Abstract

The growth in the uses of lithium niobate for infrared applications has created a need for knowledge of its optical characteristics in the infrared spectral region for the purpose of designing phase-matched or quasi-phase-matched devices. We report measurements of the refractive indices of congruently grown lithium niobate and lithium niobate doped with 5 mol. % magnesium oxide. We use these results to predict the tuning curve of a room-temperature multigrating optical parametric oscillator in each material.

© 1997 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |

  1. T. K. Minton, S. A. Reid, H. L. Kim, and J. D. McDonald, “A scanning single mode LiNbO3 optical parametric oscillator,” Opt. Commun. 69, 289 (1989).
    [CrossRef]
  2. D. C. Gerstenberger, G. E. Tye, and R. W. Wallace, “Efficient second-harmonic conversion of cw single-frequency Nd:YAG laser light by frequency locking to a monolithic ring frequency doubler,” Opt. Lett. 16, 992 (1991).
    [CrossRef] [PubMed]
  3. C. D. Nabors, R. C. Eckardt, W. J. Kozlovsky, and R. L. Byer, “Efficient, single axial mode operation of a monolithic MgO:LiNbO3 optical parametric oscillator,” Opt. Lett. 14, 1134 (1989).
    [CrossRef] [PubMed]
  4. Ya-lin Lu, Lun Mao, and Nai-ben Ming, “Blue-light generation by frequency doubling of an 810-nm cd GaAlAs diode laser in a quasi-phase matched LiNbO3 crystal,” Opt. Lett. 19, 1037 (1994).
    [CrossRef] [PubMed]
  5. G. Breitenbach, S. Schiller, and J. Mlynek, “81% conversion efficiency in frequency stable continuous wave parametric oscillation,” J. Opt. Soc. Am. B 12, 2095 (1995).
    [CrossRef]
  6. D. F. Nelson and R. M. Mikulyak, “Refractive indices of congruently melting lithium niobate,” J. Appl. Phys. 45, 3688 (1974).
    [CrossRef]
  7. G. D. Boyd, R. C. Miller, K. Nassau, W. L. Bond, and A. Savage, “LiNbO3: an efficient phase matchable nonlinear optical material,” Appl. Phys. Lett. 5, 934 (1964).
    [CrossRef]
  8. G. D. Boyd, W. L. Bond, and H. L. Carter, “Refractive index as a function of temperature in LiNbO3,”J. Appl. Phys. 38, 1941 (1964).
    [CrossRef]
  9. S. D. Smith, H. D. Riccius, and R. P. Edwin, “Refractive indices of lithium niobate,” Opt. Commun. 17, 332 (1976); errata 20, 188 (1977).
    [CrossRef]
  10. G. J. Edwards and M. Lawrence, “A temperature dependent dispersion equation for congruently grown lithium niobate,” Opt. Quantum Electron. 16, 373 (1984).
    [CrossRef]
  11. U. Schlarb and K. Betzler, “Refractive indices of lithium niobate as function of wavelength and composition,” J. Appl. Phys. 73, 3472 (1993).
    [CrossRef]
  12. U. Schlarb and K. Betzler, “Refractive indices of lithium niobate as function of temperature, wavelength, and composition: a generalized fit,” Phys. Rev. B 48, 15613 (1993).
  13. W. R. Bosenberg, A. Drobshoff, J. I. Alexander, L. E. Myers, and R. L. Byer, “Continuous wave singly resonant optical parametric oscillator based on periodically poled LiNbO3,” Opt. Lett. 21, 713 (1996).
    [PubMed]
  14. M. L. Bortz, M. A. Arbore, and M. M. Fejer, “Quasi-phase- matched optical parametric amplification and oscillation in periodically poled LiNbO3 waveguides,” Opt. Lett. 20, 49 (1995).
    [PubMed]
  15. L. E. Myers, R. C. Eckardt, M. M. Fejer, R. L. Byer, W. R. Bosenberg, and J. W. Pierce, “Quasi-phase-matched optical parametric oscillators in bulk periodically poled LiNbO3,”J. Opt. Soc. Am. B 12, 2102 (1995).
