Abstract

Optical transient induced absorption and bleaching as a function of wavelength for reduced SrTiO3 with a picosecond pump–probe technique have been studied. An energy-level model of the reduced SrTiO3 is proposed to explain the experimental results. The reduced SrTiO3 crystal examined has two absorption bands centered at 1.7 eV and 2.4 eV, which are assigned to transitions from levels lying in the band gap approximately 1.5 eV and 0.8 eV above the valence band, respectively, to the conduction band. The relaxation times of electrons from the conduction band to the level at 1.5 eV and from the level at 1.5 eV to the level at 0.8 eV are determined to be 40 ps and much larger than 500 ps, respectively.

© 1997 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G. A. Brost, R. A. Motes, and J. R. Rotge, J. Opt. Soc. Am. B 4, 1879 (1988).
    [CrossRef]
  2. A. Motes and J. J. Kim, J. Opt. Soc. Am. B 4, 1379 (1987).
    [CrossRef]
  3. M. H. Garrett, P. Tayebati, J. Y. Chang, H. P. Jenssen, and C. Warde, J. Appl. Phys. 72, 1965 (1992).
    [CrossRef]
  4. J. Y. Chang, M. H. Garrett, H. P. Jenssen, and C. Warde, Appl. Phys. Lett. 63, 3598 (1993).
    [CrossRef]
  5. M. I. Demchuk, V. S. Konevskii, N. V. Kuleshov, V. P. Mikhailov, P. V. Prokoshin, and K. V. Yumashev, Opt. Commun. 82, 273 (1991).
    [CrossRef]
  6. M. I. Demchuk, V. P. Mikhailov, V. S. Konevskii, N. V. Kuleshov, P. V. Prokoshin, and K. V. Yumashev, Sov. Phys. Solid State 33, 1735 (1991).
  7. R. L. Wild, E. M. Rockar, and J. C. Smith, Phys. Rev. B 8, 3828 (1973).
    [CrossRef]
  8. H. Yamada and G. R. Miller, J. Solid State Chem. 6, 169 (1973).
    [CrossRef]
  9. W. S. Baer, Phys. Rev. 144, 734 (1966).
    [CrossRef]
  10. A. L. Smirl, G. C. Valley, K. M. Bohnert, and T. F. Boggess, IEEE J. Quantum Electron. 24, 289 (1988).
    [CrossRef]

1993 (1)

J. Y. Chang, M. H. Garrett, H. P. Jenssen, and C. Warde, Appl. Phys. Lett. 63, 3598 (1993).
[CrossRef]

1992 (1)

M. H. Garrett, P. Tayebati, J. Y. Chang, H. P. Jenssen, and C. Warde, J. Appl. Phys. 72, 1965 (1992).
[CrossRef]

1991 (2)

M. I. Demchuk, V. S. Konevskii, N. V. Kuleshov, V. P. Mikhailov, P. V. Prokoshin, and K. V. Yumashev, Opt. Commun. 82, 273 (1991).
[CrossRef]

M. I. Demchuk, V. P. Mikhailov, V. S. Konevskii, N. V. Kuleshov, P. V. Prokoshin, and K. V. Yumashev, Sov. Phys. Solid State 33, 1735 (1991).

1988 (2)

A. L. Smirl, G. C. Valley, K. M. Bohnert, and T. F. Boggess, IEEE J. Quantum Electron. 24, 289 (1988).
[CrossRef]

G. A. Brost, R. A. Motes, and J. R. Rotge, J. Opt. Soc. Am. B 4, 1879 (1988).
[CrossRef]

1987 (1)

1973 (2)

R. L. Wild, E. M. Rockar, and J. C. Smith, Phys. Rev. B 8, 3828 (1973).
[CrossRef]

H. Yamada and G. R. Miller, J. Solid State Chem. 6, 169 (1973).
[CrossRef]

1966 (1)

W. S. Baer, Phys. Rev. 144, 734 (1966).
[CrossRef]

Baer, W. S.

