Abstract

Two stages of type II optical parametric amplification of a white-light continuum are used for efficient generation of ultrashort (30–50-fs) pulses at kilohertz repetition rates. Various nonlinear techniques can be used to cover the range from 12 µm to 280 nm. The amplitude and the phase of the generated UV pulses are characterized by use of frequency-resolved optical gating.

© 1997 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Nisoli, S. De Silvestri, V. Magni, O. Svelto, R. Danielius, A. Piskarskas, G. Valulis, and A. Varanavicius, “Highly efficient parametric conversion of femtosecond Ti:sapphire laser pulses at 1 kHz,” Opt. Lett. 19, 1973–1975 (1994).
    [CrossRef] [PubMed]
  2. F. Seifert, V. Petrov, and M. Woerner, “Solid-state laser system for generation of midinfrared femtosecond pulses tunable from 3.3 to 10 μm,” Opt. Lett. 19, 2009–2011 (1994).
    [CrossRef] [PubMed]
  3. V. V. Yakovlev, B. Kohler, and K. R. Wilson, “Broadly tunable 30-fs pulses produced by optical parametric amplification,” Opt. Lett. 19, 2000–2002 (1994).
    [CrossRef] [PubMed]
  4. M. K. Reed, M. S. Armas, M. K. Steiner-Shepard, and D. K. Negus, “30-fs pulses tunable across the visible with a 100-kHz Ti:sapphire regenerative amplifier,” Opt. Lett. 20, 605–607 (1995).
    [CrossRef] [PubMed]
  5. S. R. Greenfield and M. R. Wasielewski, “Near-transform-limited visible and near-IR femtosecond pulses from optical parametric amplification using Type II beta-barium borate,” Opt. Lett. 20, 1394–1396 (1995).
    [CrossRef] [PubMed]
  6. F. Salin, F. Estable, and F. Saviot, “Tunable femtosecond sources and optical parametric generators,” in Ultrafast Phenomena IX, P. F. Barbara, W. H. Knox, G. A. Mourou, and A. H. Zewail, eds. (Springer-Verlag, New York, 1995), pp. 194–195.
  7. T. S. Sosnowski, P. B. Stephens, and T. B. Norris, “Production of 30-fs pulses tunable through the visible spectral region by a new technique in optical parametric amplification,” Opt. Lett. 21, 140–142 (1996).
    [CrossRef] [PubMed]
  8. B. Kohler, V. V. Yakovlev, J. Che, J. L. Krause, M. Messina, K. R. Wilson, N. Schwentner, R. M. Whitnell, and Y. Yan, “Quantum control of wave packet evolution with tailored femtosecond pulses,” Phys. Rev. Lett. 74, 3360–3363 (1995).
    [CrossRef] [PubMed]
  9. R. Trebino and D. J. Kane “Using phase retrieval to measure and intensity and phase of ultrashort pulses—frequency-resolved optical gating,” J. Opt. Soc. Am. A 10, 1101–1111 (1993).
    [CrossRef]
  10. B. Kohler, V. V. Yakovlev, K. R. Wilson, J. Squier, K. W. DeLong, and R. Trebino, “Phase and intensity characterization of femtosecond pulses from a chirped-pulse amplifier by frequency-resolved optical gating,” Opt. Lett. 20, 483–485 (1995).
    [CrossRef] [PubMed]
  11. S. A. Akhmanov, A. S. Chirkin, K. N. Drabovich, A. I. Kovrigin, R. V. Khokhlov, and A. P. Sukhorukov, “Nonstationary nonlinear optical effects and ultrashort light pulse formation,” IEEE J. Quantum Electron. QE-4, 598–605 (1968).
    [CrossRef]
  12. R. Danielius, A. Piskarskas, A. Stabinis, G. P. Banfi, P. Di Tripani, and R. Righini, “Traveling-wave parametric generation of widely tunable, highly coherent femtosecond light pulses,” J. Opt. Soc. Am. B 10, 2222–2232 (1993).
    [CrossRef]
  13. J. V. Rudd, G. Korn, S. Kane, J. Squier, G. Mourou, and P. Bado, “Chirped-pulse amplification of 55-fs pulses at a 1-kHz repetition rate in Ti:Al2O3 regenerative amplifier,” Opt. Lett. 18, 2044–2046 (1993).
    [CrossRef]

