Abstract

From the absorption spectrum of CaF2:Ho3+, Judd–Ofelt intensity parameters were estimated as Ω2=0.018×10-20 cm2, Ω4=0.57×10-20 cm2, and Ω6=0.587×10-20 cm2. Radiative transition probabilities and radiative lifetimes were also estimated for some of the levels. We observed red-to-green, -blue, and -violet energy upconversion in CaF2:Ho3+ with efficiencies of 0.08%, 0.13% and 1.35×10-3%, respectively, on resonant excitation of the 5 F5 state. Under site-selective excitation we also found that the blue-upconversion signal intensity was approximately three times larger than that of the green-upconversion signal intensity. On resonantly exciting the 5 I4 state we detected strong green upconversion signals from the 5 S2 state and found that excited-state absorption from 5 I7 was responsible for this process. Upconversion efficiency of the process was determined to be 8.1%. On resonantly exciting the 5 I5 state, we detected strong red emission in CaF2:Ho3+ and strong green emission in LaF3:Ho3+. Such a host-dependent upconversion frequency emission is also explained.

© 1997 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. B. Seelbinder and J. C. Wright, “Site-selective spectroscopy of  CaF 2  :Ho3+ ,” Phys. Rev. B 10, 4308–4320 (1979).
    [Crossref]
  2. M. Mujaji, G. D. Jones, and R. W. G. Syme, “Polarization study and crystal field analysis of the laser selective excitation spectra of  Ho3+  ions in  CaF2  and  SrF2  crystals,” Phys. Rev. B 46, 14398–14410 (1992).
    [Crossref]
  3. D. N. Rao, J. Prasad, and P. N. Prasad, “Two-photon excitation of  Ho3+  in the  CaF2 ,  SrF2 , and  CdF2  lattices,” Phys. Rev. B 28, 20–23 (1983).
    [Crossref]
  4. S. H. Tang, H. Y. Zhang, M. H. Kuok, and S. C. Kee, “Fluorescence and upconversion in  CaF 2  :Ho3+ ,” Phys. Status Solidi B 168, 351–360 (1991).
    [Crossref]
  5. W. F. Krupke, “Optical absorption and fluorescence intensities in several rare-earth doped  Y 2  O3  and  LaF3  single crystals,” Phys. Rev. 145, 325–337 (1966).
    [Crossref]
  6. M. J. Weber, B. H. Matsinger, V. L. Donlan, and G. Surratt, “Optical transition probabilities for trivalent holmium in  LaF3  and  YAlO3 ,” J. Chem. Phys. 57, 562–567 (1972).
    [Crossref]
  7. S. A. Payne, J. A. Caird, L. L. Chase, L. K. Smith, N. D. Nielsen, and W. F. Krupke, “Spectroscopy and gain measurements of  Nd3+  in  SrF2  and other fluorite structure hosts,” J. Opt. Soc. Am. B 8, 726–740 (1991).
    [Crossref]
  8. T. S. Lomheim and L. G. DeShazer, “Optical-absorption intensities of trivalent neodymium in the uniaxial crystal yttrium orthovanadate,” J. Appl. Phys. 49, 5517–5522 (1978).
    [Crossref]
  9. W. T. Carnall, G. L. Goodman, R. S. Rana, P. Vandevelde, L. Fluyt, and C. Gorller-Walrand, “Crystal field analysis of  Ho 3+-LaF3  and  Er 3+-LaF3  in  C2V  symmetry,” J. Less-Common Met. 116, 17–29 (1986).
    [Crossref]
  10. W. T. Carnall, H. M. Crosswhite, and H. Crosswhite, “Energy level structure and transition probabilities of the trivalent lanthanides in LaF3,” (Chemistry Division, Argonne National Laboratory, Argonne, Illinois, 1978).
  11. M. J. Weber, “Probabilities for radiative and nonradiative decay of  Er3+  in  LaF3 ,” Phys. Rev. 157, 262–272 (1967).
    [Crossref]
  12. B. R. Reddy, S. Nash-Stevenson, and P. Venkateswarlu, “Near-infrared to blue energy upconversion in  LaF 3  :Ho3+ ,” J. Opt. Soc. Am. B 11, 923–927 (1994).
    [Crossref]
  13. D. J. Zalucha, J. C. Wright, and F. K. Fong, “Energy upconversion in  LaF 3  :Pr3+ ,” J. Chem. Phys. 59, 997–1001 (1973).
    [Crossref]
  14. B. R. Reddy and P. Venkateswarlu, “Energy upconversion in  LaF 3  :Nd3+ ,” J. Chem. Phys. 79, 5845–5850 (1983).
    [Crossref]
  15. M. A. Chammaro and R. Cases, “Energy upconversion in (Yb, Ho) and (Yb, Tm) doped fluorohafnate glasses,” J. Lumin. 42, 267–274 (1988).
    [Crossref]
  16. L. F. Johnson, H. J. Guggenheim, T. C. Rich, and F. W. Ostermayer, “Infrared-to-visible conversion by rare-earth ions in crystals,” J. Appl. Phys. 43, 1125–1138 (1972).
    [Crossref]
  17. J. Y. Allain, M. Monerie, and H. Poignant, “Room temperature cw tunable green upconversion holmium fiber laser,” Electron. Lett. 26, 261–263 (1990).
    [Crossref]
  18. K. Hirao, S. Kishimoto, K. Tanaka, S. Tanabe, and N. Soga, “Upconversion fluorescence of  Ho3+  in  TeO2 -based glasses,” J. Non-Cryst. Solids 139, 151–156 (1992).
    [Crossref]
  19. R. K. Watts, “Infrared to visible conversion in  LiYF 4  :Yb , Ho,” J. Chem. Phys. 53, 3552–3557 (1970).
    [Crossref]

