Abstract

We discuss the precise zero adjustment of a balanced differential-mode polarimeter containing an atomic sample for dark-field detection of a small atomic parity-violation anisotropy odd under reversal of an applied E field. Our sample is endowed with an E-even parity-conserving anisotropy, possibly large, but oriented to produce no imbalance. An imbalance arises both from defects in the preparation of the sample and from small probe-beam anisotropies coupling with those of the sample. An adjustment procedure allows identification and reduction of each defect. The residual E-even imbalance is maintained at the noise level by active compensation.

© 1997 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. Raterink, H. vanden Stadt, C. H. F. Velzel, and G. Dijkstra, “Development of a ring laser for polarimetric measurements,” Appl. Opt. 6, 813–820 (1967).
    [Crossref] [PubMed]
  2. A. P. Voitovich and V. I. Sardyko, “Intracavity laser measurements of natural optical activity,” Opt. Spectrosk. 53, 644–648 (1982).
  3. S. C. Read, M. Lai, T. Cave, S. W. Morris, D. Shelton, A. Guest, and A. D. May, “Intracavity polarimeter for measuring small optical anisotropies,” J. Opt. Soc. Am. B 5, 1832–1837 (1988).
    [Crossref]
  4. Y. Le Grand and A. Le Floch, “Measurement of small optical activities by use of helicoidal waves,” Opt. Lett. 17, 360–362 (1992).
    [Crossref] [PubMed]
  5. M. A. Bouchiat, D. Chauvat, J. Guéna, Ph. Jacquier, M. Lintz, and M. D. Plimmer, “High precision balanced mode polarimetry with a pulsed laser beam,” Opt. Commun. 119, 403–414 (1995).
    [Crossref]
  6. M. A. Bouchiat and L. Pottier, “Optical experiments and weak interactions,” Science 234, 1203–1210 (1986).
    [Crossref] [PubMed]
  7. M. A. Bouchiat, J. Guéna, L. Hunter, and L. Pottier, “Observation of a parity violation in cesium,” Phys. Lett. B 117, 358–364 (1982); “New observation of parity violation in cesium,” Phys. Lett. B 134, 463–467 (1984); “Atomic parity violation measurements in the highly forbidden 6S1/2–7S1/2 caesium transition. III.  Data acquisition and processing. Results and implications,” J. Phys. (France) 47, 1709–1730 (1986); S. L. Gilbert, M. C. Noecker, R. N. Watts, and C. E. Wieman, “Measurement of parity nonconservation in atomic cesium,” Phys. Rev. Lett. 55, 2680–2683 (1985); S. L. Gilbert and C. E. Wieman, “Atomic beam-measurement of parity nonconservation in cesium,” Phys. Rev. A 34, 792–803 (1986); M. C. Noecker, B. P. Masterson, and C. E. Wieman, “Precision measurement of parity nonconservation in atomic cesium,” Phys. Rev. Lett. 61, 310–313 (1988).
    [Crossref] [PubMed]
  8. P. H. Bucksbaum, E. D. Commins, and L. R. Hunter, “Observations of parity nonconservation in atomic thallium,” Phys. Rev. D 24, 1134–1148 (1981); P. Drell and E. D. Commins, “Parity nonconservation in atomic thallium,” Phys. Rev. Lett. 53, 968–971 (1984); “Observation of parity nonconservation in atomic thallium,” Phys. Rev. A 32, 2196–2210 (1985).
    [Crossref]
  9. L. M. Barkov and M. S. Zolotorev “Observation of parity nonconservation in atomic transitions,” JETP Lett. 27, 357–361 (1978); “Parity nonconservation in bismuth atoms and neutral weak-interaction current,” Sov. Phys. 52, 360–369 (1980); J. H. Hollister, G. R. Apperson, L. L. Lewis, T. P. Emmons, T. G. Vold, and E. N. Fortson, “Measurement of parity non-conservation in atomic bismuth,” Phys. Rev. Lett. 46, 643–646 (1981).
    [Crossref]
  10. G. N. Birich, Yu V. Bogdanov, S. I. Kanorskii, I. I. Sobel’man, V. N. Sorokin, I. I. Struk, and E. A. Yukov, “Nonconservation of parity in atomic bismuth,” Sov. Phys. JETP 60, 442–449 (1984).
  11. M. J. Macpherson, D. N. Stacey, P. E. G. Baird, J. P. Hoare, P. G. H. Sandars, K. M. J. Tregidgo, and Wang Guowen, “Parity-nonconserving optical rotation at 876 nm in bismuth,” Europhys. Lett. 4, 811–816 (1987); M. J. D. Macpherson, K. P. Zetie, R. B. Warrington, D. N. Stacey, and J. P. Hoare, “Precise measurement of parity nonconserving optical rotation at 876 nm in atomic bismuth,” Phys. Rev. Lett. 67, 2784–2787 (1991); R. B. Warrington, C. D. Thompson, and D. N. Stacey, “A new measurement of parity-non-conserving optical rotation at 648 nm in atomic bismuth,” Europhys. Lett. 24, 641–646 (1993).
    [Crossref] [PubMed]
  12. D. M. Meekhof, P. Vetter, P. K. Majumder, S. K. Lamoreaux, and E. N. Fortson, “High-precision measurement of parity nonconserving optical rotation in atomic lead,” Phys. Rev. Lett. 71, 3442–3445 (1993).
    [Crossref] [PubMed]
  13. N. H. Edwards, S. J. Phipp, P. E. G. Baird, and S. Nakayama, “Precise measurement of parity nonconserving optical rotation in atomic thallium,” Phys. Rev. Lett. 74, 2654–2657 (1995); P. A. Vetter, D. M. Meekhof, P. K. Majumder, S. K. Lamoreaux, and E. N. Fortson, “Precise test of electroweak theory from a new measurement of parity nonconservation in atomic thallium,” Phys. Rev. Lett. 74, 2658–2661 (1995).
    [Crossref] [PubMed]
  14. M. A. Bouchiat and L. Pottier, “A high-purity circular polarization modulator,” Opt. Commun. 37, 229–233 (1981).
    [Crossref]
  15. M. A. Bouchiat, Ph. Jacquier, M. Lintz, and L. Pottier, “Parity violation in forbidden transition: detection of the electroweak alignment or polarization in the upper state by stimulated emission,” Opt. Commun. 56, 100–106 (1985).
    [Crossref]
  16. M. A. Bouchiat, J. Guéna, Ph. Jacquier, M. Lintz, and L. Pottier, “Experimental progress using nonlinear optics for precision measurements of the nuclear weak charge in the 6S–7S Cs transition,” Opt. Commun. 77, 374–380 (1990); M. A. Bouchiat, J. Guéna, Ph. Jacquier, M. Lintz, and M. D. Plimmer, “Towards a measurement of parity violation in the 6S–7S transition of atomic cesium via pulsed excitation and detection by stimulated emission,” Fourteenth International Conference on Atomic Physics, Boulder, August, 1994, poster 1D-6.
    [Crossref]
  17. M. A. Bouchiat, J. Guéna, Ph. Jacquier, M. Lintz, and L. Pottier, “From linear amplification to triggered superradiance,” J. Phys. II (France) 2, 727–747 (1992).
    [Crossref]
  18. M. A. Bouchiat and C. Bouchiat, “Parity violation induced by weak neutral currents in atomic physics,” J. Phys. (France) 36, 493–509 (1975); M. A. Bouchiat and L. Pottier, “Observation of the 6S1/2–7S1/2 single-photon transition of cesium induced by an external d.c. electric field,” J. Phys. (France) Lett. 36, 189–192 (1975).
    [Crossref]
  19. C. Bouchiat and M. A. Bouchiat, “Amplification of the electroweak left-right asymmetry in atoms by stimulated emission,” Z. Phys. D 36, 105–117 (1996).
    [Crossref]
  20. M. A. Bouchiat, J. Guéna, Ph. Jacquier, M. Lintz, and M. D. Plimmer, “Two-beam linear magneto-optical spectroscopy of atomic transitions between short lived states,” Z. Phys. D 33, 89–95 (1995).
    [Crossref]
  21. By inserting a λ/4 plate with axes x and y between the λ/2 plate and the linear analyzer, one obtains an analyzer system for circular components of the probe field. Again it delivers true polarization signals, thanks to the insertion and removal of the λ/2 plate.
  22. N. Vansteenkiste, P. Vignolo, and A. Aspect, “Optical reversibility theorems for polarization: application to remote control of polarization,” J. Opt. Soc. Am. A 10, 2240–2245 (1993).
    [Crossref]
  23. R. C. Jones, “A new calculus for the treatment of optical systems I,” J. Opt. Soc. Am. 31, 488–493 (1941).
    [Crossref]
  24. R. C. Jones, “A new calculus for the treatment of optical systems VII,” J. Opt. Soc. Am. 38, 671–685 (1948).
    [Crossref]
  25. Δν-even signals are very similar to signals at resonance center but may have small additional contributions associated with the frequency shift (see Appendix A). Consequently we prefer to use signals at resonance center for the compensation procedure and keep Δν-even ones as a control.

