Abstract

The heating of CO2-laser-irradiated hollow aluminum particles filled with air to temperatures up to the boiling temperature or beyond is analyzed by solution of the heat-transport equation. Two different criteria for particle disruption are considered. The values of the incident intensity and the ratio of the inner and the outer particle radii, when one or the other particle disruption mechanism can take place, are presented. The dependence of the temperature distributions inside the particles on the laser intensity as well as on the core and shell sizes is obtained.

© 1997 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. V. V. Kudinov, A. A. Puzanov, and A. P. Zambrzhitski, Optics of Plasma Coatings (Nauka, Moscow, 1981).
  2. L. G. Astafieva and A. P. Prishivalko, “Peculiarities of IR-absorption and optical fields inside hollow metal and metal coated particles,” Dokl. Akad. Nauk BSSR 34, 127–129 (1990).
  3. L. G. Astafieva and A. P. Prishivalko, “High intensity laser radiation heating of homogeneous and hollow particles of alumina,” Teplofiz. Vys. Temp. 32, 230–235 (1994).
  4. E. M. Lifshitch and L. P. Pitaevsky, Physical Kinetics (Nauka, Moscow, 1979).
  5. S. Anisimov, Ya. Imas, G. Romanov, and Yu. Khodyko, Action of High Power Radiation on Metals (Nauka, Moscow, 1970).
  6. B. S. Park and R. L. Armstrong, “Laser droplet heating: fast and slow heating regimes,” Appl. Opt. 28, 3671–3680 (1989).
    [CrossRef] [PubMed]
  7. A. V. Burmistrov, “On the role of bubbles during interaction of highly intense flux of energy with a medium,” J. Appl. Mech. Theor. Phys. (USSR) 35–44 (1979).
  8. H. G. Dreehsen, C. Hartwich, J. H. Schaefer, and J. Uhlenbusch, “Measurement of optical constants of Al above the melting point at λ=10.6 μm,” J. Appl. Phys. 56, 238–240 (1984).
    [CrossRef]
  9. J. E. Hatch, ed., Aluminium: Properties and Physical Metalloconduct (Metallurgiya, Moscow, 1989).
  10. F. W. Dabby and U. C. Paek, “High-intensity laser-induced vaporization and explosion of solid material,” IEEE J. Quantum Electron. QE-8, 106–111 (1972).
    [CrossRef]
  11. G. B. Shinn, F. Steigerwald, H. Stiegler, R. Sauertbrey, F. K. Tittel, and W. L. Wilson, “Excimer laser photoablation of silicon,” J. Vac. Sci. Technol. B 4, 1273–1277 (1986).
    [CrossRef]

1994 (1)

L. G. Astafieva and A. P. Prishivalko, “High intensity laser radiation heating of homogeneous and hollow particles of alumina,” Teplofiz. Vys. Temp. 32, 230–235 (1994).

1989 (1)

1986 (1)

G. B. Shinn, F. Steigerwald, H. Stiegler, R. Sauertbrey, F. K. Tittel, and W. L. Wilson, “Excimer laser photoablation of silicon,” J. Vac. Sci. Technol. B 4, 1273–1277 (1986).
[CrossRef]

1984 (1)

H. G. Dreehsen, C. Hartwich, J. H. Schaefer, and J. Uhlenbusch, “Measurement of optical constants of Al above the melting point at λ=10.6 μm,” J. Appl. Phys. 56, 238–240 (1984).
[CrossRef]

1972 (1)

F. W. Dabby and U. C. Paek, “High-intensity laser-induced vaporization and explosion of solid material,” IEEE J. Quantum Electron. QE-8, 106–111 (1972).
[CrossRef]

Armstrong, R. L.

Astafieva, L. G.

L. G. Astafieva and A. P. Prishivalko, “High intensity laser radiation heating of homogeneous and hollow particles of alumina,” Teplofiz. Vys. Temp. 32, 230–235 (1994).

Dabby, F. W.

