Abstract

We present a grating pair based on Carpenter prisms whose third-order dispersion is opposite that of a traditional grating pair. A properly designed stretcher–compressor system with these gratings has the unique characteristic that it simultaneously compensates for second- and third-order dispersion as a function of grating separation, as opposed to traditional systems, which require an additional grating angle mismatch. The applicability of this design to 30-fs, millijoule-level chirped-pulse amplification is discussed.

© 1997 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. Maine, D. Strickland, P. Bado, M. Pessot, and G. Mourou, “Generation of ultrahigh peak power pulses by chirped pulse amplification,” IEEE J. Quantum Electron. 24, 398–403 (1988).
    [CrossRef]
  2. B. E. Lemoff and C. P. J. Barty, “Quintic-phase-limited, spatially uniform expansion and recompression of ultrashort optical pulses,” Opt. Lett. 18, 1651–1653 (1993).
    [CrossRef] [PubMed]
  3. W. E. White, F. G. Patterson, R. L. Combs, D. F. Price, and R. L. Shepherd, “Compensation of higher-order frequency-dependent phase terms in chirped-pulse amplification systems,” Opt. Lett. 18, 1343–1346 (1993).
    [CrossRef] [PubMed]
  4. J. P. Chambaret, P. Rousseau, P. Curley, G. Cheriaux, G. Grillon, and F. Salin, “Aberration-free stretcher design for ultra-short pulse amplification,” in Conference on Lasers and Electro-Optics, Vol. 15 of 1995 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1995), paper CFD5.
  5. C. P. J. Barty, C. L. Gordon III, and B. E. Lemoff, “Multiterawatt 30-fs Ti:sapphire laser system,” Opt. Lett. 19, 1442–1444 (1994).
    [CrossRef] [PubMed]
  6. This design can be found in at least two commercially available CPA systems.
  7. P. Tournois, “New diffraction grating pair with very linear dispersion for laser pulse compression,” Electron. Lett. 29, 1414–1415 (1993).
    [CrossRef]
  8. S. Kane and J. Squier, in Conference on Lasers and Electro-Optics, Vol. 15 of 1995 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1995), paper CThI46.
  9. S. Kane and J. Squier, “Towards a turn-key femtosecond laser: elimination of grating-pair stretchers from chirped-pulse amplification systems,” in Generation, Amplification, and Measurement of Ultrashort Laser Pulses II, F. W. Wise and C. P. J. Barty, eds., Proc. SPIE 2377, 330–339 (1995).
    [CrossRef]
  10. S. Kane and J. Squier, “Fourth-order-dispersion limitations of aberration-free chirped-pulse amplification systems,” J. Opt. Soc. Am. B (to be published).
  11. M. Perry, T. Ditmire, and B. C. Stuart, “Self-phase modulation in chirped-pulse amplification,” Opt. Lett. 19, 2149–2151 (1994).
    [CrossRef] [PubMed]

1995 (1)

S. Kane and J. Squier, “Towards a turn-key femtosecond laser: elimination of grating-pair stretchers from chirped-pulse amplification systems,” in Generation, Amplification, and Measurement of Ultrashort Laser Pulses II, F. W. Wise and C. P. J. Barty, eds., Proc. SPIE 2377, 330–339 (1995).
[CrossRef]

1994 (2)

1993 (3)

1988 (1)

P. Maine, D. Strickland, P. Bado, M. Pessot, and G. Mourou, “Generation of ultrahigh peak power pulses by chirped pulse amplification,” IEEE J. Quantum Electron. 24, 398–403 (1988).
[CrossRef]

Bado, P.

P. Maine, D. Strickland, P. Bado, M. Pessot, and G. Mourou, “Generation of ultrahigh peak power pulses by chirped pulse amplification,” IEEE J. Quantum Electron. 24, 398–403 (1988).
[CrossRef]

Barty, C. P. J.

Combs, R. L.

Ditmire, T.

Gordon III, C. L.