1994 (1)

1992 (2)

M. Mujaji, G. D. Jones, and R. W. G. Syme, “Polarization study and crystal field analysis of the laser selective excitation spectra of  Ho3+  ions in  CaF2  and  SrF2  crystals,” Phys. Rev. B 46, 14398–14410 (1992).
[Crossref]

K. Hirao, S. Kishimoto, K. Tanaka, S. Tanabe, and N. Soga, “Upconversion fluorescence of  Ho3+  in  TeO2 -based glasses,” J. Non-Cryst. Solids 139, 151–156 (1992).
[Crossref]

1991 (2)

1990 (1)

J. Y. Allain, M. Monerie, and H. Poignant, “Room temperature cw tunable green upconversion holmium fiber laser,” Electron. Lett. 26, 261–263 (1990).
[Crossref]

1988 (1)

M. A. Chammaro and R. Cases, “Energy upconversion in (Yb, Ho) and (Yb, Tm) doped fluorohafnate glasses,” J. Lumin. 42, 267–274 (1988).
[Crossref]

1986 (1)

W. T. Carnall, G. L. Goodman, R. S. Rana, P. Vandevelde, L. Fluyt, and C. Gorller-Walrand, “Crystal field analysis of  Ho 3+-LaF3  and  Er 3+-LaF3  in  C2V  symmetry,” J. Less-Common Met. 116, 17–29 (1986).
[Crossref]

1983 (2)

B. R. Reddy and P. Venkateswarlu, “Energy upconversion in  LaF 3  :Nd3+ ,” J. Chem. Phys. 79, 5845–5850 (1983).
[Crossref]

D. N. Rao, J. Prasad, and P. N. Prasad, “Two-photon excitation of  Ho3+  in the  CaF2 ,  SrF2 , and  CdF2  lattices,” Phys. Rev. B 28, 20–23 (1983).
[Crossref]

1979 (1)

