Abstract

We performed Z-scan measurements to investigate the optical nonlinearity of poly(3-hexadecylthiophene) in a chloroform solution. Values for the real and the imaginary parts of the nonlinear susceptibility were obtained for solutions with various polymer concentrations. The nonlinear-optical properties were studied as a function of polymer concentration and light intensity from which saturation of nonlinear refraction and saturated absorption were observed. The saturation intensity was determined, and the corresponding values are presented for all concentrations studied. Time-resolved measurements of the nondiagonal part of nonlinear susceptibility are also presented.

© 1997 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. B. I. Greene, J. Orenstein, and S. Schmitt-Rink, “All-optical nonlinearities in organics,” Science 247, 679 (1990).
    [CrossRef] [PubMed]
  2. P. N. Prasad and D. J. Williams, Introduction to Nonlinear Optical Effects in Molecules and Polymers (Wiley, New York, 1991).
  3. P. B. Logsdon, J. Pfleger, and P. N. Prasad, “Conductive and optically non-linear polymeric Langmuir–Blodgett films of poly(3-docedylthiophene),” Synth. Met. 26, 369 (1988).
    [CrossRef]
  4. R. Dorsinville, L. Yang, R. R. Alfano, R. Zamboni, R. Danieli, G. Ruani, and C. Taliani, “Nonlinear-optical response in polythiophene films using four-wave mixing techniques,” Opt. Lett. 14, 1321 (1989).
    [CrossRef] [PubMed]
  5. K. S. Wong, S. G. Han, and Z. V. Vardeny, “Studies of resonant and preresonant femtosecond degenerate four-wave mixing in unoriented conducting polymers,” J. Appl. Phys. 70, 1896 (1991).
    [CrossRef]
  6. Y. Pang and P. N. Prasad, “Photoinduced processes and resonant third-order nonlinearity in poly(3-dodecylthiophene) studied by femtosecond time resolved degenerate four wave mixing,” J. Chem. Phys. 93, 2201 (1990).
    [CrossRef]
  7. M. Cha, W. E. Torruelas, S. H. Yuan, G. I. Stegeman, and M. Leclerc, “Third-order optical spectroscopy of polythiophene,” J. Opt. Soc. Am. B 12, 882 (1995).
    [CrossRef]
  8. S. Destri, W. Porzio, M. Nisoli, S. De Silvestri, D. Grando, and S. Sottini, “Poly(3-decylthiophene) as χ(3) active material in waveguides,” Synth. Met. 67, 293 (1994).
    [CrossRef]
  9. J. Hein, H. Bergner, M. Lenzner, and S. Rentsch, “Determination of real and imaginary part of χ(3) of thiophene oligomers using the Z-scan technique,” Chem. Phys. 179, 543 (1994).
    [CrossRef]
  10. L. Yang, R. Dorsinville, Q. Z. Wang, P. X. Ye, R. R. Alfano, R. Zamboni, and C. Taliani, “Excited-state nonlinearity in polythiophene thin films investigated by the Z-scan technique,” Opt. Lett. 17, 323 (1992).
    [CrossRef] [PubMed]
  11. H. B. Gu, S. Nakajima, and K. Yoshino, “Doping effect in solution of poly(3-alkylthiophene),” Jpn. J. Appl. Phys. 27, L311 (1988).
    [CrossRef]
  12. K. Yoshino, S. Nakajima, and R. Sugimoto, “Fusibility of polythiophene derivatives with substituted long alkyl chains and their properties,” Jpn. J. Appl. Phys. 26, L1038 (1987).
    [CrossRef]
  13. M. Sheik-Bahae, A. A. Said, T. H. Wei, D. J. Hagan, and E. W. Van Stryland, “Sensitive measurement of optical nonlinearities using a single beam,” IEEE J. Quantum Electron. 26, 760 (1990).
    [CrossRef]
  14. D. V. Petrov, A. S. L. Gomes, C. B. de Araújo, J. M. de Souza, W. M. de Azevedo, J. V. de Melo, and F. B. Diniz, “Nonlinear optical properties of PVA-polyaniline interpenetrating polymer network,” Opt. Lett. 20, 554 (1995).
    [CrossRef] [PubMed]
  15. The parameter S, representing the aperture transmittance, is given by [1-exp(-2ra2/wa2)], where ra is the aperture radius and wa denotes the beam radius at the aperture for very low incident power.
  16. P. P. Ho and R. R. Alfano, “Optical Kerr effects in liquids,” Phys. Rev. A 20, 2170 (1979).
    [CrossRef]
  17. L. C. Oliveira and S. C. Zilio, “Chromium-doped saturable absorbers investigated by Z-scan technique,” Braz. J. Phys. 24, 498 (1994); L. C. Oliveira, T. Catunda, and S. C. Zilio, “Saturation effects in Z-scan measurements,” Jpn. J. Appl. Phys. (to be published).
  18. R. DeSalvo, M. Sheik-Bahae, A. A. Said, D. J. Hagan, and E. W. Van Stryland, “Z-scan measurements of the anisotropy of nonlinear refraction and absorption in crystals,” Opt. Lett. 18, 194 (1993).
    [CrossRef] [PubMed]
  19. L. H. Acioli, A. S. L. Gomes, and J. R. Rios Leite, “Measurements of high-order nonlinear susceptibilities in semiconductor-doped glasses,” Appl. Phys. Lett. 51, 1788 (1988).
    [CrossRef]
  20. H. Ma and C. B. de Araújo, “Interference between third- and fifth-order polarizations in semiconductor doped glasses,” Phys. Rev. Lett. 71, 3649 (1993).
    [CrossRef] [PubMed]