W. S. Baer, Phys. Rev. 144, 734 (1966).
[CrossRef]

Boggess, T. F.

A. L. Smirl, G. C. Valley, K. M. Bohnert, and T. F. Boggess, IEEE J. Quantum Electron. 24, 289 (1988).
[CrossRef]

Bohnert, K. M.

A. L. Smirl, G. C. Valley, K. M. Bohnert, and T. F. Boggess, IEEE J. Quantum Electron. 24, 289 (1988).
[CrossRef]

Brost, G. A.

G. A. Brost, R. A. Motes, and J. R. Rotge, J. Opt. Soc. Am. B 4, 1879 (1988).
[CrossRef]

Chang, J. Y.

J. Y. Chang, M. H. Garrett, H. P. Jenssen, and C. Warde, Appl. Phys. Lett. 63, 3598 (1993).
[CrossRef]

M. H. Garrett, P. Tayebati, J. Y. Chang, H. P. Jenssen, and C. Warde, J. Appl. Phys. 72, 1965 (1992).
[CrossRef]

Demchuk, M. I.

M. I. Demchuk, V. S. Konevskii, N. V. Kuleshov, V. P. Mikhailov, P. V. Prokoshin, and K. V. Yumashev, Opt. Commun. 82, 273 (1991).
[CrossRef]

M. I. Demchuk, V. P. Mikhailov, V. S. Konevskii, N. V. Kuleshov, P. V. Prokoshin, and K. V. Yumashev, Sov. Phys. Solid State 33, 1735 (1991).

Garrett, M. H.

J. Y. Chang, M. H. Garrett, H. P. Jenssen, and C. Warde, Appl. Phys. Lett. 63, 3598 (1993).
[CrossRef]

M. H. Garrett, P. Tayebati, J. Y. Chang, H. P. Jenssen, and C. Warde, J. Appl. Phys. 72, 1965 (1992).
[CrossRef]

Jenssen, H. P.

J. Y. Chang, M. H. Garrett, H. P. Jenssen, and C. Warde, Appl. Phys. Lett. 63, 3598 (1993).
[CrossRef]

M. H. Garrett, P. Tayebati, J. Y. Chang, H. P. Jenssen, and C. Warde, J. Appl. Phys. 72, 1965 (1992).
[CrossRef]

Kim, J. J.

Konevskii, V. S.

M. I. Demchuk, V. S. Konevskii, N. V. Kuleshov, V. P. Mikhailov, P. V. Prokoshin, and K. V. Yumashev, Opt. Commun. 82, 273 (1991).
[CrossRef]

M. I. Demchuk, V. P. Mikhailov, V. S. Konevskii, N. V. Kuleshov, P. V. Prokoshin, and K. V. Yumashev, Sov. Phys. Solid State 33, 1735 (1991).

Kuleshov, N. V.

M. I. Demchuk, V. P. Mikhailov, V. S. Konevskii, N. V. Kuleshov, P. V. Prokoshin, and K. V. Yumashev, Sov. Phys. Solid State 33, 1735 (1991).

M. I. Demchuk, V. S. Konevskii, N. V. Kuleshov, V. P. Mikhailov, P. V. Prokoshin, and K. V. Yumashev, Opt. Commun. 82, 273 (1991).
[CrossRef]

Mikhailov, V. P.

M. I. Demchuk, V. S. Konevskii, N. V. Kuleshov, V. P. Mikhailov, P. V. Prokoshin, and K. V. Yumashev, Opt. Commun. 82, 273 (1991).
[CrossRef]

M. I. Demchuk, V. P. Mikhailov, V. S. Konevskii, N. V. Kuleshov, P. V. Prokoshin, and K. V. Yumashev, Sov. Phys. Solid State 33, 1735 (1991).

Miller, G. R.

H. Yamada and G. R. Miller, J. Solid State Chem. 6, 169 (1973).
[CrossRef]

Motes, A.

