Excitation of resonances of microspheres on an optical fiber,” Opt. Lett. 20, 654 (1995).
    [CrossRef] [PubMed]
  12. N. Dubreuil, J. C. Knight, D. K. Leventhal, V. Sandoghar, J. Hare, and V. Lefèvre, “Eroded monomode optical fiber for whispering-gallery mode excitation in fused-silica microspheres,” Opt. Lett. 20, 813 (1995).
    [CrossRef] [PubMed]
  13. S. Arnold, S. Holler, J. H. Li, A. Serpengüzel, W. F. Auffermann, and S. C. Hill, “Aerosol particle microphotography and glare spot absorption spectroscopy,” Opt. Lett. 20, 773 (1995).
    [CrossRef] [PubMed]
  14. G. Chen, Md. M. Mazumder, Y. R. Chemla, A. Serpengüzel, R. K. Chang, and S. C. Hill, “Wavelength variation of laser emission along the entire rim of slightly deformed microdroplets,” Opt. Lett. 18, 1993 (1993).
    [CrossRef] [PubMed]
  15. P. W. Barber and R. K. Chang, eds., Optical Effects Associated with Small Particles (World Scientific, Singapore, 1988), p. 20.
  16. H. C. van de Hulst, Light Scattering by Small Particles (Dover, New York, 1981), p. 208.
  17. J. A. Lock, “An improved Gaussian beam scattering algorithm,” Appl. Opt. 34, 559 (1995).
    [CrossRef] [PubMed]
  18. C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, New York, 1983), p. 103.
  19. S. Arnold, C. T. Liu, W. B. Whitten, and J. M. Ramsey, “Room-temperature microparticle-based persistent spectral hole burning memory,” Opt. Lett. 16, 420 (1991).
    [CrossRef] [PubMed]
  20. G. Griffel, A. Serpengüzel, and S. Arnold, “Quenching of semiconductor lasers linewidth by detuned loading using spherical cavities morphology dependent resonances,” in Proceedings of IEEE Frequency Control Conference (Institute of Electrical and Electronics Engineers, New York, 1995), pp. 495–497.
  21. G. Griffel, S. Arnold, D. Taskent, A. Serpengüzel, J. Connolly, and N. Morris, “Morphology-dependent resonances of a microsphere–optical fiber system,” Opt. Lett. 21, 695 (1996).
    [CrossRef] [PubMed]

1996

1995

1994

1993

1991

1988

J. P. Barton, D. R. Alexander, and S. A. Schaub, “Internal and near-surface electromagnetic fields for a spherical particle irradiated by a focused laser beam,” J. Appl. Phys. 64, 1632 (1988).
[CrossRef]

J.-Z. Zhang, D. H. Leach, and R. K. Chang, “Photon lifetime within a droplet: temporal determination of elastic and stimulated Raman scattering,” Opt. Lett. 13, 270 (1988).
[CrossRef] [PubMed]

1987

1946

E. M. Purcell, “Spontaneous emission probabilities at radio frequencies,” Phys. Rev. 69, 681 (1946).

Alexander, D. R.

J. P. Barton, D. R. Alexander, and S. A. Schaub, “Internal and near-surface electromagnetic fields for a spherical particle irradiated by a focused laser beam,” J. Appl. Phys. 64, 1632 (1988).
[CrossRef]

Arnold, S.

Auffermann, W. F.

Barber, P. W.

Barton, J. P.

J. P. Barton, D. R. Alexander, and S. A. Schaub, “Internal and near-surface electromagnetic fields for a spherical particle irradiated by a focused laser beam,” J. Appl. Phys. 64, 1632 (1988).
[CrossRef]

Benincasa, D. S.

Chang, R. K.

Chemla, Y. R.

Chen, G.

Ching, S. C.

Connolly, J.

Dubreuil, N.

Gouesbet, G.

Griffel, G.

Hare, J.

Hill, S. C.

Holler, S.

Hsieh, W.-F.

Khaled, E. E. M.

Knight, J. C.

Lai, H. M.

Leach, D. H.

Lefèvre, V.

Leventhal, D. K.

Li, J. H.

Liu, C. T.

Lock, J. A.

Mazumder, Md. M.

Morris, N.

Purcell, E. M.