M. B. Seelbinder and J. C. Wright, “Site-selective spectroscopy of  CaF 2  :Ho3+ ,” Phys. Rev. B 10, 4308–4320 (1979).
[Crossref]

1978 (1)

T. S. Lomheim and L. G. DeShazer, “Optical-absorption intensities of trivalent neodymium in the uniaxial crystal yttrium orthovanadate,” J. Appl. Phys. 49, 5517–5522 (1978).
[Crossref]

1973 (1)

D. J. Zalucha, J. C. Wright, and F. K. Fong, “Energy upconversion in  LaF 3  :Pr3+ ,” J. Chem. Phys. 59, 997–1001 (1973).
[Crossref]

1972 (2)

L. F. Johnson, H. J. Guggenheim, T. C. Rich, and F. W. Ostermayer, “Infrared-to-visible conversion by rare-earth ions in crystals,” J. Appl. Phys. 43, 1125–1138 (1972).
[Crossref]

M. J. Weber, B. H. Matsinger, V. L. Donlan, and G. Surratt, “Optical transition probabilities for trivalent holmium in  LaF3  and  YAlO3 ,” J. Chem. Phys. 57, 562–567 (1972).
[Crossref]

1970 (1)

R. K. Watts, “Infrared to visible conversion in  LiYF 4  :Yb , Ho,” J. Chem. Phys. 53, 3552–3557 (1970).
[Crossref]

1967 (1)

M. J. Weber, “Probabilities for radiative and nonradiative decay of  Er3+  in  LaF3 ,” Phys. Rev. 157, 262–272 (1967).
[Crossref]

1966 (1)

W. F. Krupke, “Optical absorption and fluorescence intensities in several rare-earth doped  Y 2  O3  and  LaF3  single crystals,” Phys. Rev. 145, 325–337 (1966).
[Crossref]

Allain, J. Y.

J. Y. Allain, M. Monerie, and H. Poignant, “Room temperature cw tunable green upconversion holmium fiber laser,” Electron. Lett. 26, 261–263 (1990).
[Crossref]

Caird, J. A.

Carnall, W. T.

W. T. Carnall, G. L. Goodman, R. S. Rana, P. Vandevelde, L. Fluyt, and C. Gorller-Walrand, “Crystal field analysis of  Ho 3+-LaF3  and  Er 3+-LaF3  in  C2V  symmetry,” J. Less-Common Met. 116, 17–29 (1986).
[Crossref]

W. T. Carnall, H. M. Crosswhite, and H. Crosswhite, “Energy level structure and transition probabilities of the trivalent lanthanides in LaF3,” (Chemistry Division, Argonne National Laboratory, Argonne, Illinois, 1978).

Cases, R.

M. A. Chammaro and R. Cases, “Energy upconversion in (Yb, Ho) and (Yb, Tm) doped fluorohafnate glasses,” J. Lumin. 42, 267–274 (1988).
[Crossref]

Chammaro, M. A.

M. A. Chammaro and R. Cases, “Energy upconversion in (Yb, Ho) and (Yb, Tm) doped fluorohafnate glasses,” J. Lumin. 42, 267–274 (1988).
[Crossref]

Chase, L. L.

Crosswhite, H.

W. T. Carnall, H. M. Crosswhite, and H. Crosswhite, “Energy level structure and transition probabilities of the trivalent lanthanides in LaF3,” (Chemistry Division, Argonne National Laboratory, Argonne, Illinois, 1978).

Crosswhite, H. M.

W. T. Carnall, H. M. Crosswhite, and H. Crosswhite, “Energy level structure and transition probabilities of the trivalent lanthanides in LaF3,” (Chemistry Division, Argonne National Laboratory, Argonne, Illinois, 1978).

DeShazer, L. G.

T. S. Lomheim and L. G. DeShazer, “Optical-absorption intensities of trivalent neodymium in the uniaxial crystal yttrium orthovanadate,” J. Appl. Phys. 49, 5517–5522 (1978).
[Crossref]

Donlan, V. L.