Motes, R. A.

G. A. Brost, R. A. Motes, and J. R. Rotge, J. Opt. Soc. Am. B 4, 1879 (1988).
[CrossRef]

Prokoshin, P. V.

M. I. Demchuk, V. S. Konevskii, N. V. Kuleshov, V. P. Mikhailov, P. V. Prokoshin, and K. V. Yumashev, Opt. Commun. 82, 273 (1991).
[CrossRef]

M. I. Demchuk, V. P. Mikhailov, V. S. Konevskii, N. V. Kuleshov, P. V. Prokoshin, and K. V. Yumashev, Sov. Phys. Solid State 33, 1735 (1991).

Rockar, E. M.

R. L. Wild, E. M. Rockar, and J. C. Smith, Phys. Rev. B 8, 3828 (1973).
[CrossRef]

Rotge, J. R.

G. A. Brost, R. A. Motes, and J. R. Rotge, J. Opt. Soc. Am. B 4, 1879 (1988).
[CrossRef]

Smirl, A. L.

A. L. Smirl, G. C. Valley, K. M. Bohnert, and T. F. Boggess, IEEE J. Quantum Electron. 24, 289 (1988).
[CrossRef]

Smith, J. C.

R. L. Wild, E. M. Rockar, and J. C. Smith, Phys. Rev. B 8, 3828 (1973).
[CrossRef]

Tayebati, P.

M. H. Garrett, P. Tayebati, J. Y. Chang, H. P. Jenssen, and C. Warde, J. Appl. Phys. 72, 1965 (1992).
[CrossRef]

Valley, G. C.

A. L. Smirl, G. C. Valley, K. M. Bohnert, and T. F. Boggess, IEEE J. Quantum Electron. 24, 289 (1988).
[CrossRef]

Warde, C.

J. Y. Chang, M. H. Garrett, H. P. Jenssen, and C. Warde, Appl. Phys. Lett. 63, 3598 (1993).
[CrossRef]

M. H. Garrett, P. Tayebati, J. Y. Chang, H. P. Jenssen, and C. Warde, J. Appl. Phys. 72, 1965 (1992).
[CrossRef]

Wild, R. L.

R. L. Wild, E. M. Rockar, and J. C. Smith, Phys. Rev. B 8, 3828 (1973).
[CrossRef]

Yamada, H.

H. Yamada and G. R. Miller, J. Solid State Chem. 6, 169 (1973).
[CrossRef]

Yumashev, K. V.

M. I. Demchuk, V. P. Mikhailov, V. S. Konevskii, N. V. Kuleshov, P. V. Prokoshin, and K. V. Yumashev, Sov. Phys. Solid State 33, 1735 (1991).

M. I. Demchuk, V. S. Konevskii, N. V. Kuleshov, V. P. Mikhailov, P. V. Prokoshin, and K. V. Yumashev, Opt. Commun. 82, 273 (1991).
[CrossRef]

Appl. Phys. Lett. (1)

J. Y. Chang, M. H. Garrett, H. P. Jenssen, and C. Warde, Appl. Phys. Lett. 63, 3598 (1993).
[CrossRef]

IEEE J. Quantum Electron. (1)

A. L. Smirl, G. C. Valley, K. M. Bohnert, and T. F. Boggess, IEEE J. Quantum Electron. 24, 289 (1988).
[CrossRef]

J. Appl. Phys. (1)

M. H. Garrett, P. Tayebati, J. Y. Chang, H. P. Jenssen, and C. Warde, J. Appl. Phys. 72, 1965 (1992).
[CrossRef]

J. Opt. Soc. Am. B (2)

G. A. Brost, R. A. Motes, and J. R. Rotge, J. Opt. Soc. Am. B 4, 1879 (1988).
[CrossRef]

A. Motes and J. J. Kim, J. Opt. Soc. Am. B 4, 1379 (1987).
[CrossRef]

J. Solid State Chem. (1)

H. Yamada and G. R. Miller, J. Solid State Chem. 6, 169 (1973).
[CrossRef]

Opt. Commun. (1)