1995 (2)

1994 (3)

L. C. Oliveira and S. C. Zilio, “Chromium-doped saturable absorbers investigated by Z-scan technique,” Braz. J. Phys. 24, 498 (1994); L. C. Oliveira, T. Catunda, and S. C. Zilio, “Saturation effects in Z-scan measurements,” Jpn. J. Appl. Phys. (to be published).

S. Destri, W. Porzio, M. Nisoli, S. De Silvestri, D. Grando, and S. Sottini, “Poly(3-decylthiophene) as χ(3) active material in waveguides,” Synth. Met. 67, 293 (1994).
[CrossRef]

J. Hein, H. Bergner, M. Lenzner, and S. Rentsch, “Determination of real and imaginary part of χ(3) of thiophene oligomers using the Z-scan technique,” Chem. Phys. 179, 543 (1994).
[CrossRef]

1993 (2)

R. DeSalvo, M. Sheik-Bahae, A. A. Said, D. J. Hagan, and E. W. Van Stryland, “Z-scan measurements of the anisotropy of nonlinear refraction and absorption in crystals,” Opt. Lett. 18, 194 (1993).
[CrossRef] [PubMed]

H. Ma and C. B. de Araújo, “Interference between third- and fifth-order polarizations in semiconductor doped glasses,” Phys. Rev. Lett. 71, 3649 (1993).
[CrossRef] [PubMed]

1992 (1)

1991 (1)

K. S. Wong, S. G. Han, and Z. V. Vardeny, “Studies of resonant and preresonant femtosecond degenerate four-wave mixing in unoriented conducting polymers,” J. Appl. Phys. 70, 1896 (1991).
[CrossRef]

1990 (3)

Y. Pang and P. N. Prasad, “Photoinduced processes and resonant third-order nonlinearity in poly(3-dodecylthiophene) studied by femtosecond time resolved degenerate four wave mixing,” J. Chem. Phys. 93, 2201 (1990).
[CrossRef]

B. I. Greene, J. Orenstein, and S. Schmitt-Rink, “All-optical nonlinearities in organics,” Science 247, 679 (1990).
[CrossRef] [PubMed]