F. W. Dabby and U. C. Paek, “High-intensity laser-induced vaporization and explosion of solid material,” IEEE J. Quantum Electron. QE-8, 106–111 (1972).
[CrossRef]

Dreehsen, H. G.

H. G. Dreehsen, C. Hartwich, J. H. Schaefer, and J. Uhlenbusch, “Measurement of optical constants of Al above the melting point at λ=10.6 μm,” J. Appl. Phys. 56, 238–240 (1984).
[CrossRef]

Hartwich, C.

H. G. Dreehsen, C. Hartwich, J. H. Schaefer, and J. Uhlenbusch, “Measurement of optical constants of Al above the melting point at λ=10.6 μm,” J. Appl. Phys. 56, 238–240 (1984).
[CrossRef]

Paek, U. C.

F. W. Dabby and U. C. Paek, “High-intensity laser-induced vaporization and explosion of solid material,” IEEE J. Quantum Electron. QE-8, 106–111 (1972).
[CrossRef]

Park, B. S.

Prishivalko, A. P.

L. G. Astafieva and A. P. Prishivalko, “High intensity laser radiation heating of homogeneous and hollow particles of alumina,” Teplofiz. Vys. Temp. 32, 230–235 (1994).

Sauertbrey, R.

G. B. Shinn, F. Steigerwald, H. Stiegler, R. Sauertbrey, F. K. Tittel, and W. L. Wilson, “Excimer laser photoablation of silicon,” J. Vac. Sci. Technol. B 4, 1273–1277 (1986).
[CrossRef]

Schaefer, J. H.

H. G. Dreehsen, C. Hartwich, J. H. Schaefer, and J. Uhlenbusch, “Measurement of optical constants of Al above the melting point at λ=10.6 μm,” J. Appl. Phys. 56, 238–240 (1984).
[CrossRef]

Shinn, G. B.

G. B. Shinn, F. Steigerwald, H. Stiegler, R. Sauertbrey, F. K. Tittel, and W. L. Wilson, “Excimer laser photoablation of silicon,” J. Vac. Sci. Technol. B 4, 1273–1277 (1986).
[CrossRef]

Steigerwald, F.

G. B. Shinn, F. Steigerwald, H. Stiegler, R. Sauertbrey, F. K. Tittel, and W. L. Wilson, “Excimer laser photoablation of silicon,” J. Vac. Sci. Technol. B 4, 1273–1277 (1986).
[CrossRef]

Stiegler, H.

G. B. Shinn, F. Steigerwald, H. Stiegler, R. Sauertbrey, F. K. Tittel, and W. L. Wilson, “Excimer laser photoablation of silicon,” J. Vac. Sci. Technol. B 4, 1273–1277 (1986).
[CrossRef]

Tittel, F. K.

G. B. Shinn, F. Steigerwald, H. Stiegler, R. Sauertbrey, F. K. Tittel, and W. L. Wilson, “Excimer laser photoablation of silicon,” J. Vac. Sci. Technol. B 4, 1273–1277 (1986).
[CrossRef]

Uhlenbusch, J.

H. G. Dreehsen, C. Hartwich, J. H. Schaefer, and J. Uhlenbusch, “Measurement of optical constants of Al above the melting point at λ=10.6 μm,” J. Appl. Phys. 56, 238–240 (1984).
[CrossRef]

Wilson, W. L.

G. B. Shinn, F. Steigerwald, H. Stiegler, R. Sauertbrey, F. K. Tittel, and W. L. Wilson, “Excimer laser photoablation of silicon,” J. Vac. Sci. Technol. B 4, 1273–1277 (1986).
[CrossRef]

Appl. Opt. (1)

IEEE J. Quantum Electron. (1)

F. W. Dabby and U. C. Paek, “High-intensity laser-induced vaporization and explosion of solid material,” IEEE J. Quantum Electron. QE-8, 106–111 (1972).
[CrossRef]

J. Appl. Phys. (1)

H. G. Dreehsen, C. Hartwich, J. H. Schaefer, and J. Uhlenbusch, “Measurement of optical constants of Al above the melting point at λ=10.6 μm,” J. Appl. Phys. 56, 238–240 (1984).
[CrossRef]

