Abstract

Microscopic mapping of accumulated photon-echo relaxation time, known as accumulated photon-echo imaging, has been developed as a new technique accessible to histological diagnosis. Photon-echo imaging for Rhodamine-stained tissue samples of human liver has been demonstrated by means of fluorescence detection of accumulated photon echo. In a liver tissue that included a moderately differentiated hepatocellular carcinoma, we obtained an accumulated photon-echo image that correlated with the histological diagnosis. However, for a liver tissue with a highly differentiated hepatocellular carcinoma, photon-echo imaging could not discriminate the carcinoma from a noncancerous liver tissue.

© 1997 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Furusawa, T. Suga, and K. Uchikawa, “Photon-echo spectroscopy on biological systems. I. Application to tissues,” J. Opt. Soc. Am. B 11, 1461 (1994).
    [CrossRef]
  2. K. Uchikawa, H. Ohsawa, T. Suga, and S. Saikan, “Fluorescence detection of femtosecond accumulated photon echo,” Opt. Lett. 16, 13 (1991).
    [CrossRef] [PubMed]
  3. K. Uchikawa and M. Okada, “Accumulated photon echo spectroscopy on a human stomach cancer,” Laser Phys. 5, 687 (1995).
  4. Y. S. Bai and M. D. Fayer, “Time scales and optical dephasing measurements: investigation of dynamics in complex systems,” Phys. Rev. B 39, 11066 (1989).
    [CrossRef]
  5. S. Saikan, K. Uchikawa, and H. Ohsawa, “Phase-modulation technique for accumulated photon echo,” Opt. Lett. 16, 10 (1991).
    [CrossRef] [PubMed]
  6. W. E. Moerner, ed., Persistent Spectral Hole-Burning: Science and Applications (Springer-Verlag, Berlin, 1988).
  7. K. Uchikawa, “Signal to noise ratio of fluorescence detection of accumulated photon echo,” submitted to J. Phys. Soc. Jpn.
  8. D. T. Leeson, O. Berg, and D. A. Wiersma, “Low-temperature protein dynamics studied by the long-lived stimulated photon echo,” J. Phys. Chem. 98, 3913 (1994).
    [CrossRef]
  9. K. A. Littau, Y. S. Bai, and M. D. Fayer, “Two-level systems and low-temperature glass dynamics: spectral diffusion and thermal reversibility of hole-burning linewidths,” J. Chem. Phys. 92, 4145 (1990).
    [CrossRef]
  10. P. W. Anderson, B. I. Halperin, and C. W. Varma, “Anomalous low-temperature thermal properties of glasses and spin glasses,” Philos. Mag. 25, 1 (1972).
    [CrossRef]
  11. R. Damadian, “Tumor detection by nuclear magnetic resonance,” Science 171, 1151 (1971).
    [CrossRef] [PubMed]
  12. R. Kubo, in Fluctuation, Relaxation and Resonance in Magnetic Systems, D. ter Haar, ed. (Oliver and Boyd, Edinburgh, 1962).

1995 (1)

K. Uchikawa and M. Okada, “Accumulated photon echo spectroscopy on a human stomach cancer,” Laser Phys. 5, 687 (1995).

1994 (2)

D. T. Leeson, O. Berg, and D. A. Wiersma, “Low-temperature protein dynamics studied by the long-lived stimulated photon echo,” J. Phys. Chem. 98, 3913 (1994).
[CrossRef]

A. Furusawa, T. Suga, and K. Uchikawa, “Photon-echo spectroscopy on biological systems. I. Application to tissues,” J. Opt. Soc. Am. B 11, 1461 (1994).
[CrossRef]

1991 (2)

1990 (1)

K. A. Littau, Y. S. Bai, and M. D. Fayer, “Two-level systems and low-temperature glass dynamics: spectral diffusion and thermal reversibility of hole-burning linewidths,” J. Chem. Phys. 92, 4145 (1990).
[CrossRef]

1989 (1)

Y. S. Bai and M. D. Fayer, “Time scales and optical dephasing measurements: investigation of dynamics in complex systems,” Phys. Rev. B 39, 11066 (1989).
[CrossRef]

1972 (1)

P. W. Anderson, B. I. Halperin, and C. W. Varma, “Anomalous low-temperature thermal properties of glasses and spin glasses,” Philos. Mag. 25, 1 (1972).
[CrossRef]

1971 (1)

R. Damadian, “Tumor detection by nuclear magnetic resonance,” Science 171, 1151 (1971).
[CrossRef] [PubMed]

Anderson, P. W.

P. W. Anderson, B. I. Halperin, and C. W. Varma, “Anomalous low-temperature thermal properties of glasses and spin glasses,” Philos. Mag. 25, 1 (1972).
[CrossRef]

Bai, Y. S.