M. J. Weber, B. H. Matsinger, V. L. Donlan, and G. Surratt, “Optical transition probabilities for trivalent holmium in  LaF3  and  YAlO3 ,” J. Chem. Phys. 57, 562–567 (1972).
[Crossref]

Fluyt, L.

W. T. Carnall, G. L. Goodman, R. S. Rana, P. Vandevelde, L. Fluyt, and C. Gorller-Walrand, “Crystal field analysis of  Ho 3+-LaF3  and  Er 3+-LaF3  in  C2V  symmetry,” J. Less-Common Met. 116, 17–29 (1986).
[Crossref]

Fong, F. K.

D. J. Zalucha, J. C. Wright, and F. K. Fong, “Energy upconversion in  LaF 3  :Pr3+ ,” J. Chem. Phys. 59, 997–1001 (1973).
[Crossref]

Goodman, G. L.

W. T. Carnall, G. L. Goodman, R. S. Rana, P. Vandevelde, L. Fluyt, and C. Gorller-Walrand, “Crystal field analysis of  Ho 3+-LaF3  and  Er 3+-LaF3  in  C2V  symmetry,” J. Less-Common Met. 116, 17–29 (1986).
[Crossref]

Gorller-Walrand, C.

W. T. Carnall, G. L. Goodman, R. S. Rana, P. Vandevelde, L. Fluyt, and C. Gorller-Walrand, “Crystal field analysis of  Ho 3+-LaF3  and  Er 3+-LaF3  in  C2V  symmetry,” J. Less-Common Met. 116, 17–29 (1986).
[Crossref]

Guggenheim, H. J.

L. F. Johnson, H. J. Guggenheim, T. C. Rich, and F. W. Ostermayer, “Infrared-to-visible conversion by rare-earth ions in crystals,” J. Appl. Phys. 43, 1125–1138 (1972).
[Crossref]

Hirao, K.

K. Hirao, S. Kishimoto, K. Tanaka, S. Tanabe, and N. Soga, “Upconversion fluorescence of  Ho3+  in  TeO2 -based glasses,” J. Non-Cryst. Solids 139, 151–156 (1992).
[Crossref]

Johnson, L. F.

L. F. Johnson, H. J. Guggenheim, T. C. Rich, and F. W. Ostermayer, “Infrared-to-visible conversion by rare-earth ions in crystals,” J. Appl. Phys. 43, 1125–1138 (1972).
[Crossref]

Jones, G. D.

M. Mujaji, G. D. Jones, and R. W. G. Syme, “Polarization study and crystal field analysis of the laser selective excitation spectra of  Ho3+  ions in  CaF2  and  SrF2  crystals,” Phys. Rev. B 46, 14398–14410 (1992).
[Crossref]

Kee, S. C.

S. H. Tang, H. Y. Zhang, M. H. Kuok, and S. C. Kee, “Fluorescence and upconversion in  CaF 2  :Ho3+ ,” Phys. Status Solidi B 168, 351–360 (1991).
[Crossref]

Kishimoto, S.

K. Hirao, S. Kishimoto, K. Tanaka, S. Tanabe, and N. Soga, “Upconversion fluorescence of  Ho3+  in  TeO2 -based glasses,” J. Non-Cryst. Solids 139, 151–156 (1992).
[Crossref]

Krupke, W. F.

S. A. Payne, J. A. Caird, L. L. Chase, L. K. Smith, N. D. Nielsen, and W. F. Krupke, “Spectroscopy and gain measurements of  Nd3+  in  SrF2  and other fluorite structure hosts,” J. Opt. Soc. Am. B 8, 726–740 (1991).
[Crossref]

W. F. Krupke, “Optical absorption and fluorescence intensities in several rare-earth doped  Y 2  O3  and  LaF3  single crystals,” Phys. Rev. 145, 325–337 (1966).
[Crossref]

Kuok, M. H.