1996 (1)

C. Bouchiat and M. A. Bouchiat, “Amplification of the electroweak left-right asymmetry in atoms by stimulated emission,” Z. Phys. D 36, 105–117 (1996).
[Crossref]

1995 (3)

M. A. Bouchiat, J. Guéna, Ph. Jacquier, M. Lintz, and M. D. Plimmer, “Two-beam linear magneto-optical spectroscopy of atomic transitions between short lived states,” Z. Phys. D 33, 89–95 (1995).
[Crossref]

M. A. Bouchiat, D. Chauvat, J. Guéna, Ph. Jacquier, M. Lintz, and M. D. Plimmer, “High precision balanced mode polarimetry with a pulsed laser beam,” Opt. Commun. 119, 403–414 (1995).
[Crossref]

N. H. Edwards, S. J. Phipp, P. E. G. Baird, and S. Nakayama, “Precise measurement of parity nonconserving optical rotation in atomic thallium,” Phys. Rev. Lett. 74, 2654–2657 (1995); P. A. Vetter, D. M. Meekhof, P. K. Majumder, S. K. Lamoreaux, and E. N. Fortson, “Precise test of electroweak theory from a new measurement of parity nonconservation in atomic thallium,” Phys. Rev. Lett. 74, 2658–2661 (1995).
[Crossref] [PubMed]

1993 (2)

D. M. Meekhof, P. Vetter, P. K. Majumder, S. K. Lamoreaux, and E. N. Fortson, “High-precision measurement of parity nonconserving optical rotation in atomic lead,” Phys. Rev. Lett. 71, 3442–3445 (1993).
[Crossref] [PubMed]

N. Vansteenkiste, P. Vignolo, and A. Aspect, “Optical reversibility theorems for polarization: application to remote control of polarization,” J. Opt. Soc. Am. A 10, 2240–2245 (1993).
[Crossref]

1992 (2)

M. A. Bouchiat, J. Guéna, Ph. Jacquier, M. Lintz, and L. Pottier, “From linear amplification to triggered superradiance,” J. Phys. II (France) 2, 727–747 (1992).
[Crossref]

Y. Le Grand and A. Le Floch, “Measurement of small optical activities by use of helicoidal waves,” Opt. Lett. 17, 360–362 (1992).
[Crossref] [PubMed]

1990 (1)

M. A. Bouchiat, J. Guéna, Ph. Jacquier, M. Lintz, and L. Pottier, “Experimental progress using nonlinear optics for precision measurements of the nuclear weak charge in the 6S–7S Cs transition,” Opt. Commun. 77, 374–380 (1990); M. A. Bouchiat, J. Guéna, Ph. Jacquier, M. Lintz, and M. D. Plimmer, “Towards a measurement of parity violation in the 6S–7S transition of atomic cesium via pulsed excitation and detection by stimulated emission,” Fourteenth International Conference on Atomic Physics, Boulder, August, 1994, poster 1D-6.
[Crossref]

1988 (1)

1987 (1)

M. J. Macpherson, D. N. Stacey, P. E. G. Baird, J. P. Hoare, P. G. H. Sandars, K. M. J. Tregidgo, and Wang Guowen, “Parity-nonconserving optical rotation at 876 nm in bismuth,” Europhys. Lett. 4, 811–816 (1987); M. J. D. Macpherson, K. P. Zetie, R. B. Warrington, D. N. Stacey, and J. P. Hoare, “Precise measurement of parity nonconserving optical rotation at 876 nm in atomic bismuth,” Phys. Rev. Lett. 67, 2784–2787 (1991); R. B. Warrington, C. D. Thompson, and D. N. Stacey, “A new measurement of parity-non-conserving optical rotation at 648 nm in atomic bismuth,” Europhys. Lett. 24, 641–646 (1993).
[Crossref] [PubMed]

1986 (1)

M. A. Bouchiat and L. Pottier, “Optical experiments and weak interactions,” Science 234, 1203–1210 (1986).
[Crossref] [PubMed]

1985 (1)

M. A. Bouchiat, Ph. Jacquier, M. Lintz, and L. Pottier, “Parity violation in forbidden transition: detection of the electroweak alignment or polarization in the upper state by stimulated emission,” Opt. Commun. 56, 100–106 (1985).
[Crossref]

1984 (1)

G. N. Birich, Yu V. Bogdanov, S. I. Kanorskii, I. I. Sobel’man, V. N. Sorokin, I. I. Struk, and E. A. Yukov, “Nonconservation of parity in atomic bismuth,” Sov. Phys. JETP 60, 442–449 (1984).

1982 (2)

M. A. Bouchiat, J. Guéna, L. Hunter, and L. Pottier, “Observation of a parity violation in cesium,” Phys. Lett. B 117, 358–364 (1982); “New observation of parity violation in cesium,” Phys. Lett. B 134, 463–467 (1984); “Atomic parity violation measurements in the highly forbidden 6S1/2–7S1/2 caesium transition. III.  Data acquisition and processing. Results and implications,” J. Phys. (France) 47, 1709–1730 (1986); S. L. Gilbert, M. C. Noecker, R. N. Watts, and C. E. Wieman, “Measurement of parity nonconservation in atomic cesium,” Phys. Rev. Lett. 55, 2680–2683 (1985); S. L. Gilbert and C. E. Wieman, “Atomic beam-measurement of parity nonconservation in cesium,” Phys. Rev. A 34, 792–803 (1986); M. C. Noecker, B. P. Masterson, and C. E. Wieman, “Precision measurement of parity nonconservation in atomic cesium,” Phys. Rev. Lett. 61, 310–313 (1988).
[Crossref] [PubMed]

A. P. Voitovich and V. I. Sardyko, “Intracavity laser measurements of natural optical activity,” Opt. Spectrosk. 53, 644–648 (1982).