Kane, S.

S. Kane and J. Squier, “Towards a turn-key femtosecond laser: elimination of grating-pair stretchers from chirped-pulse amplification systems,” in Generation, Amplification, and Measurement of Ultrashort Laser Pulses II, F. W. Wise and C. P. J. Barty, eds., Proc. SPIE 2377, 330–339 (1995).
[CrossRef]

S. Kane and J. Squier, “Fourth-order-dispersion limitations of aberration-free chirped-pulse amplification systems,” J. Opt. Soc. Am. B (to be published).

Lemoff, B. E.

Maine, P.

P. Maine, D. Strickland, P. Bado, M. Pessot, and G. Mourou, “Generation of ultrahigh peak power pulses by chirped pulse amplification,” IEEE J. Quantum Electron. 24, 398–403 (1988).
[CrossRef]

Mourou, G.

P. Maine, D. Strickland, P. Bado, M. Pessot, and G. Mourou, “Generation of ultrahigh peak power pulses by chirped pulse amplification,” IEEE J. Quantum Electron. 24, 398–403 (1988).
[CrossRef]

Patterson, F. G.

Perry, M.

Pessot, M.

P. Maine, D. Strickland, P. Bado, M. Pessot, and G. Mourou, “Generation of ultrahigh peak power pulses by chirped pulse amplification,” IEEE J. Quantum Electron. 24, 398–403 (1988).
[CrossRef]

Price, D. F.

Shepherd, R. L.

Squier, J.

S. Kane and J. Squier, “Towards a turn-key femtosecond laser: elimination of grating-pair stretchers from chirped-pulse amplification systems,” in Generation, Amplification, and Measurement of Ultrashort Laser Pulses II, F. W. Wise and C. P. J. Barty, eds., Proc. SPIE 2377, 330–339 (1995).
[CrossRef]

S. Kane and J. Squier, “Fourth-order-dispersion limitations of aberration-free chirped-pulse amplification systems,” J. Opt. Soc. Am. B (to be published).

Strickland, D.

P. Maine, D. Strickland, P. Bado, M. Pessot, and G. Mourou, “Generation of ultrahigh peak power pulses by chirped pulse amplification,” IEEE J. Quantum Electron. 24, 398–403 (1988).
[CrossRef]

Stuart, B. C.

Tournois, P.

P. Tournois, “New diffraction grating pair with very linear dispersion for laser pulse compression,” Electron. Lett. 29, 1414–1415 (1993).
[CrossRef]

White, W. E.

Electron. Lett. (1)

P. Tournois, “New diffraction grating pair with very linear dispersion for laser pulse compression,” Electron. Lett. 29, 1414–1415 (1993).
[CrossRef]

IEEE J. Quantum Electron. (1)

P. Maine, D. Strickland, P. Bado, M. Pessot, and G. Mourou, “Generation of ultrahigh peak power pulses by chirped pulse amplification,” IEEE J. Quantum Electron. 24, 398–403 (1988).
[CrossRef]

J. Opt. Soc. Am. B (1)

S. Kane and J. Squier, “Fourth-order-dispersion limitations of aberration-free chirped-pulse amplification systems,” J. Opt. Soc. Am. B (to be published).

Opt. Lett. (4)

Proc. SPIE (1)

S. Kane and J. Squier, “Towards a turn-key femtosecond laser: elimination of grating-pair stretchers from chirped-pulse amplification systems,” in Generation, Amplification, and Measurement of Ultrashort Laser Pulses II, F. W. Wise and C. P. J. Barty, eds., Proc. SPIE 2377, 330–339 (1995).
[CrossRef]

Other (3)

This design can be found in at least two commercially available CPA systems.

S. Kane and J. Squier, in Conference on Lasers and Electro-Optics, Vol. 15 of 1995 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1995), paper CThI46.