S. H. Tang, H. Y. Zhang, M. H. Kuok, and S. C. Kee, “Fluorescence and upconversion in  CaF 2  :Ho3+ ,” Phys. Status Solidi B 168, 351–360 (1991).
[Crossref]

Lomheim, T. S.

T. S. Lomheim and L. G. DeShazer, “Optical-absorption intensities of trivalent neodymium in the uniaxial crystal yttrium orthovanadate,” J. Appl. Phys. 49, 5517–5522 (1978).
[Crossref]

Matsinger, B. H.

M. J. Weber, B. H. Matsinger, V. L. Donlan, and G. Surratt, “Optical transition probabilities for trivalent holmium in  LaF3  and  YAlO3 ,” J. Chem. Phys. 57, 562–567 (1972).
[Crossref]

Monerie, M.

J. Y. Allain, M. Monerie, and H. Poignant, “Room temperature cw tunable green upconversion holmium fiber laser,” Electron. Lett. 26, 261–263 (1990).
[Crossref]

Mujaji, M.

M. Mujaji, G. D. Jones, and R. W. G. Syme, “Polarization study and crystal field analysis of the laser selective excitation spectra of  Ho3+  ions in  CaF2  and  SrF2  crystals,” Phys. Rev. B 46, 14398–14410 (1992).
[Crossref]

Nash-Stevenson, S.

Nielsen, N. D.

Ostermayer, F. W.

L. F. Johnson, H. J. Guggenheim, T. C. Rich, and F. W. Ostermayer, “Infrared-to-visible conversion by rare-earth ions in crystals,” J. Appl. Phys. 43, 1125–1138 (1972).
[Crossref]

Payne, S. A.

Poignant, H.

J. Y. Allain, M. Monerie, and H. Poignant, “Room temperature cw tunable green upconversion holmium fiber laser,” Electron. Lett. 26, 261–263 (1990).
[Crossref]

Prasad, J.

D. N. Rao, J. Prasad, and P. N. Prasad, “Two-photon excitation of  Ho3+  in the  CaF2 ,  SrF2 , and  CdF2  lattices,” Phys. Rev. B 28, 20–23 (1983).
[Crossref]

Prasad, P. N.

D. N. Rao, J. Prasad, and P. N. Prasad, “Two-photon excitation of  Ho3+  in the  CaF2 ,  SrF2 , and  CdF2  lattices,” Phys. Rev. B 28, 20–23 (1983).
[Crossref]

Rana, R. S.

W. T. Carnall, G. L. Goodman, R. S. Rana, P. Vandevelde, L. Fluyt, and C. Gorller-Walrand, “Crystal field analysis of  Ho 3+-LaF3  and  Er 3+-LaF3  in  C2V  symmetry,” J. Less-Common Met. 116, 17–29 (1986).
[Crossref]

Rao, D. N.

D. N. Rao, J. Prasad, and P. N. Prasad, “Two-photon excitation of  Ho3+  in the  CaF2 ,  SrF2 , and  CdF2  lattices,” Phys. Rev. B 28, 20–23 (1983).
[Crossref]

Reddy, B. R.

B. R. Reddy, S. Nash-Stevenson, and P. Venkateswarlu, “Near-infrared to blue energy upconversion in  LaF 3  :Ho3+ ,” J. Opt. Soc. Am. B 11, 923–927 (1994).
[Crossref]

B. R. Reddy and P. Venkateswarlu, “Energy upconversion in  LaF 3  :Nd3+ ,” J. Chem. Phys. 79, 5845–5850 (1983).
[Crossref]

Rich, T. C.

L. F. Johnson, H. J. Guggenheim, T. C. Rich, and F. W. Ostermayer, “Infrared-to-visible conversion by rare-earth ions in crystals,” J. Appl. Phys. 43, 1125–1138 (1972).
[Crossref]

Seelbinder, M. B.