1981 (2)

P. H. Bucksbaum, E. D. Commins, and L. R. Hunter, “Observations of parity nonconservation in atomic thallium,” Phys. Rev. D 24, 1134–1148 (1981); P. Drell and E. D. Commins, “Parity nonconservation in atomic thallium,” Phys. Rev. Lett. 53, 968–971 (1984); “Observation of parity nonconservation in atomic thallium,” Phys. Rev. A 32, 2196–2210 (1985).
[Crossref]

M. A. Bouchiat and L. Pottier, “A high-purity circular polarization modulator,” Opt. Commun. 37, 229–233 (1981).
[Crossref]

1978 (1)

L. M. Barkov and M. S. Zolotorev “Observation of parity nonconservation in atomic transitions,” JETP Lett. 27, 357–361 (1978); “Parity nonconservation in bismuth atoms and neutral weak-interaction current,” Sov. Phys. 52, 360–369 (1980); J. H. Hollister, G. R. Apperson, L. L. Lewis, T. P. Emmons, T. G. Vold, and E. N. Fortson, “Measurement of parity non-conservation in atomic bismuth,” Phys. Rev. Lett. 46, 643–646 (1981).
[Crossref]

1975 (1)

M. A. Bouchiat and C. Bouchiat, “Parity violation induced by weak neutral currents in atomic physics,” J. Phys. (France) 36, 493–509 (1975); M. A. Bouchiat and L. Pottier, “Observation of the 6S1/2–7S1/2 single-photon transition of cesium induced by an external d.c. electric field,” J. Phys. (France) Lett. 36, 189–192 (1975).
[Crossref]

1967 (1)

1948 (1)

1941 (1)

Aspect, A.

Baird, P. E. G.

N. H. Edwards, S. J. Phipp, P. E. G. Baird, and S. Nakayama, “Precise measurement of parity nonconserving optical rotation in atomic thallium,” Phys. Rev. Lett. 74, 2654–2657 (1995); P. A. Vetter, D. M. Meekhof, P. K. Majumder, S. K. Lamoreaux, and E. N. Fortson, “Precise test of electroweak theory from a new measurement of parity nonconservation in atomic thallium,” Phys. Rev. Lett. 74, 2658–2661 (1995).
[Crossref] [PubMed]

M. J. Macpherson, D. N. Stacey, P. E. G. Baird, J. P. Hoare, P. G. H. Sandars, K. M. J. Tregidgo, and Wang Guowen, “Parity-nonconserving optical rotation at 876 nm in bismuth,” Europhys. Lett. 4, 811–816 (1987); M. J. D. Macpherson, K. P. Zetie, R. B. Warrington, D. N. Stacey, and J. P. Hoare, “Precise measurement of parity nonconserving optical rotation at 876 nm in atomic bismuth,” Phys. Rev. Lett. 67, 2784–2787 (1991); R. B. Warrington, C. D. Thompson, and D. N. Stacey, “A new measurement of parity-non-conserving optical rotation at 648 nm in atomic bismuth,” Europhys. Lett. 24, 641–646 (1993).
[Crossref] [PubMed]

Barkov, L. M.

L. M. Barkov and M. S. Zolotorev “Observation of parity nonconservation in atomic transitions,” JETP Lett. 27, 357–361 (1978); “Parity nonconservation in bismuth atoms and neutral weak-interaction current,” Sov. Phys. 52, 360–369 (1980); J. H. Hollister, G. R. Apperson, L. L. Lewis, T. P. Emmons, T. G. Vold, and E. N. Fortson, “Measurement of parity non-conservation in atomic bismuth,” Phys. Rev. Lett. 46, 643–646 (1981).
[Crossref]

Birich, G. N.

G. N. Birich, Yu V. Bogdanov, S. I. Kanorskii, I. I. Sobel’man, V. N. Sorokin, I. I. Struk, and E. A. Yukov, “Nonconservation of parity in atomic bismuth,” Sov. Phys. JETP 60, 442–449 (1984).

Bogdanov, Yu V.

G. N. Birich, Yu V. Bogdanov, S. I. Kanorskii, I. I. Sobel’man, V. N. Sorokin, I. I. Struk, and E. A. Yukov, “Nonconservation of parity in atomic bismuth,” Sov. Phys. JETP 60, 442–449 (1984).

Bouchiat, C.

C. Bouchiat and M. A. Bouchiat, “Amplification of the electroweak left-right asymmetry in atoms by stimulated emission,” Z. Phys. D 36, 105–117 (1996).
[Crossref]

M. A. Bouchiat and C. Bouchiat, “Parity violation induced by weak neutral currents in atomic physics,” J. Phys. (France) 36, 493–509 (1975); M. A. Bouchiat and L. Pottier, “Observation of the 6S1/2–7S1/2 single-photon transition of cesium induced by an external d.c. electric field,” J. Phys. (France) Lett. 36, 189–192 (1975).
[Crossref]

Bouchiat, M. A.

C. Bouchiat and M. A. Bouchiat, “Amplification of the electroweak left-right asymmetry in atoms by stimulated emission,” Z. Phys. D 36, 105–117 (1996).
[Crossref]

M. A. Bouchiat, J. Guéna, Ph. Jacquier, M. Lintz, and M. D. Plimmer, “Two-beam linear magneto-optical spectroscopy of atomic transitions between short lived states,” Z. Phys. D 33, 89–95 (1995).
[Crossref]

M. A. Bouchiat, D. Chauvat, J. Guéna, Ph. Jacquier, M. Lintz, and M. D. Plimmer, “High precision balanced mode polarimetry with a pulsed laser beam,” Opt. Commun. 119, 403–414 (1995).
[Crossref]

M. A. Bouchiat, J. Guéna, Ph. Jacquier, M. Lintz, and L. Pottier, “From linear amplification to triggered superradiance,” J. Phys. II (France) 2, 727–747 (1992).
[Crossref]

M. A. Bouchiat, J. Guéna, Ph. Jacquier, M. Lintz, and L. Pottier, “Experimental progress using nonlinear optics for precision measurements of the nuclear weak charge in the 6S–7S Cs transition,” Opt. Commun. 77, 374–380 (1990); M. A. Bouchiat, J. Guéna, Ph. Jacquier, M. Lintz, and M. D. Plimmer, “Towards a measurement of parity violation in the 6S–7S transition of atomic cesium via pulsed excitation and detection by stimulated emission,” Fourteenth International Conference on Atomic Physics, Boulder, August, 1994, poster 1D-6.
[Crossref]

M. A. Bouchiat and L. Pottier, “Optical experiments and weak interactions,” Science 234, 1203–1210 (1986).
[Crossref] [PubMed]

M. A. Bouchiat, Ph. Jacquier, M. Lintz, and L. Pottier, “Parity violation in forbidden transition: detection of the electroweak alignment or polarization in the upper state by stimulated emission,” Opt. Commun. 56, 100–106 (1985).
[Crossref]

M. A. Bouchiat, J. Guéna, L. Hunter, and L. Pottier, “Observation of a parity violation in cesium,” Phys. Lett. B 117, 358–364 (1982); “New observation of parity violation in cesium,” Phys. Lett. B 134, 463–467 (1984); “Atomic parity violation measurements in the highly forbidden 6S1/2–7S1/2 caesium transition. III.  Data acquisition and processing. Results and implications,” J. Phys. (France) 47, 1709–1730 (1986); S. L. Gilbert, M. C. Noecker, R. N. Watts, and C. E. Wieman, “Measurement of parity nonconservation in atomic cesium,” Phys. Rev. Lett. 55, 2680–2683 (1985); S. L. Gilbert and C. E. Wieman, “Atomic beam-measurement of parity nonconservation in cesium,” Phys. Rev. A 34, 792–803 (1986); M. C. Noecker, B. P. Masterson, and C. E. Wieman, “Precision measurement of parity nonconservation in atomic cesium,” Phys. Rev. Lett. 61, 310–313 (1988).
[Crossref] [PubMed]

M. A. Bouchiat and L. Pottier, “A high-purity circular polarization modulator,” Opt. Commun. 37, 229–233 (1981).
[Crossref]

M. A. Bouchiat and C. Bouchiat, “Parity violation induced by weak neutral currents in atomic physics,” J. Phys. (France) 36, 493–509 (1975); M. A. Bouchiat and L. Pottier, “Observation of the 6S1/2–7S1/2 single-photon transition of cesium induced by an external d.c. electric field,” J. Phys. (France) Lett. 36, 189–192 (1975).
[Crossref]

Bucksbaum, P. H.