1996

1995

1994

1993

1968

S. A. Akhmanov, A. S. Chirkin, K. N. Drabovich, A. I. Kovrigin, R. V. Khokhlov, and A. P. Sukhorukov, “Nonstationary nonlinear optical effects and ultrashort light pulse formation,” IEEE J. Quantum Electron. QE-4, 598–605 (1968).
[CrossRef]

Akhmanov, S. A.

S. A. Akhmanov, A. S. Chirkin, K. N. Drabovich, A. I. Kovrigin, R. V. Khokhlov, and A. P. Sukhorukov, “Nonstationary nonlinear optical effects and ultrashort light pulse formation,” IEEE J. Quantum Electron. QE-4, 598–605 (1968).
[CrossRef]

Armas, M. S.

Bado, P.

Banfi, G. P.

Che, J.

B. Kohler, V. V. Yakovlev, J. Che, J. L. Krause, M. Messina, K. R. Wilson, N. Schwentner, R. M. Whitnell, and Y. Yan, “Quantum control of wave packet evolution with tailored femtosecond pulses,” Phys. Rev. Lett. 74, 3360–3363 (1995).
[CrossRef] [PubMed]

Chirkin, A. S.

S. A. Akhmanov, A. S. Chirkin, K. N. Drabovich, A. I. Kovrigin, R. V. Khokhlov, and A. P. Sukhorukov, “Nonstationary nonlinear optical effects and ultrashort light pulse formation,” IEEE J. Quantum Electron. QE-4, 598–605 (1968).
[CrossRef]

Danielius, R.

De Silvestri, S.

DeLong, K. W.

Di Tripani, P.

Drabovich, K. N.

S. A. Akhmanov, A. S. Chirkin, K. N. Drabovich, A. I. Kovrigin, R. V. Khokhlov, and A. P. Sukhorukov, “Nonstationary nonlinear optical effects and ultrashort light pulse formation,” IEEE J. Quantum Electron. QE-4, 598–605 (1968).
[CrossRef]

Greenfield, S. R.

Kane, D. J.

Kane, S.

Khokhlov, R. V.

S. A. Akhmanov, A. S. Chirkin, K. N. Drabovich, A. I. Kovrigin, R. V. Khokhlov, and A. P. Sukhorukov, “Nonstationary nonlinear optical effects and ultrashort light pulse formation,” IEEE J. Quantum Electron. QE-4, 598–605 (1968).
[CrossRef]

Kohler, B.

Korn, G.

Kovrigin, A. I.

S. A. Akhmanov, A. S. Chirkin, K. N. Drabovich, A. I. Kovrigin, R. V. Khokhlov, and A. P. Sukhorukov, “Nonstationary nonlinear optical effects and ultrashort light pulse formation,” IEEE J. Quantum Electron. QE-4, 598–605 (1968).
[CrossRef]

Krause, J. L.

B. Kohler, V. V. Yakovlev, J. Che, J. L. Krause, M. Messina, K. R. Wilson, N. Schwentner, R. M. Whitnell, and Y. Yan, “Quantum control of wave packet evolution with tailored femtosecond pulses,” Phys. Rev. Lett. 74, 3360–3363 (1995).
[CrossRef] [PubMed]

Magni, V.

Messina, M.