M. Sheik-Bahae, A. A. Said, T. H. Wei, D. J. Hagan, and E. W. Van Stryland, “Sensitive measurement of optical nonlinearities using a single beam,” IEEE J. Quantum Electron. 26, 760 (1990).
[CrossRef]

1989 (1)

1988 (3)

L. H. Acioli, A. S. L. Gomes, and J. R. Rios Leite, “Measurements of high-order nonlinear susceptibilities in semiconductor-doped glasses,” Appl. Phys. Lett. 51, 1788 (1988).
[CrossRef]

P. B. Logsdon, J. Pfleger, and P. N. Prasad, “Conductive and optically non-linear polymeric Langmuir–Blodgett films of poly(3-docedylthiophene),” Synth. Met. 26, 369 (1988).
[CrossRef]

H. B. Gu, S. Nakajima, and K. Yoshino, “Doping effect in solution of poly(3-alkylthiophene),” Jpn. J. Appl. Phys. 27, L311 (1988).
[CrossRef]

1987 (1)

K. Yoshino, S. Nakajima, and R. Sugimoto, “Fusibility of polythiophene derivatives with substituted long alkyl chains and their properties,” Jpn. J. Appl. Phys. 26, L1038 (1987).
[CrossRef]

1979 (1)

P. P. Ho and R. R. Alfano, “Optical Kerr effects in liquids,” Phys. Rev. A 20, 2170 (1979).
[CrossRef]

Acioli, L. H.

L. H. Acioli, A. S. L. Gomes, and J. R. Rios Leite, “Measurements of high-order nonlinear susceptibilities in semiconductor-doped glasses,” Appl. Phys. Lett. 51, 1788 (1988).
[CrossRef]

Alfano, R. R.

Bergner, H.

J. Hein, H. Bergner, M. Lenzner, and S. Rentsch, “Determination of real and imaginary part of χ(3) of thiophene oligomers using the Z-scan technique,” Chem. Phys. 179, 543 (1994).
[CrossRef]

Cha, M.

Danieli, R.

de Araújo, C. B.

de Azevedo, W. M.

de Melo, J. V.

De Silvestri, S.

S. Destri, W. Porzio, M. Nisoli, S. De Silvestri, D. Grando, and S. Sottini, “Poly(3-decylthiophene) as χ(3) active material in waveguides,” Synth. Met. 67, 293 (1994).
[CrossRef]

de Souza, J. M.

DeSalvo, R.

Destri, S.

S. Destri, W. Porzio, M. Nisoli, S. De Silvestri, D. Grando, and S. Sottini, “Poly(3-decylthiophene) as χ(3) active material in waveguides,” Synth. Met. 67, 293 (1994).
[CrossRef]

Diniz, F. B.

Dorsinville, R.

Gomes, A. S. L.

D. V. Petrov, A. S. L. Gomes, C. B. de Araújo, J. M. de Souza, W. M. de Azevedo, J. V. de Melo, and F. B. Diniz, “Nonlinear optical properties of PVA-polyaniline interpenetrating polymer network,” Opt. Lett. 20, 554 (1995).
[CrossRef] [PubMed]

L. H. Acioli, A. S. L. Gomes, and J. R. Rios Leite, “Measurements of high-order nonlinear susceptibilities in semiconductor-doped glasses,” Appl. Phys. Lett. 51, 1788 (1988).
[CrossRef]

Grando, D.

S. Destri, W. Porzio, M. Nisoli, S. De Silvestri, D. Grando, and S. Sottini, “Poly(3-decylthiophene) as χ(3) active material in waveguides,” Synth. Met. 67, 293 (1994).
[CrossRef]

Greene, B. I.

B. I. Greene, J. Orenstein, and S. Schmitt-Rink, “All-optical nonlinearities in organics,” Science 247, 679 (1990).
[CrossRef] [PubMed]

Gu, H. B.

H. B. Gu, S. Nakajima, and K. Yoshino, “Doping effect in solution of poly(3-alkylthiophene),” Jpn. J. Appl. Phys. 27, L311 (1988).
[CrossRef]

Hagan, D. J.