P. H. Bucksbaum, E. D. Commins, and L. R. Hunter, “Observations of parity nonconservation in atomic thallium,” Phys. Rev. D 24, 1134–1148 (1981); P. Drell and E. D. Commins, “Parity nonconservation in atomic thallium,” Phys. Rev. Lett. 53, 968–971 (1984); “Observation of parity nonconservation in atomic thallium,” Phys. Rev. A 32, 2196–2210 (1985).
[Crossref]

Cave, T.

Chauvat, D.

M. A. Bouchiat, D. Chauvat, J. Guéna, Ph. Jacquier, M. Lintz, and M. D. Plimmer, “High precision balanced mode polarimetry with a pulsed laser beam,” Opt. Commun. 119, 403–414 (1995).
[Crossref]

Commins, E. D.

P. H. Bucksbaum, E. D. Commins, and L. R. Hunter, “Observations of parity nonconservation in atomic thallium,” Phys. Rev. D 24, 1134–1148 (1981); P. Drell and E. D. Commins, “Parity nonconservation in atomic thallium,” Phys. Rev. Lett. 53, 968–971 (1984); “Observation of parity nonconservation in atomic thallium,” Phys. Rev. A 32, 2196–2210 (1985).
[Crossref]

Dijkstra, G.

Edwards, N. H.

N. H. Edwards, S. J. Phipp, P. E. G. Baird, and S. Nakayama, “Precise measurement of parity nonconserving optical rotation in atomic thallium,” Phys. Rev. Lett. 74, 2654–2657 (1995); P. A. Vetter, D. M. Meekhof, P. K. Majumder, S. K. Lamoreaux, and E. N. Fortson, “Precise test of electroweak theory from a new measurement of parity nonconservation in atomic thallium,” Phys. Rev. Lett. 74, 2658–2661 (1995).
[Crossref] [PubMed]

Fortson, E. N.

D. M. Meekhof, P. Vetter, P. K. Majumder, S. K. Lamoreaux, and E. N. Fortson, “High-precision measurement of parity nonconserving optical rotation in atomic lead,” Phys. Rev. Lett. 71, 3442–3445 (1993).
[Crossref] [PubMed]

Guéna, J.

M. A. Bouchiat, J. Guéna, Ph. Jacquier, M. Lintz, and M. D. Plimmer, “Two-beam linear magneto-optical spectroscopy of atomic transitions between short lived states,” Z. Phys. D 33, 89–95 (1995).
[Crossref]

M. A. Bouchiat, D. Chauvat, J. Guéna, Ph. Jacquier, M. Lintz, and M. D. Plimmer, “High precision balanced mode polarimetry with a pulsed laser beam,” Opt. Commun. 119, 403–414 (1995).
[Crossref]

M. A. Bouchiat, J. Guéna, Ph. Jacquier, M. Lintz, and L. Pottier, “From linear amplification to triggered superradiance,” J. Phys. II (France) 2, 727–747 (1992).
[Crossref]

M. A. Bouchiat, J. Guéna, Ph. Jacquier, M. Lintz, and L. Pottier, “Experimental progress using nonlinear optics for precision measurements of the nuclear weak charge in the 6S–7S Cs transition,” Opt. Commun. 77, 374–380 (1990); M. A. Bouchiat, J. Guéna, Ph. Jacquier, M. Lintz, and M. D. Plimmer, “Towards a measurement of parity violation in the 6S–7S transition of atomic cesium via pulsed excitation and detection by stimulated emission,” Fourteenth International Conference on Atomic Physics, Boulder, August, 1994, poster 1D-6.
[Crossref]

M. A. Bouchiat, J. Guéna, L. Hunter, and L. Pottier, “Observation of a parity violation in cesium,” Phys. Lett. B 117, 358–364 (1982); “New observation of parity violation in cesium,” Phys. Lett. B 134, 463–467 (1984); “Atomic parity violation measurements in the highly forbidden 6S1/2–7S1/2 caesium transition. III.  Data acquisition and processing. Results and implications,” J. Phys. (France) 47, 1709–1730 (1986); S. L. Gilbert, M. C. Noecker, R. N. Watts, and C. E. Wieman, “Measurement of parity nonconservation in atomic cesium,” Phys. Rev. Lett. 55, 2680–2683 (1985); S. L. Gilbert and C. E. Wieman, “Atomic beam-measurement of parity nonconservation in cesium,” Phys. Rev. A 34, 792–803 (1986); M. C. Noecker, B. P. Masterson, and C. E. Wieman, “Precision measurement of parity nonconservation in atomic cesium,” Phys. Rev. Lett. 61, 310–313 (1988).
[Crossref] [PubMed]

Guest, A.

Guowen, Wang

M. J. Macpherson, D. N. Stacey, P. E. G. Baird, J. P. Hoare, P. G. H. Sandars, K. M. J. Tregidgo, and Wang Guowen, “Parity-nonconserving optical rotation at 876 nm in bismuth,” Europhys. Lett. 4, 811–816 (1987); M. J. D. Macpherson, K. P. Zetie, R. B. Warrington, D. N. Stacey, and J. P. Hoare, “Precise measurement of parity nonconserving optical rotation at 876 nm in atomic bismuth,” Phys. Rev. Lett. 67, 2784–2787 (1991); R. B. Warrington, C. D. Thompson, and D. N. Stacey, “A new measurement of parity-non-conserving optical rotation at 648 nm in atomic bismuth,” Europhys. Lett. 24, 641–646 (1993).
[Crossref] [PubMed]

Hoare, J. P.

M. J. Macpherson, D. N. Stacey, P. E. G. Baird, J. P. Hoare, P. G. H. Sandars, K. M. J. Tregidgo, and Wang Guowen, “Parity-nonconserving optical rotation at 876 nm in bismuth,” Europhys. Lett. 4, 811–816 (1987); M. J. D. Macpherson, K. P. Zetie, R. B. Warrington, D. N. Stacey, and J. P. Hoare, “Precise measurement of parity nonconserving optical rotation at 876 nm in atomic bismuth,” Phys. Rev. Lett. 67, 2784–2787 (1991); R. B. Warrington, C. D. Thompson, and D. N. Stacey, “A new measurement of parity-non-conserving optical rotation at 648 nm in atomic bismuth,” Europhys. Lett. 24, 641–646 (1993).
[Crossref] [PubMed]

Hunter, L.

M. A. Bouchiat, J. Guéna, L. Hunter, and L. Pottier, “Observation of a parity violation in cesium,” Phys. Lett. B 117, 358–364 (1982); “New observation of parity violation in cesium,” Phys. Lett. B 134, 463–467 (1984); “Atomic parity violation measurements in the highly forbidden 6S1/2–7S1/2 caesium transition. III.  Data acquisition and processing. Results and implications,” J. Phys. (France) 47, 1709–1730 (1986); S. L. Gilbert, M. C. Noecker, R. N. Watts, and C. E. Wieman, “Measurement of parity nonconservation in atomic cesium,” Phys. Rev. Lett. 55, 2680–2683 (1985); S. L. Gilbert and C. E. Wieman, “Atomic beam-measurement of parity nonconservation in cesium,” Phys. Rev. A 34, 792–803 (1986); M. C. Noecker, B. P. Masterson, and C. E. Wieman, “Precision measurement of parity nonconservation in atomic cesium,” Phys. Rev. Lett. 61, 310–313 (1988).
[Crossref] [PubMed]

Hunter, L. R.