B. Kohler, V. V. Yakovlev, J. Che, J. L. Krause, M. Messina, K. R. Wilson, N. Schwentner, R. M. Whitnell, and Y. Yan, “Quantum control of wave packet evolution with tailored femtosecond pulses,” Phys. Rev. Lett. 74, 3360–3363 (1995).
[CrossRef] [PubMed]

Mourou, G.

Negus, D. K.

Nisoli, M.

Norris, T. B.

Petrov, V.

Piskarskas, A.

Reed, M. K.

Righini, R.

Rudd, J. V.

Schwentner, N.

B. Kohler, V. V. Yakovlev, J. Che, J. L. Krause, M. Messina, K. R. Wilson, N. Schwentner, R. M. Whitnell, and Y. Yan, “Quantum control of wave packet evolution with tailored femtosecond pulses,” Phys. Rev. Lett. 74, 3360–3363 (1995).
[CrossRef] [PubMed]

Seifert, F.

Sosnowski, T. S.

Squier, J.

Stabinis, A.

Steiner-Shepard, M. K.

Stephens, P. B.

Sukhorukov, A. P.

S. A. Akhmanov, A. S. Chirkin, K. N. Drabovich, A. I. Kovrigin, R. V. Khokhlov, and A. P. Sukhorukov, “Nonstationary nonlinear optical effects and ultrashort light pulse formation,” IEEE J. Quantum Electron. QE-4, 598–605 (1968).
[CrossRef]

Svelto, O.

Trebino, R.

Valulis, G.

Varanavicius, A.

Wasielewski, M. R.

Whitnell, R. M.

B. Kohler, V. V. Yakovlev, J. Che, J. L. Krause, M. Messina, K. R. Wilson, N. Schwentner, R. M. Whitnell, and Y. Yan, “Quantum control of wave packet evolution with tailored femtosecond pulses,” Phys. Rev. Lett. 74, 3360–3363 (1995).
[CrossRef] [PubMed]

Wilson, K. R.

Woerner, M.

Yakovlev, V. V.

Yan, Y.

B. Kohler, V. V. Yakovlev, J. Che, J. L. Krause, M. Messina, K. R. Wilson, N. Schwentner, R. M. Whitnell, and Y. Yan, “Quantum control of wave packet evolution with tailored femtosecond pulses,” Phys. Rev. Lett. 74, 3360–3363 (1995).
[CrossRef] [PubMed]

IEEE J. Quantum Electron.

S. A. Akhmanov, A. S. Chirkin, K. N. Drabovich, A. I. Kovrigin, R. V. Khokhlov, and A. P. Sukhorukov, “Nonstationary nonlinear optical effects and ultrashort light pulse formation,” IEEE J. Quantum Electron. QE-4, 598–605 (1968).
[CrossRef]

J. Opt. Soc. Am. A

J. Opt. Soc. Am. B

Opt. Lett.

M. Nisoli, S. De Silvestri, V. Magni, O. Svelto, R. Danielius, A. Piskarskas, G. Valulis, and A. Varanavicius, “Highly efficient parametric conversion of femtosecond Ti:sapphire laser pulses at 1 kHz,” Opt. Lett. 19, 1973–1975 (1994).
[CrossRef] [PubMed]

V. V. Yakovlev, B. Kohler, and K. R. Wilson, “Broadly tunable 30-fs pulses produced by optical parametric amplification,” Opt. Lett. 19, 2000–2002 (1994).
[CrossRef] [PubMed]

F. Seifert, V. Petrov, and M. Woerner, “Solid-state laser system for generation of midinfrared femtosecond pulses tunable from 3.3 to 10 μm,” Opt. Lett. 19, 2009–2011 (1994).
[CrossRef] [PubMed]

B. Kohler, V. V. Yakovlev, K. R. Wilson, J. Squier, K. W. DeLong, and R. Trebino, “Phase and intensity characterization of femtosecond pulses from a chirped-pulse amplifier by frequency-resolved optical gating,” Opt. Lett. 20, 483–485 (1995).
[CrossRef] [PubMed]