R. DeSalvo, M. Sheik-Bahae, A. A. Said, D. J. Hagan, and E. W. Van Stryland, “Z-scan measurements of the anisotropy of nonlinear refraction and absorption in crystals,” Opt. Lett. 18, 194 (1993).
[CrossRef] [PubMed]

M. Sheik-Bahae, A. A. Said, T. H. Wei, D. J. Hagan, and E. W. Van Stryland, “Sensitive measurement of optical nonlinearities using a single beam,” IEEE J. Quantum Electron. 26, 760 (1990).
[CrossRef]

Han, S. G.

K. S. Wong, S. G. Han, and Z. V. Vardeny, “Studies of resonant and preresonant femtosecond degenerate four-wave mixing in unoriented conducting polymers,” J. Appl. Phys. 70, 1896 (1991).
[CrossRef]

Hein, J.

J. Hein, H. Bergner, M. Lenzner, and S. Rentsch, “Determination of real and imaginary part of χ(3) of thiophene oligomers using the Z-scan technique,” Chem. Phys. 179, 543 (1994).
[CrossRef]

Ho, P. P.

P. P. Ho and R. R. Alfano, “Optical Kerr effects in liquids,” Phys. Rev. A 20, 2170 (1979).
[CrossRef]

Leclerc, M.

Lenzner, M.

J. Hein, H. Bergner, M. Lenzner, and S. Rentsch, “Determination of real and imaginary part of χ(3) of thiophene oligomers using the Z-scan technique,” Chem. Phys. 179, 543 (1994).
[CrossRef]

Logsdon, P. B.

P. B. Logsdon, J. Pfleger, and P. N. Prasad, “Conductive and optically non-linear polymeric Langmuir–Blodgett films of poly(3-docedylthiophene),” Synth. Met. 26, 369 (1988).
[CrossRef]

Ma, H.

H. Ma and C. B. de Araújo, “Interference between third- and fifth-order polarizations in semiconductor doped glasses,” Phys. Rev. Lett. 71, 3649 (1993).
[CrossRef] [PubMed]

Nakajima, S.

H. B. Gu, S. Nakajima, and K. Yoshino, “Doping effect in solution of poly(3-alkylthiophene),” Jpn. J. Appl. Phys. 27, L311 (1988).
[CrossRef]

K. Yoshino, S. Nakajima, and R. Sugimoto, “Fusibility of polythiophene derivatives with substituted long alkyl chains and their properties,” Jpn. J. Appl. Phys. 26, L1038 (1987).
[CrossRef]

Nisoli, M.

S. Destri, W. Porzio, M. Nisoli, S. De Silvestri, D. Grando, and S. Sottini, “Poly(3-decylthiophene) as χ(3) active material in waveguides,” Synth. Met. 67, 293 (1994).
[CrossRef]

Oliveira, L. C.

L. C. Oliveira and S. C. Zilio, “Chromium-doped saturable absorbers investigated by Z-scan technique,” Braz. J. Phys. 24, 498 (1994); L. C. Oliveira, T. Catunda, and S. C. Zilio, “Saturation effects in Z-scan measurements,” Jpn. J. Appl. Phys. (to be published).

Orenstein, J.

B. I. Greene, J. Orenstein, and S. Schmitt-Rink, “All-optical nonlinearities in organics,” Science 247, 679 (1990).
[CrossRef] [PubMed]

Pang, Y.

Y. Pang and P. N. Prasad, “Photoinduced processes and resonant third-order nonlinearity in poly(3-dodecylthiophene) studied by femtosecond time resolved degenerate four wave mixing,” J. Chem. Phys. 93, 2201 (1990).
[CrossRef]

Petrov, D. V.

Pfleger, J.

P. B. Logsdon, J. Pfleger, and P. N. Prasad, “Conductive and optically non-linear polymeric Langmuir–Blodgett films of poly(3-docedylthiophene),” Synth. Met. 26, 369 (1988).
[CrossRef]

Porzio, W.