P. H. Bucksbaum, E. D. Commins, and L. R. Hunter, “Observations of parity nonconservation in atomic thallium,” Phys. Rev. D 24, 1134–1148 (1981); P. Drell and E. D. Commins, “Parity nonconservation in atomic thallium,” Phys. Rev. Lett. 53, 968–971 (1984); “Observation of parity nonconservation in atomic thallium,” Phys. Rev. A 32, 2196–2210 (1985).
[Crossref]

Jacquier, Ph.

M. A. Bouchiat, D. Chauvat, J. Guéna, Ph. Jacquier, M. Lintz, and M. D. Plimmer, “High precision balanced mode polarimetry with a pulsed laser beam,” Opt. Commun. 119, 403–414 (1995).
[Crossref]

M. A. Bouchiat, J. Guéna, Ph. Jacquier, M. Lintz, and M. D. Plimmer, “Two-beam linear magneto-optical spectroscopy of atomic transitions between short lived states,” Z. Phys. D 33, 89–95 (1995).
[Crossref]

M. A. Bouchiat, J. Guéna, Ph. Jacquier, M. Lintz, and L. Pottier, “From linear amplification to triggered superradiance,” J. Phys. II (France) 2, 727–747 (1992).
[Crossref]

M. A. Bouchiat, J. Guéna, Ph. Jacquier, M. Lintz, and L. Pottier, “Experimental progress using nonlinear optics for precision measurements of the nuclear weak charge in the 6S–7S Cs transition,” Opt. Commun. 77, 374–380 (1990); M. A. Bouchiat, J. Guéna, Ph. Jacquier, M. Lintz, and M. D. Plimmer, “Towards a measurement of parity violation in the 6S–7S transition of atomic cesium via pulsed excitation and detection by stimulated emission,” Fourteenth International Conference on Atomic Physics, Boulder, August, 1994, poster 1D-6.
[Crossref]

M. A. Bouchiat, Ph. Jacquier, M. Lintz, and L. Pottier, “Parity violation in forbidden transition: detection of the electroweak alignment or polarization in the upper state by stimulated emission,” Opt. Commun. 56, 100–106 (1985).
[Crossref]

Jones, R. C.

Kanorskii, S. I.

G. N. Birich, Yu V. Bogdanov, S. I. Kanorskii, I. I. Sobel’man, V. N. Sorokin, I. I. Struk, and E. A. Yukov, “Nonconservation of parity in atomic bismuth,” Sov. Phys. JETP 60, 442–449 (1984).

Lai, M.

Lamoreaux, S. K.

D. M. Meekhof, P. Vetter, P. K. Majumder, S. K. Lamoreaux, and E. N. Fortson, “High-precision measurement of parity nonconserving optical rotation in atomic lead,” Phys. Rev. Lett. 71, 3442–3445 (1993).
[Crossref] [PubMed]

Le Floch, A.

Le Grand, Y.

Lintz, M.

M. A. Bouchiat, D. Chauvat, J. Guéna, Ph. Jacquier, M. Lintz, and M. D. Plimmer, “High precision balanced mode polarimetry with a pulsed laser beam,” Opt. Commun. 119, 403–414 (1995).
[Crossref]

M. A. Bouchiat, J. Guéna, Ph. Jacquier, M. Lintz, and M. D. Plimmer, “Two-beam linear magneto-optical spectroscopy of atomic transitions between short lived states,” Z. Phys. D 33, 89–95 (1995).
[Crossref]

M. A. Bouchiat, J. Guéna, Ph. Jacquier, M. Lintz, and L. Pottier, “From linear amplification to triggered superradiance,” J. Phys. II (France) 2, 727–747 (1992).
[Crossref]

M. A. Bouchiat, J. Guéna, Ph. Jacquier, M. Lintz, and L. Pottier, “Experimental progress using nonlinear optics for precision measurements of the nuclear weak charge in the 6S–7S Cs transition,” Opt. Commun. 77, 374–380 (1990); M. A. Bouchiat, J. Guéna, Ph. Jacquier, M. Lintz, and M. D. Plimmer, “Towards a measurement of parity violation in the 6S–7S transition of atomic cesium via pulsed excitation and detection by stimulated emission,” Fourteenth International Conference on Atomic Physics, Boulder, August, 1994, poster 1D-6.
[Crossref]

M. A. Bouchiat, Ph. Jacquier, M. Lintz, and L. Pottier, “Parity violation in forbidden transition: detection of the electroweak alignment or polarization in the upper state by stimulated emission,” Opt. Commun. 56, 100–106 (1985).
[Crossref]

Macpherson, M. J.

M. J. Macpherson, D. N. Stacey, P. E. G. Baird, J. P. Hoare, P. G. H. Sandars, K. M. J. Tregidgo, and Wang Guowen, “Parity-nonconserving optical rotation at 876 nm in bismuth,” Europhys. Lett. 4, 811–816 (1987); M. J. D. Macpherson, K. P. Zetie, R. B. Warrington, D. N. Stacey, and J. P. Hoare, “Precise measurement of parity nonconserving optical rotation at 876 nm in atomic bismuth,” Phys. Rev. Lett. 67, 2784–2787 (1991); R. B. Warrington, C. D. Thompson, and D. N. Stacey, “A new measurement of parity-non-conserving optical rotation at 648 nm in atomic bismuth,” Europhys. Lett. 24, 641–646 (1993).
[Crossref] [PubMed]

Majumder, P. K.

D. M. Meekhof, P. Vetter, P. K. Majumder, S. K. Lamoreaux, and E. N. Fortson, “High-precision measurement of parity nonconserving optical rotation in atomic lead,” Phys. Rev. Lett. 71, 3442–3445 (1993).
[Crossref] [PubMed]

May, A. D.

Meekhof, D. M.

D. M. Meekhof, P. Vetter, P. K. Majumder, S. K. Lamoreaux, and E. N. Fortson, “High-precision measurement of parity nonconserving optical rotation in atomic lead,” Phys. Rev. Lett. 71, 3442–3445 (1993).
[Crossref] [PubMed]

Morris, S. W.

Nakayama, S.

N. H. Edwards, S. J. Phipp, P. E. G. Baird, and S. Nakayama, “Precise measurement of parity nonconserving optical rotation in atomic thallium,” Phys. Rev. Lett. 74, 2654–2657 (1995); P. A. Vetter, D. M. Meekhof, P. K. Majumder, S. K. Lamoreaux, and E. N. Fortson, “Precise test of electroweak theory from a new measurement of parity nonconservation in atomic thallium,” Phys. Rev. Lett. 74, 2658–2661 (1995).
[Crossref] [PubMed]

Phipp, S. J.

N. H. Edwards, S. J. Phipp, P. E. G. Baird, and S. Nakayama, “Precise measurement of parity nonconserving optical rotation in atomic thallium,” Phys. Rev. Lett. 74, 2654–2657 (1995); P. A. Vetter, D. M. Meekhof, P. K. Majumder, S. K. Lamoreaux, and E. N. Fortson, “Precise test of electroweak theory from a new measurement of parity nonconservation in atomic thallium,” Phys. Rev. Lett. 74, 2658–2661 (1995).
[Crossref] [PubMed]

Plimmer, M. D.