  16. L. E. Myers, R. C. Eckardt, M. M. Fejer, R. L. Byer, and W. R. Bosenberg, “Multigrating quasi-phase-matched optical parametric oscillator in periodically poled LiNbO3,”Opt. Lett. 21, 591 (1996).
    [PubMed]
  17. L. E. Myers, G. D. Miller, R. C. Eckardt, M. M. Fejer, R. L. Byer, and W. R. Bosenberg, “Quasi-phase-matched 1.064-μm pumped optical parametric oscillator in bulk periodically poled LiNbO3,”,”Opt. Lett. 20, 52 (1995).
    [PubMed]
  18. A. Balakrishnan, S. Sanders, S. DeMars, J. Webjörn, D. W. Nam, R. J. Lang, D. G. Mehuys, R. G. Waarts, and D. F. Welch, “Broadly tunable laser-diode-based mid-infrared source with up to 31 μW of power at 4.3-μm wavelength,” Opt. Lett. 21, 952 (1996).
    [PubMed]
  19. M. Yamada, N. Nada, M. Saitoh, and K. Watanabe, “First order quasi-phase-matched LiNbO3 waveguide periodically poled by applying an external field for efficient blue second-harmonic generation,” Appl. Phys. Lett. 62, 435 (1993).
  20. H. Y. Shen, H. Xu, Z. D. Zeng, W. X. Lin, R. F. Wu, and G. F. Xu, “Measurement of refractive indices and thermal refractive index coefficients of LiNbO3 crystal doped with 5 mol. % MgO,” Appl. Opt. 31, 6695 (1992).
    [PubMed]
  21. U. Schlarb and K. Betzler, “Influence of the defect structure on the refractive indices of undoped and Mg-doped lithium niobate,” Phys. Rev. B 50, 751 (1994).
    [CrossRef]
  22. D. Yu. Sugak, A. O. Matkovskii, I. M. Solskii, I. V. Stefanskii, V. M. Gaba, A. T. Mikhalevich, V. V. Grabovskii, V. I. Prokhorenko, B. N. Kopko, and V. Ya. Oliinyk, “Growth and Investigation of LiNbO3:MgO single crystals,” in Nonlinear Optics of Liquid and Photorefractive Crystals, G. V. Klimusheva and A. G. Iljin, eds., Proc. SPIE 2795, 257 (1996).
    [CrossRef]
  23. S. Lin, Y. Tanaka, S. Takeuchi, and T. Suzuki, “Improved dispersion equation for MgO:LiNbO3 crystal in the infrared spectral range derived from sum and difference frequency mixing,” IEEE J. Quantum Electron. 32, 124 (1996).
    [CrossRef]
  24. P. F. Bordui, C. D. Bird, R. Blachman, R. G. Schlecht, and C. I. Zanelli, “Recent developments in growth and characterization of magnesium-doped lithium niobate,” presented at the Thirty-eighth Sagamore Army Materials Research Conference, Watertown, Mass., 1991.
  25. P. F. Bordui, R. G. Norwood, C. D. Bird, and G. D. Calvert, “Compositional uniformity in growth and poling of large-diameter lithium niobate crystals,” J. Cryst. Growth 113, 61 (1991).
    [CrossRef]
  26. I. Malitson, “A redetermination of some optical properties of calcium fluoride,” Appl. Opt. 2, 1103 (1963).
    [CrossRef]
  27. N. Uchida, “Two-oscillator description of the optical properties of oxygen octahedra ferroelectrics,” J. Appl. Phys. 44, 2072 (1973).
    [CrossRef]
  28. M. DeDomenico and S. H. Wemple, “Oxygen octahedra ferroelectrics I. Theory of electro-optical and nonlinear optical effects,” J. Appl. Phys. 40, 720 (1969).
    [CrossRef]
  29. A. M. Mamedov, “Optical properties (VUV region) of LiNbO3,”Opt. Spectrosc. (USSR) 56, 645 (1984).
  30. M. Born and E. Wolf, Principles of Optics, 6th ed. (Pergamon, Oxford, 1980), p. 94.
  31. J. D. Axe and D. F. O’Kane, “Infrared dielectric dispersion of LiNbO3,”Appl. Phys. Lett. 9, 58 (1966).
    [CrossRef]
  32. A. S. Barker, Jr., and R. Louden, “Dielectric properties and optical phonons in LiNbO3,”Phys. Rev. 158, 433 (1967).
    [CrossRef]
  33. J. Yao, W. Q. Shi, J. E. Millerd, G. F. Xu, E. Garmire, and M. Birnbaum, “Room temperature 1.06–0.53-μm second-harmonic generation with MgO:LiNbO3,”Opt. Lett. 15, 1339 (1990).
    [CrossRef] [PubMed]