M. B. Seelbinder and J. C. Wright, “Site-selective spectroscopy of  CaF 2  :Ho3+ ,” Phys. Rev. B 10, 4308–4320 (1979).
[Crossref]

Smith, L. K.

Soga, N.

K. Hirao, S. Kishimoto, K. Tanaka, S. Tanabe, and N. Soga, “Upconversion fluorescence of  Ho3+  in  TeO2 -based glasses,” J. Non-Cryst. Solids 139, 151–156 (1992).
[Crossref]

Surratt, G.

M. J. Weber, B. H. Matsinger, V. L. Donlan, and G. Surratt, “Optical transition probabilities for trivalent holmium in  LaF3  and  YAlO3 ,” J. Chem. Phys. 57, 562–567 (1972).
[Crossref]

Syme, R. W. G.

M. Mujaji, G. D. Jones, and R. W. G. Syme, “Polarization study and crystal field analysis of the laser selective excitation spectra of  Ho3+  ions in  CaF2  and  SrF2  crystals,” Phys. Rev. B 46, 14398–14410 (1992).
[Crossref]

Tanabe, S.

K. Hirao, S. Kishimoto, K. Tanaka, S. Tanabe, and N. Soga, “Upconversion fluorescence of  Ho3+  in  TeO2 -based glasses,” J. Non-Cryst. Solids 139, 151–156 (1992).
[Crossref]

Tanaka, K.

K. Hirao, S. Kishimoto, K. Tanaka, S. Tanabe, and N. Soga, “Upconversion fluorescence of  Ho3+  in  TeO2 -based glasses,” J. Non-Cryst. Solids 139, 151–156 (1992).
[Crossref]

Tang, S. H.

S. H. Tang, H. Y. Zhang, M. H. Kuok, and S. C. Kee, “Fluorescence and upconversion in  CaF 2  :Ho3+ ,” Phys. Status Solidi B 168, 351–360 (1991).
[Crossref]

Vandevelde, P.

W. T. Carnall, G. L. Goodman, R. S. Rana, P. Vandevelde, L. Fluyt, and C. Gorller-Walrand, “Crystal field analysis of  Ho 3+-LaF3  and  Er 3+-LaF3  in  C2V  symmetry,” J. Less-Common Met. 116, 17–29 (1986).
[Crossref]

Venkateswarlu, P.

B. R. Reddy, S. Nash-Stevenson, and P. Venkateswarlu, “Near-infrared to blue energy upconversion in  LaF 3  :Ho3+ ,” J. Opt. Soc. Am. B 11, 923–927 (1994).
[Crossref]

B. R. Reddy and P. Venkateswarlu, “Energy upconversion in  LaF 3  :Nd3+ ,” J. Chem. Phys. 79, 5845–5850 (1983).
[Crossref]

Watts, R. K.

R. K. Watts, “Infrared to visible conversion in  LiYF 4  :Yb , Ho,” J. Chem. Phys. 53, 3552–3557 (1970).
[Crossref]

Weber, M. J.

M. J. Weber, B. H. Matsinger, V. L. Donlan, and G. Surratt, “Optical transition probabilities for trivalent holmium in  LaF3  and  YAlO3 ,” J. Chem. Phys. 57, 562–567 (1972).
[Crossref]

M. J. Weber, “Probabilities for radiative and nonradiative decay of  Er3+  in  LaF3 ,” Phys. Rev. 157, 262–272 (1967).
[Crossref]

Wright, J. C.

M. B. Seelbinder and J. C. Wright, “Site-selective spectroscopy of  CaF 2  :Ho3+ ,” Phys. Rev. B 10, 4308–4320 (1979).
[Crossref]

D. J. Zalucha, J. C. Wright, and F. K. Fong, “Energy upconversion in  LaF 3  :Pr3+ ,” J. Chem. Phys. 59, 997–1001 (1973).
[Crossref]

Zalucha, D. J.