J. Vac. Sci. Technol. B (1)

G. B. Shinn, F. Steigerwald, H. Stiegler, R. Sauertbrey, F. K. Tittel, and W. L. Wilson, “Excimer laser photoablation of silicon,” J. Vac. Sci. Technol. B 4, 1273–1277 (1986).
[CrossRef]

Teplofiz. Vys. Temp. (1)

L. G. Astafieva and A. P. Prishivalko, “High intensity laser radiation heating of homogeneous and hollow particles of alumina,” Teplofiz. Vys. Temp. 32, 230–235 (1994).

Other (6)

E. M. Lifshitch and L. P. Pitaevsky, Physical Kinetics (Nauka, Moscow, 1979).

S. Anisimov, Ya. Imas, G. Romanov, and Yu. Khodyko, Action of High Power Radiation on Metals (Nauka, Moscow, 1970).

V. V. Kudinov, A. A. Puzanov, and A. P. Zambrzhitski, Optics of Plasma Coatings (Nauka, Moscow, 1981).

L. G. Astafieva and A. P. Prishivalko, “Peculiarities of IR-absorption and optical fields inside hollow metal and metal coated particles,” Dokl. Akad. Nauk BSSR 34, 127–129 (1990).

J. E. Hatch, ed., Aluminium: Properties and Physical Metalloconduct (Metallurgiya, Moscow, 1989).

A. V. Burmistrov, “On the role of bubbles during interaction of highly intense flux of energy with a medium,” J. Appl. Mech. Theor. Phys. (USSR) 35–44 (1979).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Boundary dividing domains of values of the incident intensity and the ratio R1/R2 where either the surface-tension (right of the solid curve) or the subsurface boiling (left of the solid curve) disruption criterion holds. R2=20 µm, λ=10.6 µm.

Fig. 2
Fig. 2

Dependence of the disruption time of the hollow particles on the ratio R1/R2 at the following particle radii: 1, R2=15; 2, 20; and 3, 30 µm. l=107 W/cm2.

Fig. 3
Fig. 3

Dependence of the disruption time of the hollow particles on the ratio R1/R2 at the following particle radii: 1, R2=10; 2, 20; and 3, 30 µm. I=5×107 W/cm2.

Fig. 4
Fig. 4

Temperature distribution along the particle diameter parallel to the incident laser beam at the following core radii: 1, R1=10; 2, 12; 3, 15; and 4, 18 µm. R2=20 µm, l=107 W/cm2, λ=10.6 µm.

Fig. 5
Fig. 5

Temperature distribution along the particle diameter parallel to the incident laser beam at the following intensities: 1, I=5×106; 2, 107; 3, 5×107; and 4, 108 W/cm2. R2=20 µm, ΔR=2 µm.

Equations (15)

Equations on this page are rendered with MathJax. Learn more.

c1ρ1 T1t=1r2rλ1r2 T1r+1r2 sin θθ×λ1 sinθ T1θ+Q1r, θ, T1, n1, χ1,
c2ρ2 T2t=1r2rλ2r2 T2r+1r2 sin θθ×λ2 sin θ T2θ+Q2r, θ, T2, n2, χ2,
Q2=IB 4πn2χ2msλ,
B=ErEr*+EθEθ*+EφEφ*E0-2,
T1r, θ, 0=T10,T2r, θ, 0=T20.
T1R1, θ, t=T2R1, θ, t,
λ1T1 T1R1, θ, tr=λ2T2 T2R1, θ, tr,
-λ2T2 T2R2, θ, tr=αT2R2, θ, t-T0+R2t×ρL+c2T2-T0+v¯2/2+σλT24,
|T10, θ, t|<,
T1θθ=0=T1θθ=π=0,
T2θθ=0=T2θθ=π=0,
α=β P2πMkTcv+½k.
R2t=vs34π1/3 exp-LM/RgT,
n=1.5×105 T-1.5,
χ=3.9×104 T-1.125.

Metrics