M. I. Demchuk, V. S. Konevskii, N. V. Kuleshov, V. P. Mikhailov, P. V. Prokoshin, and K. V. Yumashev, Opt. Commun. 82, 273 (1991).
[CrossRef]

Phys. Rev. (1)

W. S. Baer, Phys. Rev. 144, 734 (1966).
[CrossRef]

Phys. Rev. B (1)

R. L. Wild, E. M. Rockar, and J. C. Smith, Phys. Rev. B 8, 3828 (1973).
[CrossRef]

Sov. Phys. Solid State (1)

M. I. Demchuk, V. P. Mikhailov, V. S. Konevskii, N. V. Kuleshov, P. V. Prokoshin, and K. V. Yumashev, Sov. Phys. Solid State 33, 1735 (1991).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

(a) Optical absorption spectra of the SrTiO3 crystal (1) before and (2) after reduction. The dashed line represents an extension of the high-wavelength free-carrier portion of the absorption curve. (b) Optical absorption spectrum of the reduced SrTiO3 obtained by subtracting the linear portion of the free-carrier absorption. The sample thickness is 0.32 mm.

Fig. 2
Fig. 2

Proposed energy-level diagram of the reduced SrTiO3. The reduction creates energy levels D and B, which are 1.5 eV and 0.8 eV above the valence band, respectively.  Eg is the bandgap of the SrTiO3 crystal.

Fig. 3
Fig. 3

Spectra of the transient absorption change ΔOD = -log(T/T0) of the reduced SrTiO3 at the four delay times of (a) -21 ps, (b) 19 ps, (c) 49 ps, and (d) 79 ps between pump and probe pulses. The 15-ps pulse at 1080 nm was used as the pump. The pump intensity was 2GW cm-2. The sample thickness was 0.21 mm.

Fig. 4
Fig. 4

(a)–(c) Transient absorption change ΔOD=-log (T/T0) and (d)–(f) value of -ΔOD as a function of pump–probe delay time for the reduced SrTiO3 at the three probe wavelengths of (a), (d) 1080 nm, (b), (e) 600 nm, and (c), (f) 540 nm. The 15-ps pulse at 1080 nm was used as the pump.

Fig. 5
Fig. 5

Spectra of the transient absorption change ΔOD = -log(T/T0) of the reduced SrTiO3 at the four delay times of (a) 7 ps, (b) 42 ps, (c) 100 ps, and (d) 162 ps between pump and probe pulses. The 15-ps pulse at 540 nm was used as the pump. The pump intensity was 400MW cm-2. The sample thickness was 0.32 mm.

Fig. 6
Fig. 6

(1) Linear absorption spectrum and (2–5) spectra of the transient absorption change ΔOD=-log(T/T0) for the reduced SrTiO3. The pump wavelengths are (2, 3) 1080 nm and (4, 5) 540 nm. The pump–probe delay times are (2) 19 ps, (3) 178 ps, (4) 7 ps, and (5) 162 ps. Curves 4 and 5 are smoothed out for clarity.

Fig. 7
Fig. 7

(a)–(c) Transient absorption change ΔOD=-log(T/T0) and (d)–(f) value of the term -(ΔOD-ΔODL) as a function of pump–probe delay time for the reduced SrTiO3 at the three probe wavelengths of 1080 nm, 600 nm, and 540 nm. The 15-ps pulse at 540 nm was used as the pump. The assignment of the term -(ΔOD-ΔODL) is given in the text.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

ΔOD(λ)=-log[T(λ)/T0(λ)],
ΔOD(td)-ΔOD(t0)1-exp[-(td-t0)/τ].
ΔOD(td)-ΔODL=[ΔOD(t0)-ΔODL]×exp[-(td-t0)/τ],

Metrics