D. J. Zalucha, J. C. Wright, and F. K. Fong, “Energy upconversion in  LaF 3  :Pr3+ ,” J. Chem. Phys. 59, 997–1001 (1973).
[Crossref]

Zhang, H. Y.

S. H. Tang, H. Y. Zhang, M. H. Kuok, and S. C. Kee, “Fluorescence and upconversion in  CaF 2  :Ho3+ ,” Phys. Status Solidi B 168, 351–360 (1991).
[Crossref]

Electron. Lett. (1)

J. Y. Allain, M. Monerie, and H. Poignant, “Room temperature cw tunable green upconversion holmium fiber laser,” Electron. Lett. 26, 261–263 (1990).
[Crossref]

J. Appl. Phys. (2)

L. F. Johnson, H. J. Guggenheim, T. C. Rich, and F. W. Ostermayer, “Infrared-to-visible conversion by rare-earth ions in crystals,” J. Appl. Phys. 43, 1125–1138 (1972).
[Crossref]

T. S. Lomheim and L. G. DeShazer, “Optical-absorption intensities of trivalent neodymium in the uniaxial crystal yttrium orthovanadate,” J. Appl. Phys. 49, 5517–5522 (1978).
[Crossref]

J. Chem. Phys. (4)

M. J. Weber, B. H. Matsinger, V. L. Donlan, and G. Surratt, “Optical transition probabilities for trivalent holmium in  LaF3  and  YAlO3 ,” J. Chem. Phys. 57, 562–567 (1972).
[Crossref]

D. J. Zalucha, J. C. Wright, and F. K. Fong, “Energy upconversion in  LaF 3  :Pr3+ ,” J. Chem. Phys. 59, 997–1001 (1973).
[Crossref]

B. R. Reddy and P. Venkateswarlu, “Energy upconversion in  LaF 3  :Nd3+ ,” J. Chem. Phys. 79, 5845–5850 (1983).
[Crossref]

R. K. Watts, “Infrared to visible conversion in  LiYF 4  :Yb , Ho,” J. Chem. Phys. 53, 3552–3557 (1970).
[Crossref]

J. Less-Common Met. (1)

W. T. Carnall, G. L. Goodman, R. S. Rana, P. Vandevelde, L. Fluyt, and C. Gorller-Walrand, “Crystal field analysis of  Ho 3+-LaF3  and  Er 3+-LaF3  in  C2V  symmetry,” J. Less-Common Met. 116, 17–29 (1986).
[Crossref]

J. Lumin. (1)

M. A. Chammaro and R. Cases, “Energy upconversion in (Yb, Ho) and (Yb, Tm) doped fluorohafnate glasses,” J. Lumin. 42, 267–274 (1988).
[Crossref]

J. Non-Cryst. Solids (1)

K. Hirao, S. Kishimoto, K. Tanaka, S. Tanabe, and N. Soga, “Upconversion fluorescence of  Ho3+  in  TeO2 -based glasses,” J. Non-Cryst. Solids 139, 151–156 (1992).
[Crossref]

J. Opt. Soc. Am. B (2)

Phys. Rev. (2)

W. F. Krupke, “Optical absorption and fluorescence intensities in several rare-earth doped  Y 2  O3  and  LaF3  single crystals,” Phys. Rev. 145, 325–337 (1966).
[Crossref]

M. J. Weber, “Probabilities for radiative and nonradiative decay of  Er3+  in  LaF3 ,” Phys. Rev. 157, 262–272 (1967).
[Crossref]

Phys. Rev. B (3)

M. B. Seelbinder and J. C. Wright, “Site-selective spectroscopy of  CaF 2  :Ho3+ ,” Phys. Rev. B 10, 4308–4320 (1979).
[Crossref]