M. A. Bouchiat, D. Chauvat, J. Guéna, Ph. Jacquier, M. Lintz, and M. D. Plimmer, “High precision balanced mode polarimetry with a pulsed laser beam,” Opt. Commun. 119, 403–414 (1995).
[Crossref]

M. A. Bouchiat, J. Guéna, Ph. Jacquier, M. Lintz, and M. D. Plimmer, “Two-beam linear magneto-optical spectroscopy of atomic transitions between short lived states,” Z. Phys. D 33, 89–95 (1995).
[Crossref]

Pottier, L.

M. A. Bouchiat, J. Guéna, Ph. Jacquier, M. Lintz, and L. Pottier, “From linear amplification to triggered superradiance,” J. Phys. II (France) 2, 727–747 (1992).
[Crossref]

M. A. Bouchiat, J. Guéna, Ph. Jacquier, M. Lintz, and L. Pottier, “Experimental progress using nonlinear optics for precision measurements of the nuclear weak charge in the 6S–7S Cs transition,” Opt. Commun. 77, 374–380 (1990); M. A. Bouchiat, J. Guéna, Ph. Jacquier, M. Lintz, and M. D. Plimmer, “Towards a measurement of parity violation in the 6S–7S transition of atomic cesium via pulsed excitation and detection by stimulated emission,” Fourteenth International Conference on Atomic Physics, Boulder, August, 1994, poster 1D-6.
[Crossref]

M. A. Bouchiat and L. Pottier, “Optical experiments and weak interactions,” Science 234, 1203–1210 (1986).
[Crossref] [PubMed]

M. A. Bouchiat, Ph. Jacquier, M. Lintz, and L. Pottier, “Parity violation in forbidden transition: detection of the electroweak alignment or polarization in the upper state by stimulated emission,” Opt. Commun. 56, 100–106 (1985).
[Crossref]

M. A. Bouchiat, J. Guéna, L. Hunter, and L. Pottier, “Observation of a parity violation in cesium,” Phys. Lett. B 117, 358–364 (1982); “New observation of parity violation in cesium,” Phys. Lett. B 134, 463–467 (1984); “Atomic parity violation measurements in the highly forbidden 6S1/2–7S1/2 caesium transition. III.  Data acquisition and processing. Results and implications,” J. Phys. (France) 47, 1709–1730 (1986); S. L. Gilbert, M. C. Noecker, R. N. Watts, and C. E. Wieman, “Measurement of parity nonconservation in atomic cesium,” Phys. Rev. Lett. 55, 2680–2683 (1985); S. L. Gilbert and C. E. Wieman, “Atomic beam-measurement of parity nonconservation in cesium,” Phys. Rev. A 34, 792–803 (1986); M. C. Noecker, B. P. Masterson, and C. E. Wieman, “Precision measurement of parity nonconservation in atomic cesium,” Phys. Rev. Lett. 61, 310–313 (1988).
[Crossref] [PubMed]

M. A. Bouchiat and L. Pottier, “A high-purity circular polarization modulator,” Opt. Commun. 37, 229–233 (1981).
[Crossref]

Raterink, J.

Read, S. C.

Sandars, P. G. H.

M. J. Macpherson, D. N. Stacey, P. E. G. Baird, J. P. Hoare, P. G. H. Sandars, K. M. J. Tregidgo, and Wang Guowen, “Parity-nonconserving optical rotation at 876 nm in bismuth,” Europhys. Lett. 4, 811–816 (1987); M. J. D. Macpherson, K. P. Zetie, R. B. Warrington, D. N. Stacey, and J. P. Hoare, “Precise measurement of parity nonconserving optical rotation at 876 nm in atomic bismuth,” Phys. Rev. Lett. 67, 2784–2787 (1991); R. B. Warrington, C. D. Thompson, and D. N. Stacey, “A new measurement of parity-non-conserving optical rotation at 648 nm in atomic bismuth,” Europhys. Lett. 24, 641–646 (1993).
[Crossref] [PubMed]

Sardyko, V. I.

A. P. Voitovich and V. I. Sardyko, “Intracavity laser measurements of natural optical activity,” Opt. Spectrosk. 53, 644–648 (1982).

Shelton, D.

Sobel’man, I. I.

G. N. Birich, Yu V. Bogdanov, S. I. Kanorskii, I. I. Sobel’man, V. N. Sorokin, I. I. Struk, and E. A. Yukov, “Nonconservation of parity in atomic bismuth,” Sov. Phys. JETP 60, 442–449 (1984).

Sorokin, V. N.

G. N. Birich, Yu V. Bogdanov, S. I. Kanorskii, I. I. Sobel’man, V. N. Sorokin, I. I. Struk, and E. A. Yukov, “Nonconservation of parity in atomic bismuth,” Sov. Phys. JETP 60, 442–449 (1984).

Stacey, D. N.

M. J. Macpherson, D. N. Stacey, P. E. G. Baird, J. P. Hoare, P. G. H. Sandars, K. M. J. Tregidgo, and Wang Guowen, “Parity-nonconserving optical rotation at 876 nm in bismuth,” Europhys. Lett. 4, 811–816 (1987); M. J. D. Macpherson, K. P. Zetie, R. B. Warrington, D. N. Stacey, and J. P. Hoare, “Precise measurement of parity nonconserving optical rotation at 876 nm in atomic bismuth,” Phys. Rev. Lett. 67, 2784–2787 (1991); R. B. Warrington, C. D. Thompson, and D. N. Stacey, “A new measurement of parity-non-conserving optical rotation at 648 nm in atomic bismuth,” Europhys. Lett. 24, 641–646 (1993).
[Crossref] [PubMed]

Struk, I. I.

G. N. Birich, Yu V. Bogdanov, S. I. Kanorskii, I. I. Sobel’man, V. N. Sorokin, I. I. Struk, and E. A. Yukov, “Nonconservation of parity in atomic bismuth,” Sov. Phys. JETP 60, 442–449 (1984).

Tregidgo, K. M. J.

M. J. Macpherson, D. N. Stacey, P. E. G. Baird, J. P. Hoare, P. G. H. Sandars, K. M. J. Tregidgo, and Wang Guowen, “Parity-nonconserving optical rotation at 876 nm in bismuth,” Europhys. Lett. 4, 811–816 (1987); M. J. D. Macpherson, K. P. Zetie, R. B. Warrington, D. N. Stacey, and J. P. Hoare, “Precise measurement of parity nonconserving optical rotation at 876 nm in atomic bismuth,” Phys. Rev. Lett. 67, 2784–2787 (1991); R. B. Warrington, C. D. Thompson, and D. N. Stacey, “A new measurement of parity-non-conserving optical rotation at 648 nm in atomic bismuth,” Europhys. Lett. 24, 641–646 (1993).
[Crossref] [PubMed]

vanden Stadt, H.

Vansteenkiste, N.

Velzel, C. H. F.

Vetter, P.

D. M. Meekhof, P. Vetter, P. K. Majumder, S. K. Lamoreaux, and E. N. Fortson, “High-precision measurement of parity nonconserving optical rotation in atomic lead,” Phys. Rev. Lett. 71, 3442–3445 (1993).
[Crossref] [PubMed]

Vignolo, P.

Voitovich, A. P.

A. P. Voitovich and V. I. Sardyko, “Intracavity laser measurements of natural optical activity,” Opt. Spectrosk. 53, 644–648 (1982).

Yukov, E. A.

G. N. Birich, Yu V. Bogdanov, S. I. Kanorskii, I. I. Sobel’man, V. N. Sorokin, I. I. Struk, and E. A. Yukov, “Nonconservation of parity in atomic bismuth,” Sov. Phys. JETP 60, 442–449 (1984).

Zolotorev, M. S.