K. A. Littau, Y. S. Bai, and M. D. Fayer, “Two-level systems and low-temperature glass dynamics: spectral diffusion and thermal reversibility of hole-burning linewidths,” J. Chem. Phys. 92, 4145 (1990).
[CrossRef]

Y. S. Bai and M. D. Fayer, “Time scales and optical dephasing measurements: investigation of dynamics in complex systems,” Phys. Rev. B 39, 11066 (1989).
[CrossRef]

Berg, O.

D. T. Leeson, O. Berg, and D. A. Wiersma, “Low-temperature protein dynamics studied by the long-lived stimulated photon echo,” J. Phys. Chem. 98, 3913 (1994).
[CrossRef]

Damadian, R.

R. Damadian, “Tumor detection by nuclear magnetic resonance,” Science 171, 1151 (1971).
[CrossRef] [PubMed]

Fayer, M. D.

K. A. Littau, Y. S. Bai, and M. D. Fayer, “Two-level systems and low-temperature glass dynamics: spectral diffusion and thermal reversibility of hole-burning linewidths,” J. Chem. Phys. 92, 4145 (1990).
[CrossRef]

Y. S. Bai and M. D. Fayer, “Time scales and optical dephasing measurements: investigation of dynamics in complex systems,” Phys. Rev. B 39, 11066 (1989).
[CrossRef]

Furusawa, A.

A. Furusawa, T. Suga, and K. Uchikawa, “Photon-echo spectroscopy on biological systems. I. Application to tissues,” J. Opt. Soc. Am. B 11, 1461 (1994).
[CrossRef]

Halperin, B. I.

P. W. Anderson, B. I. Halperin, and C. W. Varma, “Anomalous low-temperature thermal properties of glasses and spin glasses,” Philos. Mag. 25, 1 (1972).
[CrossRef]

Kubo, R.

R. Kubo, in Fluctuation, Relaxation and Resonance in Magnetic Systems, D. ter Haar, ed. (Oliver and Boyd, Edinburgh, 1962).

Leeson, D. T.

D. T. Leeson, O. Berg, and D. A. Wiersma, “Low-temperature protein dynamics studied by the long-lived stimulated photon echo,” J. Phys. Chem. 98, 3913 (1994).
[CrossRef]

Littau, K. A.

K. A. Littau, Y. S. Bai, and M. D. Fayer, “Two-level systems and low-temperature glass dynamics: spectral diffusion and thermal reversibility of hole-burning linewidths,” J. Chem. Phys. 92, 4145 (1990).
[CrossRef]

Ohsawa, H.

Okada, M.

K. Uchikawa and M. Okada, “Accumulated photon echo spectroscopy on a human stomach cancer,” Laser Phys. 5, 687 (1995).

Saikan, S.

Suga, T.

A. Furusawa, T. Suga, and K. Uchikawa, “Photon-echo spectroscopy on biological systems. I. Application to tissues,” J. Opt. Soc. Am. B 11, 1461 (1994).
[CrossRef]

K. Uchikawa, H. Ohsawa, T. Suga, and S. Saikan, “Fluorescence detection of femtosecond accumulated photon echo,” Opt. Lett. 16, 13 (1991).
[CrossRef] [PubMed]

Uchikawa, K.

K. Uchikawa and M. Okada, “Accumulated photon echo spectroscopy on a human stomach cancer,” Laser Phys. 5, 687 (1995).

A. Furusawa, T. Suga, and K. Uchikawa, “Photon-echo spectroscopy on biological systems. I. Application to tissues,” J. Opt. Soc. Am. B 11, 1461 (1994).
[CrossRef]

S. Saikan, K. Uchikawa, and H. Ohsawa, “Phase-modulation technique for accumulated photon echo,” Opt. Lett. 16, 10 (1991).
[CrossRef] [PubMed]

K. Uchikawa, H. Ohsawa, T. Suga, and S. Saikan, “Fluorescence detection of femtosecond accumulated photon echo,” Opt. Lett. 16, 13 (1991).
[CrossRef] [PubMed]

K. Uchikawa, “Signal to noise ratio of fluorescence detection of accumulated photon echo,” submitted to J. Phys. Soc. Jpn.

Varma, C. W.

P. W. Anderson, B. I. Halperin, and C. W. Varma, “Anomalous low-temperature thermal properties of glasses and spin glasses,” Philos. Mag. 25, 1 (1972).
[CrossRef]

Wiersma, D. A.