M. Mujaji, G. D. Jones, and R. W. G. Syme, “Polarization study and crystal field analysis of the laser selective excitation spectra of  Ho3+  ions in  CaF2  and  SrF2  crystals,” Phys. Rev. B 46, 14398–14410 (1992).
[Crossref]

D. N. Rao, J. Prasad, and P. N. Prasad, “Two-photon excitation of  Ho3+  in the  CaF2 ,  SrF2 , and  CdF2  lattices,” Phys. Rev. B 28, 20–23 (1983).
[Crossref]

Phys. Status Solidi B (1)

S. H. Tang, H. Y. Zhang, M. H. Kuok, and S. C. Kee, “Fluorescence and upconversion in  CaF 2  :Ho3+ ,” Phys. Status Solidi B 168, 351–360 (1991).
[Crossref]

Other (1)

W. T. Carnall, H. M. Crosswhite, and H. Crosswhite, “Energy level structure and transition probabilities of the trivalent lanthanides in LaF3,” (Chemistry Division, Argonne National Laboratory, Argonne, Illinois, 1978).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Absorption spectrum of CaF2:Ho3+.

Fig. 2
Fig. 2

Partial energy-level diagram of Ho3+ in CaF2. Upward arrows indicate laser-excitation transitions, and downward arrows indicate emission transitions. The dashed-line energy level (5 G2) was not found in our absorption measurements, but its position was taken from Ref. 9.

Fig. 3
Fig. 3

Energy-upconversion spectrum obtained on exciting the sample with a 637.5-nm laser beam that is resonant with the  5I8 5F5 transition. The actual peak intensities (a.u.) are obtained by multiplying the peak areas by the numbers shown at the bottom. Spectral data are not corrected for spectral response of the system.

Fig. 4
Fig. 4

Upconversion spectrum obtained in the spectral region 400–600 nm on excitation of the sample with a 637.5-nm laser beam.

Fig. 5
Fig. 5

Fluorescence spectrum obtained in the spectral region 700–900 nm on excitation of the ions in site A, with a 637.5-nm laser beam. The peaks identified with an asterisk are absent for other excitation wavelengths (e.g., 620 nm).

Fig. 6
Fig. 6

Energy-upconversion spectrum obtained from CaF2:Ho3+ on resonant excitation of the 5 I5 state with an 890-nm laser. The actual peak intensities (a.u.) are obtained by multiplying the peak areas with the numbers shown at the bottom. Spectral data are not corrected for spectral response of the system.

Fig. 7
Fig. 7

Partial energy-level diagram of Ho3+ in LaF3 and CaF2 crystals showing the upconversion emission. CaF2:Ho3+ showed upconversion when the laser was tuned in the range 890–900 nm, but 650-nm emission was maximum for 890-nm laser excitation.

Tables (2)

Tables Icon

Table 1 Measured and Calculated Absorption Cross Sections

Tables Icon

Table 2 Predicted Probabilities and Lifetimes for Radiative Transitions

Equations (13)

Equations on this page are rendered with MathJax. Learn more.

σdλλ=8π3e23ch(2J+1)(η2+2)2S9η,
S=tΩt|J|U(t)|J|2,t=2, 4, 6
σ=ln[I0(λ)/I(λ)]Nx=2.303×O.D.Nx,
A(J,J)=64π4e2(2J+1)3hη(η2+2)291λ3×tΩt|αSLJ|U(t)|αSLJ|2,
t=2, 4, 6.
A(J;J)=64π4η33hλ3(2J+1)αSLJ||M||αSLJ2,
M=(-e/2mc)(L+2S),
τr=1jAij,
ηq=τexptτr,
τexpt-1=jAij(radiative)+jAij(nonradiative).
ηu=green-lightemissionintensityinfrared-lightabsorptionintensity=8.1%,
ηq=emissionintensityabsorptionintensity=τexptτr=0.6,
ηu=Violetintensity(390nm)blue-emissionintensity×blue-emissionintensity(485nm)red-absorptionintensity.

Metrics