M. K. Reed, M. S. Armas, M. K. Steiner-Shepard, and D. K. Negus, “30-fs pulses tunable across the visible with a 100-kHz Ti:sapphire regenerative amplifier,” Opt. Lett. 20, 605–607 (1995).
[CrossRef] [PubMed]

S. R. Greenfield and M. R. Wasielewski, “Near-transform-limited visible and near-IR femtosecond pulses from optical parametric amplification using Type II beta-barium borate,” Opt. Lett. 20, 1394–1396 (1995).
[CrossRef] [PubMed]

T. S. Sosnowski, P. B. Stephens, and T. B. Norris, “Production of 30-fs pulses tunable through the visible spectral region by a new technique in optical parametric amplification,” Opt. Lett. 21, 140–142 (1996).
[CrossRef] [PubMed]

J. V. Rudd, G. Korn, S. Kane, J. Squier, G. Mourou, and P. Bado, “Chirped-pulse amplification of 55-fs pulses at a 1-kHz repetition rate in Ti:Al2O3 regenerative amplifier,” Opt. Lett. 18, 2044–2046 (1993).
[CrossRef]

Phys. Rev. Lett.

B. Kohler, V. V. Yakovlev, J. Che, J. L. Krause, M. Messina, K. R. Wilson, N. Schwentner, R. M. Whitnell, and Y. Yan, “Quantum control of wave packet evolution with tailored femtosecond pulses,” Phys. Rev. Lett. 74, 3360–3363 (1995).
[CrossRef] [PubMed]

Other

F. Salin, F. Estable, and F. Saviot, “Tunable femtosecond sources and optical parametric generators,” in Ultrafast Phenomena IX, P. F. Barbara, W. H. Knox, G. A. Mourou, and A. H. Zewail, eds. (Springer-Verlag, New York, 1995), pp. 194–195.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Calculated group-velocity mismatch between pump and signal waves (solid curve) and pump and idler waves (dashed curve) for the 790-nm pump wavelength.

Fig. 2
Fig. 2

Calculated external phase-matching angle (solid curve) and amplified bandwidth (dashed curve) for a 3-mm-long BBO crystal with a pump intensity of 100 GW/cm2.

Fig. 3
Fig. 3

Schematic of the experimental apparatus.

Fig. 4
Fig. 4

(a) FROG measurement of compressed pulses at 560 nm. (b) Reconstructed temporal pulse shape corresponding to a pulse duration of 29 fs. (c) Reconstructed (solid curve) spectrum and phase of the pulses. The experimentally measured spectrum is shown as a dashed curve.

Fig. 5
Fig. 5

(a) FROG measurement of compressed pulses at 335 nm. (b) Reconstructed temporal pulse shape, corresponding to a pulse duration of 37 fs. (c) Reconstructed (solid curve) spectrum and phase of the pulses. The experimentally measured spectrum is shown as a dashed curve.

Fig. 6
Fig. 6

(a) FROG measurement of a compressed pulse at 314 nm. (b) Reconstructed temporal pulse shape, corresponding to a pulse duration of 42 fs. (c) Reconstructed (solid curve) spectrum and phase of the pulses. The experimentally measured spectrum is shown as a dashed curve.

Fig. 7
Fig. 7

Filled circles and filled squares show the measured energy of the amplified signal and idler waves, respectively. Open circles and open squares show the measured energy of the pulses generated by different nonlinear processes. 2ω, second harmonic of the signal (circles) and the idler (squares) (type I phase matching in 0.25-mm-thick BBO); ω+790: sum-frequency generation from the residual 790 nm and signal (type II phase matching in 0.2-mm-thick BBO); 4ω, fourth harmonic (2ω+2ω) of the signal pulse (type II in 0.2-mm-thick BBO); open triangles, ωS-ωi: difference frequency generation (Type I in 1-mm-thick AgGaS2).

Metrics