L. M. Barkov and M. S. Zolotorev “Observation of parity nonconservation in atomic transitions,” JETP Lett. 27, 357–361 (1978); “Parity nonconservation in bismuth atoms and neutral weak-interaction current,” Sov. Phys. 52, 360–369 (1980); J. H. Hollister, G. R. Apperson, L. L. Lewis, T. P. Emmons, T. G. Vold, and E. N. Fortson, “Measurement of parity non-conservation in atomic bismuth,” Phys. Rev. Lett. 46, 643–646 (1981).
[Crossref]

Appl. Opt. (1)

Europhys. Lett. (1)

M. J. Macpherson, D. N. Stacey, P. E. G. Baird, J. P. Hoare, P. G. H. Sandars, K. M. J. Tregidgo, and Wang Guowen, “Parity-nonconserving optical rotation at 876 nm in bismuth,” Europhys. Lett. 4, 811–816 (1987); M. J. D. Macpherson, K. P. Zetie, R. B. Warrington, D. N. Stacey, and J. P. Hoare, “Precise measurement of parity nonconserving optical rotation at 876 nm in atomic bismuth,” Phys. Rev. Lett. 67, 2784–2787 (1991); R. B. Warrington, C. D. Thompson, and D. N. Stacey, “A new measurement of parity-non-conserving optical rotation at 648 nm in atomic bismuth,” Europhys. Lett. 24, 641–646 (1993).
[Crossref] [PubMed]

J. Opt. Soc. Am. (2)

J. Opt. Soc. Am. A (1)

J. Opt. Soc. Am. B (1)

J. Phys. (France) (1)

M. A. Bouchiat and C. Bouchiat, “Parity violation induced by weak neutral currents in atomic physics,” J. Phys. (France) 36, 493–509 (1975); M. A. Bouchiat and L. Pottier, “Observation of the 6S1/2–7S1/2 single-photon transition of cesium induced by an external d.c. electric field,” J. Phys. (France) Lett. 36, 189–192 (1975).
[Crossref]

J. Phys. II (France) (1)

M. A. Bouchiat, J. Guéna, Ph. Jacquier, M. Lintz, and L. Pottier, “From linear amplification to triggered superradiance,” J. Phys. II (France) 2, 727–747 (1992).
[Crossref]

JETP Lett. (1)

L. M. Barkov and M. S. Zolotorev “Observation of parity nonconservation in atomic transitions,” JETP Lett. 27, 357–361 (1978); “Parity nonconservation in bismuth atoms and neutral weak-interaction current,” Sov. Phys. 52, 360–369 (1980); J. H. Hollister, G. R. Apperson, L. L. Lewis, T. P. Emmons, T. G. Vold, and E. N. Fortson, “Measurement of parity non-conservation in atomic bismuth,” Phys. Rev. Lett. 46, 643–646 (1981).
[Crossref]

Opt. Commun. (4)

M. A. Bouchiat, D. Chauvat, J. Guéna, Ph. Jacquier, M. Lintz, and M. D. Plimmer, “High precision balanced mode polarimetry with a pulsed laser beam,” Opt. Commun. 119, 403–414 (1995).
[Crossref]

M. A. Bouchiat and L. Pottier, “A high-purity circular polarization modulator,” Opt. Commun. 37, 229–233 (1981).
[Crossref]

M. A. Bouchiat, Ph. Jacquier, M. Lintz, and L. Pottier, “Parity violation in forbidden transition: detection of the electroweak alignment or polarization in the upper state by stimulated emission,” Opt. Commun. 56, 100–106 (1985).
[Crossref]

M. A. Bouchiat, J. Guéna, Ph. Jacquier, M. Lintz, and L. Pottier, “Experimental progress using nonlinear optics for precision measurements of the nuclear weak charge in the 6S–7S Cs transition,” Opt. Commun. 77, 374–380 (1990); M. A. Bouchiat, J. Guéna, Ph. Jacquier, M. Lintz, and M. D. Plimmer, “Towards a measurement of parity violation in the 6S–7S transition of atomic cesium via pulsed excitation and detection by stimulated emission,” Fourteenth International Conference on Atomic Physics, Boulder, August, 1994, poster 1D-6.
[Crossref]

Opt. Lett. (1)

Opt. Spectrosk. (1)

A. P. Voitovich and V. I. Sardyko, “Intracavity laser measurements of natural optical activity,” Opt. Spectrosk. 53, 644–648 (1982).

Phys. Lett. B (1)

M. A. Bouchiat, J. Guéna, L. Hunter, and L. Pottier, “Observation of a parity violation in cesium,” Phys. Lett. B 117, 358–364 (1982); “New observation of parity violation in cesium,” Phys. Lett. B 134, 463–467 (1984); “Atomic parity violation measurements in the highly forbidden 6S1/2–7S1/2 caesium transition. III.  Data acquisition and processing. Results and implications,” J. Phys. (France) 47, 1709–1730 (1986); S. L. Gilbert, M. C. Noecker, R. N. Watts, and C. E. Wieman, “Measurement of parity nonconservation in atomic cesium,” Phys. Rev. Lett. 55, 2680–2683 (1985); S. L. Gilbert and C. E. Wieman, “Atomic beam-measurement of parity nonconservation in cesium,” Phys. Rev. A 34, 792–803 (1986); M. C. Noecker, B. P. Masterson, and C. E. Wieman, “Precision measurement of parity nonconservation in atomic cesium,” Phys. Rev. Lett. 61, 310–313 (1988).
[Crossref] [PubMed]

Phys. Rev. D (1)

P. H. Bucksbaum, E. D. Commins, and L. R. Hunter, “Observations of parity nonconservation in atomic thallium,” Phys. Rev. D 24, 1134–1148 (1981); P. Drell and E. D. Commins, “Parity nonconservation in atomic thallium,” Phys. Rev. Lett. 53, 968–971 (1984); “Observation of parity nonconservation in atomic thallium,” Phys. Rev. A 32, 2196–2210 (1985).
[Crossref]

Phys. Rev. Lett. (2)

D. M. Meekhof, P. Vetter, P. K. Majumder, S. K. Lamoreaux, and E. N. Fortson, “High-precision measurement of parity nonconserving optical rotation in atomic lead,” Phys. Rev. Lett. 71, 3442–3445 (1993).
[Crossref] [PubMed]

N. H. Edwards, S. J. Phipp, P. E. G. Baird, and S. Nakayama, “Precise measurement of parity nonconserving optical rotation in atomic thallium,” Phys. Rev. Lett. 74, 2654–2657 (1995); P. A. Vetter, D. M. Meekhof, P. K. Majumder, S. K. Lamoreaux, and E. N. Fortson, “Precise test of electroweak theory from a new measurement of parity nonconservation in atomic thallium,” Phys. Rev. Lett. 74, 2658–2661 (1995).
[Crossref] [PubMed]

Science (1)

M. A. Bouchiat and L. Pottier, “Optical experiments and weak interactions,” Science 234, 1203–1210 (1986).
[Crossref] [PubMed]

Sov. Phys. JETP (1)

G. N. Birich, Yu V. Bogdanov, S. I. Kanorskii, I. I. Sobel’man, V. N. Sorokin, I. I. Struk, and E. A. Yukov, “Nonconservation of parity in atomic bismuth,” Sov. Phys. JETP 60, 442–449 (1984).

Z. Phys. D (2)

C. Bouchiat and M. A. Bouchiat, “Amplification of the electroweak left-right asymmetry in atoms by stimulated emission,” Z. Phys. D 36, 105–117 (1996).
[Crossref]

M. A. Bouchiat, J. Guéna, Ph. Jacquier, M. Lintz, and M. D. Plimmer, “Two-beam linear magneto-optical spectroscopy of atomic transitions between short lived states,” Z. Phys. D 33, 89–95 (1995).
[Crossref]

Other (2)

By inserting a λ/4 plate with axes x and y between the λ/2 plate and the linear analyzer, one obtains an analyzer system for circular components of the probe field. Again it delivers true polarization signals, thanks to the insertion and removal of the λ/2 plate.