1996 (5)

D. Yu. Sugak, A. O. Matkovskii, I. M. Solskii, I. V. Stefanskii, V. M. Gaba, A. T. Mikhalevich, V. V. Grabovskii, V. I. Prokhorenko, B. N. Kopko, and V. Ya. Oliinyk, “Growth and Investigation of LiNbO3:MgO single crystals,” in Nonlinear Optics of Liquid and Photorefractive Crystals, G. V. Klimusheva and A. G. Iljin, eds., Proc. SPIE 2795, 257 (1996).
[CrossRef]

S. Lin, Y. Tanaka, S. Takeuchi, and T. Suzuki, “Improved dispersion equation for MgO:LiNbO3 crystal in the infrared spectral range derived from sum and difference frequency mixing,” IEEE J. Quantum Electron. 32, 124 (1996).
[CrossRef]

L. E. Myers, R. C. Eckardt, M. M. Fejer, R. L. Byer, and W. R. Bosenberg, “Multigrating quasi-phase-matched optical parametric oscillator in periodically poled LiNbO3,”Opt. Lett. 21, 591 (1996).
[PubMed]

W. R. Bosenberg, A. Drobshoff, J. I. Alexander, L. E. Myers, and R. L. Byer, “Continuous wave singly resonant optical parametric oscillator based on periodically poled LiNbO3,” Opt. Lett. 21, 713 (1996).
[PubMed]

A. Balakrishnan, S. Sanders, S. DeMars, J. Webjörn, D. W. Nam, R. J. Lang, D. G. Mehuys, R. G. Waarts, and D. F. Welch, “Broadly tunable laser-diode-based mid-infrared source with up to 31 μW of power at 4.3-μm wavelength,” Opt. Lett. 21, 952 (1996).
[PubMed]

1995 (4)

1994 (2)

Ya-lin Lu, Lun Mao, and Nai-ben Ming, “Blue-light generation by frequency doubling of an 810-nm cd GaAlAs diode laser in a quasi-phase matched LiNbO3 crystal,” Opt. Lett. 19, 1037 (1994).
[CrossRef] [PubMed]

U. Schlarb and K. Betzler, “Influence of the defect structure on the refractive indices of undoped and Mg-doped lithium niobate,” Phys. Rev. B 50, 751 (1994).
[CrossRef]

1993 (3)

U. Schlarb and K. Betzler, “Refractive indices of lithium niobate as function of wavelength and composition,” J. Appl. Phys. 73, 3472 (1993).
[CrossRef]

U. Schlarb and K. Betzler, “Refractive indices of lithium niobate as function of temperature, wavelength, and composition: a generalized fit,” Phys. Rev. B 48, 15613 (1993).

M. Yamada, N. Nada, M. Saitoh, and K. Watanabe, “First order quasi-phase-matched LiNbO3 waveguide periodically poled by applying an external field for efficient blue second-harmonic generation,” Appl. Phys. Lett. 62, 435 (1993).

1992 (1)

1991 (2)

D. C. Gerstenberger, G. E. Tye, and R. W. Wallace, “Efficient second-harmonic conversion of cw single-frequency Nd:YAG laser light by frequency locking to a monolithic ring frequency doubler,” Opt. Lett. 16, 992 (1991).
[CrossRef] [PubMed]

P. F. Bordui, R. G. Norwood, C. D. Bird, and G. D. Calvert, “Compositional uniformity in growth and poling of large-diameter lithium niobate crystals,” J. Cryst. Growth 113, 61 (1991).
[CrossRef]

1990 (1)

1989 (2)

C. D. Nabors, R. C. Eckardt, W. J. Kozlovsky, and R. L. Byer, “Efficient, single axial mode operation of a monolithic MgO:LiNbO3 optical parametric oscillator,” Opt. Lett. 14, 1134 (1989).
[CrossRef] [PubMed]

T. K. Minton, S. A. Reid, H. L. Kim, and J. D. McDonald, “A scanning single mode LiNbO3 optical parametric oscillator,” Opt. Commun. 69, 289 (1989).
[CrossRef]

1984 (2)

G. J. Edwards and M. Lawrence, “A temperature dependent dispersion equation for congruently grown lithium niobate,” Opt. Quantum Electron. 16, 373 (1984).
[CrossRef]

A. M. Mamedov, “Optical properties (VUV region) of LiNbO3,”Opt. Spectrosc. (USSR) 56, 645 (1984).

1974 (1)

D. F. Nelson and R. M. Mikulyak, “Refractive indices of congruently melting lithium niobate,” J. Appl. Phys. 45, 3688 (1974).
[CrossRef]

1973 (1)

N. Uchida, “Two-oscillator description of the optical properties of oxygen octahedra ferroelectrics,” J. Appl. Phys. 44, 2072 (1973).
[CrossRef]

1969 (1)

M. DeDomenico and S. H. Wemple, “Oxygen octahedra ferroelectrics I. Theory of electro-optical and nonlinear optical effects,” J. Appl. Phys. 40, 720 (1969).
[CrossRef]

1967 (1)