S. Destri, W. Porzio, M. Nisoli, S. De Silvestri, D. Grando, and S. Sottini, “Poly(3-decylthiophene) as χ(3) active material in waveguides,” Synth. Met. 67, 293 (1994).
[CrossRef]

Prasad, P. N.

Y. Pang and P. N. Prasad, “Photoinduced processes and resonant third-order nonlinearity in poly(3-dodecylthiophene) studied by femtosecond time resolved degenerate four wave mixing,” J. Chem. Phys. 93, 2201 (1990).
[CrossRef]

P. B. Logsdon, J. Pfleger, and P. N. Prasad, “Conductive and optically non-linear polymeric Langmuir–Blodgett films of poly(3-docedylthiophene),” Synth. Met. 26, 369 (1988).
[CrossRef]

P. N. Prasad and D. J. Williams, Introduction to Nonlinear Optical Effects in Molecules and Polymers (Wiley, New York, 1991).

Rentsch, S.

J. Hein, H. Bergner, M. Lenzner, and S. Rentsch, “Determination of real and imaginary part of χ(3) of thiophene oligomers using the Z-scan technique,” Chem. Phys. 179, 543 (1994).
[CrossRef]

Rios Leite, J. R.

L. H. Acioli, A. S. L. Gomes, and J. R. Rios Leite, “Measurements of high-order nonlinear susceptibilities in semiconductor-doped glasses,” Appl. Phys. Lett. 51, 1788 (1988).
[CrossRef]

Ruani, G.

Said, A. A.

R. DeSalvo, M. Sheik-Bahae, A. A. Said, D. J. Hagan, and E. W. Van Stryland, “Z-scan measurements of the anisotropy of nonlinear refraction and absorption in crystals,” Opt. Lett. 18, 194 (1993).
[CrossRef] [PubMed]

M. Sheik-Bahae, A. A. Said, T. H. Wei, D. J. Hagan, and E. W. Van Stryland, “Sensitive measurement of optical nonlinearities using a single beam,” IEEE J. Quantum Electron. 26, 760 (1990).
[CrossRef]

Schmitt-Rink, S.

B. I. Greene, J. Orenstein, and S. Schmitt-Rink, “All-optical nonlinearities in organics,” Science 247, 679 (1990).
[CrossRef] [PubMed]

Sheik-Bahae, M.

R. DeSalvo, M. Sheik-Bahae, A. A. Said, D. J. Hagan, and E. W. Van Stryland, “Z-scan measurements of the anisotropy of nonlinear refraction and absorption in crystals,” Opt. Lett. 18, 194 (1993).
[CrossRef] [PubMed]

M. Sheik-Bahae, A. A. Said, T. H. Wei, D. J. Hagan, and E. W. Van Stryland, “Sensitive measurement of optical nonlinearities using a single beam,” IEEE J. Quantum Electron. 26, 760 (1990).
[CrossRef]

Sottini, S.

S. Destri, W. Porzio, M. Nisoli, S. De Silvestri, D. Grando, and S. Sottini, “Poly(3-decylthiophene) as χ(3) active material in waveguides,” Synth. Met. 67, 293 (1994).
[CrossRef]

Stegeman, G. I.

Sugimoto, R.

K. Yoshino, S. Nakajima, and R. Sugimoto, “Fusibility of polythiophene derivatives with substituted long alkyl chains and their properties,” Jpn. J. Appl. Phys. 26, L1038 (1987).
[CrossRef]

Taliani, C.

Torruelas, W. E.

Van Stryland, E. W.

R. DeSalvo, M. Sheik-Bahae, A. A. Said, D. J. Hagan, and E. W. Van Stryland, “Z-scan measurements of the anisotropy of nonlinear refraction and absorption in crystals,” Opt. Lett. 18, 194 (1993).
[CrossRef] [PubMed]

M. Sheik-Bahae, A. A. Said, T. H. Wei, D. J. Hagan, and E. W. Van Stryland, “Sensitive measurement of optical nonlinearities using a single beam,” IEEE J. Quantum Electron. 26, 760 (1990).
[CrossRef]

Vardeny, Z. V.