Δν-even signals are very similar to signals at resonance center but may have small additional contributions associated with the frequency shift (see Appendix A). Consequently we prefer to use signals at resonance center for the compensation procedure and keep Δν-even ones as a control.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

(a) Levels of cesium relevant to our experiment. (b) Amplification spectra of the probe beam with a linearly polarized pump ex. The amplification is exp(a) and the plotted parameter is a. Excitation is kept resonant for the E-induced transition 6S(F=3)7S(F=4). The probe frequency is swept over the hfs of the 7S1/26P3/2 detection line. The probe pulse duration is 20 ns. The very different amplification parameters for pr parallel or orthogonal to ex show the large probe linear dichroism that is due to the alignment prepared in the 7S state, with axes parallel and orthogonal to ex. (c) Double imbalance ΔD spectrum associated with a circular pump polarization (ξex =1). The probe is linearly polarized. The excitation laser is resonant for the hf transition 6S(F=3)7S(F=4), and the probe frequency is swept over the 7S1/26P3/2 hfs. An offset due to the wing of the 4–5 dispersive line appears at the 4–4 center frequency.

Fig. 2
Fig. 2

After each optical component, the optical axes are specified in parentheses: Gex, Gpr, Glan prism polarizers (y); (λ/2)ex, (λ/2)pr, insertable half-wave plates (X, Y); FM, Faraday modulator; (λ)ex, (λ)pr, whole-wave plates for birefringence compensation; Md, dichroic mirrors, for recombination and separation of the excitation and the probe beams; P, glass plate with one antireflection-coated face; Polex, Polpr, analyzers (X, Y) (see inset); Win, input window of the cesium cell. Only the optical components relevant to the present discussion are shown. In particular, position meters used to monitor the positions of the two beams are absent from the figure. Inset: Internal optical components of one analyzer system: (λ/2), (λ/4), insertable half- and quarter-wave plates (x, y); PBS, polarizing beam-splitter cube (X, Y); other components are described in Ref. 5.

Fig. 3
Fig. 3

Test of the servo loop for fine cancellation of E-even signals; sample of records of the E-even calibrated double imbalance ΔD*. Both excitation and probe lasers are kept resonant with the 6S(F=3)7S(F=4)6P3/2(F=4) transitions. Excitation polarization is maintained along y, and probe polarization is either (a) x or (b) y. Also plotted for each configuration is the Faraday modulator offset θcor by which the E-even imbalance is compensated. Each point is the average of 1600 double pulses. (a) ΔD*=(+13±4)×10-6 rad for pr=x and (b) ΔD* =(-10±6)×10-6 rad for pr=y. (in these averages the first points with no correction applied are omitted).

Tables (2)

Tables Icon

Table 1 Different Contributions to the Calibrated Linear Dichroism γ1* and Optical Activity α2* Resonance Centera

Tables Icon

Table 2 Different Contributions to the Calibrated Δν-Odd Linear Dichroism γ1* and Optical Activity α2*a

Equations (50)

Equations on this page are rendered with MathJax. Learn more.

D=(SX-SY)/(SX+SY),
ΔD=Damp-Dref.
out=Mopt·in
Mopt=1+(γ1+iα1)σ1+(γ2+iα2)σ2+(γ3+iα3)σ3,
σ1=0110,σ2=0-ii0,σ3=100-1,
Mat=Aat{1+(Γ3at+iA3at)σ3+(1+iδ3at)×[(γ1at+iα1at)σ1+(γ2at+iα2at)σ2]},
ΔDy=(2θyex)[2Γ3at/(1-Γ3at)]forpr=y,
ΔDx=(2θyex)[2Γ3at/(1+Γ3at)]forpr=x.
γ1*=(1/2)(ΔDy*+ΔDx*),
ΔDu*=θcal[ΔDu(θcaleven)/ΔDu(θcalodd)],
u=xory.
α2*=(1/2)(ΔDy*-ΔDx*).
Mat=Aat[1+(Γ3at+iA3at)σ3],
A3at(A3at/ν)Δν.
M˜pr=1+(γ˜1pr+iα˜1pr)σ1+(γ˜2pr+iα˜2pr)σ2+(γ˜3pr+iα˜3pr)σ3,
γ˜1pr=γ1pr+ψpr,
α˜2pr=α2pr-ψpr,
α˜1pr=α1pr+φpr/4,
γ˜2pr=γ2pr-φpr/4.
Mtot=Mat·M˜pr=Aat×[1+(γ1tot+iα1tot)σ1+(γ2tot+iα2tot)σ2+(γ3tot+iα3tot)σ3].
ΔDu=2(γ1tot±α2tot)±Γ3at(γ˜1pr±α˜2pr),
α2*(ν0)=γ˜1pr,
γ1*(ν0)=α˜2pr.
ΔDu=2(γ1tot±α2tot)(Δν odd)±A3at(α˜1pr±γ˜2pr).
γ1*(Δν odd)=Bprγ˜2pr,
α2*(Δν odd)=Bprα˜1pr,
α˜2pr=α2pr+γ1pr,
ΔD*(upr, vex)=θvex-θupr,u, vin{x, y},
Mat(z)z=K¯·Mat(z),
K¯=j=03(g¯j+ia¯j)σj=j=03k¯jσj,
K¯=K¯(0)+K¯(1),
K¯(0)=k¯0+k¯300k¯0-k¯3,
K¯(1)=0k¯1-ik¯2k¯1+ik¯20,
Mat(z)=M(0)(z)·M˜(1)(z),
M(0)(z)z=K¯(0)·M(0)(z),
M˜(1)(z)z=[(M(0))-1(z)·K¯(1)·M(0)(z)]·M˜(1)(z),
M˜(1)(z)=1+z=0z=z[(M(0))-1(z)·K¯(1)·M(0)(z)]dz.
Mat=Mat(L)=exp(g0+ia0)×exp(g3+ia3)sinh(g3+ia3)g3+ia3[(g1+a2)+i(-g2+a1)]sinh(g3+ia3)g3+ia3[(g1-a2)+i(g2+a1)]exp(-g3-ia3),
Mat=Aat{1+(Γ3at+iA3at)σ3+(1+iδ3at)×[(γ1at+iα1at)σ1+(γ2at+iα2at)σ2]}
Aat=exp(g0+ia0)cosh(g3),
Γ3at=tanh(g3){1-[sin(a3)/cosh(g3)]2}-1,
A3at=tan(a3){1+[sinh(g3)/cos(a3)]2}-1,
δ3at=a3g3A3ata3g3Γ3at-1A3atΓ3ata3g3+1-1,
γjat=Katgj,αjat=Kataj,j{1,2},
Kat=Γ3atg31+A3ata3Γ3atg31+a3g32-1.
D=(SX-SY)/(SX+SY)=2 Re(xy*)/(|x|2+|y|2).
ΔDu*=(γ1at±α2at)A3at(1Γ3at)(γ2at+α1at)×12·Γ3at1+A3at1Γ3at2-1,
α2*=α2at-α1atA3at1-(Γ3at)2+γ2atA3atΓ3at1-(Γ3at)2(2Γ3at)-1,
γ1*=γ1at+γ2atA3at1-(Γ3at)2-α1atA3atΓ3at1-(Γ3at)2(2Γ3at)-1.
α2*(Δνodd)=α2at(ξex)+γ2at(ξex)A3atΓ3at1-(Γ3at)2(2Γ3at)-1ξex.

Metrics