E. M. Purcell, “Spontaneous emission probabilities at radio frequencies,” Phys. Rev. 69, 681 (1946).

Ramsey, J. M.

Sandoghar, V.

Schaub, S. A.

J. P. Barton, D. R. Alexander, and S. A. Schaub, “Internal and near-surface electromagnetic fields for a spherical particle irradiated by a focused laser beam,” J. Appl. Phys. 64, 1632 (1988).
[CrossRef]

Serpengüzel, A.

Taskent, D.

Whitten, W. B.

Young, K.

Zhang, J.-Z.

Appl. Opt.

J. Appl. Phys.

J. P. Barton, D. R. Alexander, and S. A. Schaub, “Internal and near-surface electromagnetic fields for a spherical particle irradiated by a focused laser beam,” J. Appl. Phys. 64, 1632 (1988).
[CrossRef]

J. Opt. Soc. Am. A

J. Opt. Soc. Am. B

Opt. Lett.

Phys. Rev.

E. M. Purcell, “Spontaneous emission probabilities at radio frequencies,” Phys. Rev. 69, 681 (1946).

Other

P. W. Barber and R. K. Chang, eds., Optical Effects Associated with Small Particles (World Scientific, Singapore, 1988), pp. 3–61.

P. W. Barber and R. K. Chang, eds., Optical Effects Associated with Small Particles (World Scientific, Singapore, 1988), p. 20.

H. C. van de Hulst, Light Scattering by Small Particles (Dover, New York, 1981), p. 208.

C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, New York, 1983), p. 103.

G. Griffel, A. Serpengüzel, and S. Arnold, “Quenching of semiconductor lasers linewidth by detuned loading using spherical cavities morphology dependent resonances,” in Proceedings of IEEE Frequency Control Conference (Institute of Electrical and Electronics Engineers, New York, 1995), pp. 495–497.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Schematic of the experimental setup, with inset (top left) depicting the microsphere on the wet surface of the single-mode optical fiber (SMOF) coupler. PS, polystyrene, amp., amplifier.

Fig. 2
Fig. 2

Schematic of the top and the side views of the microsphere depicting the nonresonant (p=0, 1, 3) glare spots (●) and MDR glare spots (●) when excited (a) by a plane wave or (b) with the OFC (Gaussian beam) for both on- and off-resonance conditions.

Fig. 3
Fig. 3

Experimental results obtained with the polarizer at (a) 90° and (b) 0° to the SMOF.

Fig. 4
Fig. 4

Scattering intensity of (a) experimental and (b) calculated TE-polarized spectrum.

Fig. 5
Fig. 5

Scattering intensity of (a) experimental and (b) calculated TM-polarized spectrum.

Fig. 6
Fig. 6

Transverse view of the ratio of the Gaussian beam area πω02 and the cross-sectional area (2πbdb) corresponding to a mode. The microsphere radius is a.

Fig. 7
Fig. 7

Scattering efficiency 〈σ bn〉 for TE modes for a Gaussian beam illuminating a microsphere with our experimental parameters plotted as a function of the impact parameter b and the angular-momentum quantum (mode) number n.

Fig. 8
Fig. 8

Scattering intensity of the experimental TE-polarized spectrum for a PS microsphere in water (m=1.18).

Equations (11)

Equations on this page are rendered with MathJax. Learn more.

b=n+12 ax.
Bnm=a2n(n+1)ψn(x)04πdΩHr(Ω)Ynm*(Ω),
ddt=σmodeσtotalPi-τ=σmodePi-τ=σmodeIi-τ,
0=σmodeσtotalPiτ=σmodePiτ=σmodeIiτ.
σan=2πk2|an|2(2n+1),
σbn=2πk2|bn|2(2n+1),
σtotal=n=1σan+σbn=2πk2n=1(|an|2+|bn|2)×(2n+1)=2πa2.
σan=2πk2|an|22n+12n(n+1)m=-nn|Anm|2 (n+|m|)!(n-|m|)!,
σbn=2πk2|bn|22n+12n(n+1)m=-nn|Bnm|2 (n+|m|)!(n-|m|)!,
σan=2πk2|an|2(2n+1)|An±1|,
σbn=2πk2|bn|2(2n+1)|Bn±1|.

Metrics