K. S. Wong, S. G. Han, and Z. V. Vardeny, “Studies of resonant and preresonant femtosecond degenerate four-wave mixing in unoriented conducting polymers,” J. Appl. Phys. 70, 1896 (1991).
[CrossRef]

Wang, Q. Z.

Wei, T. H.

M. Sheik-Bahae, A. A. Said, T. H. Wei, D. J. Hagan, and E. W. Van Stryland, “Sensitive measurement of optical nonlinearities using a single beam,” IEEE J. Quantum Electron. 26, 760 (1990).
[CrossRef]

Williams, D. J.

P. N. Prasad and D. J. Williams, Introduction to Nonlinear Optical Effects in Molecules and Polymers (Wiley, New York, 1991).

Wong, K. S.

K. S. Wong, S. G. Han, and Z. V. Vardeny, “Studies of resonant and preresonant femtosecond degenerate four-wave mixing in unoriented conducting polymers,” J. Appl. Phys. 70, 1896 (1991).
[CrossRef]

Yang, L.

Ye, P. X.

Yoshino, K.

H. B. Gu, S. Nakajima, and K. Yoshino, “Doping effect in solution of poly(3-alkylthiophene),” Jpn. J. Appl. Phys. 27, L311 (1988).
[CrossRef]

K. Yoshino, S. Nakajima, and R. Sugimoto, “Fusibility of polythiophene derivatives with substituted long alkyl chains and their properties,” Jpn. J. Appl. Phys. 26, L1038 (1987).
[CrossRef]

Yuan, S. H.

Zamboni, R.

Zilio, S. C.

L. C. Oliveira and S. C. Zilio, “Chromium-doped saturable absorbers investigated by Z-scan technique,” Braz. J. Phys. 24, 498 (1994); L. C. Oliveira, T. Catunda, and S. C. Zilio, “Saturation effects in Z-scan measurements,” Jpn. J. Appl. Phys. (to be published).

Appl. Phys. Lett. (1)

L. H. Acioli, A. S. L. Gomes, and J. R. Rios Leite, “Measurements of high-order nonlinear susceptibilities in semiconductor-doped glasses,” Appl. Phys. Lett. 51, 1788 (1988).
[CrossRef]

Braz. J. Phys. (1)

L. C. Oliveira and S. C. Zilio, “Chromium-doped saturable absorbers investigated by Z-scan technique,” Braz. J. Phys. 24, 498 (1994); L. C. Oliveira, T. Catunda, and S. C. Zilio, “Saturation effects in Z-scan measurements,” Jpn. J. Appl. Phys. (to be published).

Chem. Phys. (1)

J. Hein, H. Bergner, M. Lenzner, and S. Rentsch, “Determination of real and imaginary part of χ(3) of thiophene oligomers using the Z-scan technique,” Chem. Phys. 179, 543 (1994).
[CrossRef]

IEEE J. Quantum Electron. (1)

M. Sheik-Bahae, A. A. Said, T. H. Wei, D. J. Hagan, and E. W. Van Stryland, “Sensitive measurement of optical nonlinearities using a single beam,” IEEE J. Quantum Electron. 26, 760 (1990).
[CrossRef]

J. Appl. Phys. (1)

K. S. Wong, S. G. Han, and Z. V. Vardeny, “Studies of resonant and preresonant femtosecond degenerate four-wave mixing in unoriented conducting polymers,” J. Appl. Phys. 70, 1896 (1991).
[CrossRef]

J. Chem. Phys. (1)

Y. Pang and P. N. Prasad, “Photoinduced processes and resonant third-order nonlinearity in poly(3-dodecylthiophene) studied by femtosecond time resolved degenerate four wave mixing,” J. Chem. Phys. 93, 2201 (1990).
[CrossRef]