J. P. Chambaret, P. Rousseau, P. Curley, G. Cheriaux, G. Grillon, and F. Salin, “Aberration-free stretcher design for ultra-short pulse amplification,” in Conference on Lasers and Electro-Optics, Vol. 15 of 1995 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1995), paper CFD5.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Grism pair for providing negative SOD and TOD.

Fig. 2
Fig. 2

Grism-pair stretcher and compressor in a CPA laser. The stretcher telescope is from Ref. 4.

Fig. 3
Fig. 3

Simulation results of a 30-fs pulse stretched to 300 ps, amplified, and compressed with grisms. Unlike conventional CPA systems, the grism stretcher and compressor are employed at identical angles.

Equations (30)

Equations on this page are rendered with MathJax. Learn more.

ϕ(ω)=ϕ0+ϕ1(ω-ω0)+ϕ2(ω-ω0)2+ϕ3(ω-ω0)3+,
ϕn=1n!dnϕ(ω)dωnω0.
ϕ2(str)+ϕ2(mat)+ϕ2(cmp)=0,
ϕ3(str)+ϕ3(mat)+ϕ3(cmp)=0.
ϕ2(str)=m2λ03l(str)4πc2d2{1-[mλ0/d-sin θi(str)]2},
ϕ2(mat)=λ03l(mat)2πc2d2ndλ2λ0,
ϕ2(cmp)=-m2λ03l(cmp)4πc2d2{1-[mλ0/d-sin θi(cmp)]2},
ϕ3(str)=-ϕ2(str) λ02πc×1+mλ0dmλ0/d-sin θi(str)1-[mλ0/d-sin θi(str)]2,
ϕ3(mat)=-λ044πc3d2ndλ2λ0+λ0512π2c3d3ndλ3λ0l(mat),
ϕ3(cmp)=-ϕ2(cmp) λ02πc×1+mλ0dmλ0/d-sin θi(cmp)1-[mλ0/d-sin θi(cmp)]2.
|ϕ2|(cmp)=|ϕ2|(str)+|ϕ2|(mat),
|ϕ3|(cmp)=|ϕ3|(str)-|ϕ3|(mat).
ϕ3ϕ2(str)>ϕ3ϕ2(cmp).
mλ0/d-sin θi(str)1-[mλ0/d-sin θi(str)]2
>mλ0/d-sin θi(cmp)1-[mλ0/d-sin θi(cmp)]2,
|ϕ2|(cmp)=|ϕ2|(str)+|β2|lmat,
|ϕ3|(cmp)=|ϕ3|(str)-|β3|lmat.
ϕ3ϕ2(cmp)=|ϕ3|(str)-|β3|lmat|ϕ2|(str)+|β2|lmat,
ϕ3ϕ2(cmp)=λ02πc1+mλ0dmλ0/d-sin θi(cmp)1-[mλ0/d-sin θi(cmp)]2=|ϕ3|(str)-|β3|lmat|ϕ2|(str)+|β2|lmat.
|ϕ2|(cmp)=|ϕ2|(str)+|ϕ2|(mat),
|ϕ3|(cmp)=|ϕ3|(str)+|ϕ3|(mat),
ϕ3ϕ2(str)=ϕ3ϕ2(cmp).
ϕ3ϕ2(str)=ϕ3ϕ2(mat)=ϕ3ϕ2(cmp)
ϕ3ϕ2=-λ02πc1+mλ0dmλ0/d-sin θi1-(mλ0/d-sin θi)2,
sin θd=m λd-sin θi.
ϕ3ϕ2=-λ02πc1+mλ0dsin θd1-sin2 θd=-λ02πc1-sin2 θd+(mλ0/d)sin θd1-sin2 θd=-λ02πc1+sin θd sin θicos2 θd.
sin θd=m λd-np sin θi,
m λ0d=np sin θi-1np sin θi.
ϕ3ϕ2=-λ02πc1+np sin θd sin θicos2 θd.
δϕ4=ϕ2materialϕ3ϕ2+d(ϕ3/ϕ2)dωstretcher.

Metrics