D. T. Leeson, O. Berg, and D. A. Wiersma, “Low-temperature protein dynamics studied by the long-lived stimulated photon echo,” J. Phys. Chem. 98, 3913 (1994).
[CrossRef]

J. Chem. Phys. (1)

K. A. Littau, Y. S. Bai, and M. D. Fayer, “Two-level systems and low-temperature glass dynamics: spectral diffusion and thermal reversibility of hole-burning linewidths,” J. Chem. Phys. 92, 4145 (1990).
[CrossRef]

J. Opt. Soc. Am. B (1)

A. Furusawa, T. Suga, and K. Uchikawa, “Photon-echo spectroscopy on biological systems. I. Application to tissues,” J. Opt. Soc. Am. B 11, 1461 (1994).
[CrossRef]

J. Phys. Chem. (1)

D. T. Leeson, O. Berg, and D. A. Wiersma, “Low-temperature protein dynamics studied by the long-lived stimulated photon echo,” J. Phys. Chem. 98, 3913 (1994).
[CrossRef]

Laser Phys. (1)

K. Uchikawa and M. Okada, “Accumulated photon echo spectroscopy on a human stomach cancer,” Laser Phys. 5, 687 (1995).

Opt. Lett. (2)

Philos. Mag. (1)

P. W. Anderson, B. I. Halperin, and C. W. Varma, “Anomalous low-temperature thermal properties of glasses and spin glasses,” Philos. Mag. 25, 1 (1972).
[CrossRef]

Phys. Rev. B (1)

Y. S. Bai and M. D. Fayer, “Time scales and optical dephasing measurements: investigation of dynamics in complex systems,” Phys. Rev. B 39, 11066 (1989).
[CrossRef]

Science (1)

R. Damadian, “Tumor detection by nuclear magnetic resonance,” Science 171, 1151 (1971).
[CrossRef] [PubMed]

Other (3)

R. Kubo, in Fluctuation, Relaxation and Resonance in Magnetic Systems, D. ter Haar, ed. (Oliver and Boyd, Edinburgh, 1962).

W. E. Moerner, ed., Persistent Spectral Hole-Burning: Science and Applications (Springer-Verlag, Berlin, 1988).

K. Uchikawa, “Signal to noise ratio of fluorescence detection of accumulated photon echo,” submitted to J. Phys. Soc. Jpn.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Experimental setup for PEI. AL, mode-locked Ar-ion laser; NRS, noise-reduction system; DL, dye laser; HWP, half-wave plate; PBS, polarizing beam splitter; Sh, shutter; PM, phase modulator; OD, optical delay equipment; GM, a pair of galvanomirrors; C, He cryostat; S, sample; F, sharp-cut filter; OB, microscope objective; CCD, cooled CCD camera; P, photomultiplier tube.

Fig. 2
Fig. 2

Dye concentration dependence of accumulated photon-echo relaxation time in normal tissue samples; the dye concentrations were evaluated by measurement of fluorescence intensity.

Fig. 3
Fig. 3

(a) PE image, (b) microscopic H–E image, and (c) fluorescence map of the liver tissue sample that included a moderately differentiated hepatocellular carcinoma. The PE image is expressed by a contour mapping of accumulated photon-echo relaxation time, with the height of a contour being indicated in picoseconds. The height of a contour in the fluorescence map is indicated by an arbitrary unit of fluorescence intensity. Each figure shows the same area in the tissue sample, the size of which is approximately 1.4 mm × 1.4 mm.

Fig. 4
Fig. 4

(a) Fluorescence intensity (fluor. int.) dependence of accumulated photon-echo relaxation times mapped in Fig. 3(a). (b) Accumulated photon-echo relaxation times mapped in cancerous region shown in Fig. 3(a). (c) Accumulated photon-echo relaxation times mapped in noncancerous region shown in Fig. 3(a).

Fig. 5
Fig. 5

Examples of accumulated photon-echo decay curve observed in the sample that included a hepatocellular carcinoma. The open (filled) squares represent the decay curve observed in the cancerous (noncancerous) region. The relaxation time of the curve consisting of open (filled) squares is 98 (162) ps.

Fig. 6
Fig. 6

(a) PE image, (b) microscopic H–E image, and (c) fluorescence map of the liver tissue sample that included a highly differentiated hepatocellular carcinoma. The height of a contour in the PE image (fluorescence map) is indicated in picoseconds (arbitrary units of intensity). Each figure shows the same area in the tissue sample, the size of which is approximately 1.4 mm × 1.4 mm.

Fig. 7
Fig. 7

(a) Fluorescence intensity dependence of accumulated photon-echo relaxation times mapped in Fig. 6(a). (b) Accumulated photon-echo relaxation times mapped in cancerous region shown in Fig. 6(a). (c) Accumulated photon-echo relaxation times mapped in noncancerous region shown in Fig. 6(a).

Tables (1)

Tables Icon

Table 1 Characteristics of Human Liver Tissue Samples, Including Hepatocellular Carcinomas

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

S2f(τ)=-κμ4ρϕJ0(M)J2(M)|e|4θ(τ),
θ(τ)=Re exp(-γτ)0dt2F(t2)C(τ, t2, τ).

Metrics