J. Opt. Soc. Am. B (1)

Jpn. J. Appl. Phys. (2)

H. B. Gu, S. Nakajima, and K. Yoshino, “Doping effect in solution of poly(3-alkylthiophene),” Jpn. J. Appl. Phys. 27, L311 (1988).
[CrossRef]

K. Yoshino, S. Nakajima, and R. Sugimoto, “Fusibility of polythiophene derivatives with substituted long alkyl chains and their properties,” Jpn. J. Appl. Phys. 26, L1038 (1987).
[CrossRef]

Opt. Lett. (4)

Phys. Rev. A (1)

P. P. Ho and R. R. Alfano, “Optical Kerr effects in liquids,” Phys. Rev. A 20, 2170 (1979).
[CrossRef]

Phys. Rev. Lett. (1)

H. Ma and C. B. de Araújo, “Interference between third- and fifth-order polarizations in semiconductor doped glasses,” Phys. Rev. Lett. 71, 3649 (1993).
[CrossRef] [PubMed]

Science (1)

B. I. Greene, J. Orenstein, and S. Schmitt-Rink, “All-optical nonlinearities in organics,” Science 247, 679 (1990).
[CrossRef] [PubMed]

Synth. Met. (2)

S. Destri, W. Porzio, M. Nisoli, S. De Silvestri, D. Grando, and S. Sottini, “Poly(3-decylthiophene) as χ(3) active material in waveguides,” Synth. Met. 67, 293 (1994).
[CrossRef]

P. B. Logsdon, J. Pfleger, and P. N. Prasad, “Conductive and optically non-linear polymeric Langmuir–Blodgett films of poly(3-docedylthiophene),” Synth. Met. 26, 369 (1988).
[CrossRef]

Other (2)

P. N. Prasad and D. J. Williams, Introduction to Nonlinear Optical Effects in Molecules and Polymers (Wiley, New York, 1991).

The parameter S, representing the aperture transmittance, is given by [1-exp(-2ra2/wa2)], where ra is the aperture radius and wa denotes the beam radius at the aperture for very low incident power.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Molecular structure of PT16.

Fig. 2
Fig. 2

Experimental arrangement used for the Z-scan measurements: E1–E3, plane mirrors; L, 15-cm focal-length lens; BS1, BS2, beam splitters; λ/2, half-wave plate; P1–P3, linear polarizers; A, aperture; D1–D3, photodiodes. D1 measures the reference signal; D2 and D3 detect the signals related to n2 and α2, respectively.

Fig. 3
Fig. 3

Absorption spectra of the undoped samples with concentrations of (a) 0.5 mg/mL, (b) 1 mg/mL, (d) 2 mg/mL, (e) 3 mg/mL, and (f) 5 mg/mL. (c) Absorption spectra of the doped sample with concentration 3 mg/mL.

Fig. 4
Fig. 4

(a) Small- and (b) wide-aperture Z-scan measurement results. Sample, 2 mg/mL. I0 = 0.4 GW/cm2.

Fig. 5
Fig. 5

Peak-to-valley transmission change versus laser intensity for different PT16 concentrations and dopants obtained from Z-scan traces with (a) small and (b) wide apertures: +, 0.5 mg/mL undoped; ■, 1 mg/mL doped; ■, 1 mg/mL undoped; ◊, 2 mg/mL undoped; ▲, 3 mg/mL doped; △, 3 mg/mL undoped; ●, 5 mg/mL doped, ○, 5 mg/mL undoped.

Fig. 6
Fig. 6

Saturation intensity IS as a function of PT16 concentration.

Fig. 7
Fig. 7

Nonlinear coefficients n2 and α2 as a function of PT16 concentration.

Fig. 8
Fig. 8

Time-resolved anisotropic Z-scan measurements: (a) Z-scan traces for various time delays between pump and probe pulses. (b) Peak-to-valley transmission change as a function of the time delay between pump and probe pulses (polymer concentration, 5 mg/mL; Ipump = 0.6 GW/cm2).

Metrics