A. S. Barker, Jr., and R. Louden, “Dielectric properties and optical phonons in LiNbO3,”Phys. Rev. 158, 433 (1967).
[CrossRef]

1966 (1)

J. D. Axe and D. F. O’Kane, “Infrared dielectric dispersion of LiNbO3,”Appl. Phys. Lett. 9, 58 (1966).
[CrossRef]

1964 (2)

G. D. Boyd, R. C. Miller, K. Nassau, W. L. Bond, and A. Savage, “LiNbO3: an efficient phase matchable nonlinear optical material,” Appl. Phys. Lett. 5, 934 (1964).
[CrossRef]

G. D. Boyd, W. L. Bond, and H. L. Carter, “Refractive index as a function of temperature in LiNbO3,”J. Appl. Phys. 38, 1941 (1964).
[CrossRef]

1963 (1)

Appl. Opt. (2)

Appl. Phys. Lett. (3)

M. Yamada, N. Nada, M. Saitoh, and K. Watanabe, “First order quasi-phase-matched LiNbO3 waveguide periodically poled by applying an external field for efficient blue second-harmonic generation,” Appl. Phys. Lett. 62, 435 (1993).

G. D. Boyd, R. C. Miller, K. Nassau, W. L. Bond, and A. Savage, “LiNbO3: an efficient phase matchable nonlinear optical material,” Appl. Phys. Lett. 5, 934 (1964).
[CrossRef]

J. D. Axe and D. F. O’Kane, “Infrared dielectric dispersion of LiNbO3,”Appl. Phys. Lett. 9, 58 (1966).
[CrossRef]

IEEE J. Quantum Electron. (1)

S. Lin, Y. Tanaka, S. Takeuchi, and T. Suzuki, “Improved dispersion equation for MgO:LiNbO3 crystal in the infrared spectral range derived from sum and difference frequency mixing,” IEEE J. Quantum Electron. 32, 124 (1996).
[CrossRef]

J. Appl. Phys. (5)

N. Uchida, “Two-oscillator description of the optical properties of oxygen octahedra ferroelectrics,” J. Appl. Phys. 44, 2072 (1973).
[CrossRef]

M. DeDomenico and S. H. Wemple, “Oxygen octahedra ferroelectrics I. Theory of electro-optical and nonlinear optical effects,” J. Appl. Phys. 40, 720 (1969).
[CrossRef]

G. D. Boyd, W. L. Bond, and H. L. Carter, “Refractive index as a function of temperature in LiNbO3,”J. Appl. Phys. 38, 1941 (1964).
[CrossRef]

D. F. Nelson and R. M. Mikulyak, “Refractive indices of congruently melting lithium niobate,” J. Appl. Phys. 45, 3688 (1974).
[CrossRef]

U. Schlarb and K. Betzler, “Refractive indices of lithium niobate as function of wavelength and composition,” J. Appl. Phys. 73, 3472 (1993).
[CrossRef]

J. Cryst. Growth (1)

P. F. Bordui, R. G. Norwood, C. D. Bird, and G. D. Calvert, “Compositional uniformity in growth and poling of large-diameter lithium niobate crystals,” J. Cryst. Growth 113, 61 (1991).
[CrossRef]

J. Opt. Soc. Am. B (2)

Opt. Commun. (1)

T. K. Minton, S. A. Reid, H. L. Kim, and J. D. McDonald, “A scanning single mode LiNbO3 optical parametric oscillator,” Opt. Commun. 69, 289 (1989).
[CrossRef]

Opt. Lett. (9)

M. L. Bortz, M. A. Arbore, and M. M. Fejer, “Quasi-phase- matched optical parametric amplification and oscillation in periodically poled LiNbO3 waveguides,” Opt. Lett. 20, 49 (1995).
[PubMed]

L. E. Myers, G. D. Miller, R. C. Eckardt, M. M. Fejer, R. L. Byer, and W. R. Bosenberg, “Quasi-phase-matched 1.064-μm pumped optical parametric oscillator in bulk periodically poled LiNbO3,”,”Opt. Lett. 20, 52 (1995).
[PubMed]

L. E. Myers, R. C. Eckardt, M. M. Fejer, R. L. Byer, and W. R. Bosenberg, “Multigrating quasi-phase-matched optical parametric oscillator in periodically poled LiNbO3,”Opt. Lett. 21, 591 (1996).
[PubMed]

W. R. Bosenberg, A. Drobshoff, J. I. Alexander, L. E. Myers, and R. L. Byer, “Continuous wave singly resonant optical parametric oscillator based on periodically poled LiNbO3,” Opt. Lett. 21, 713 (1996).
[PubMed]

A. Balakrishnan, S. Sanders, S. DeMars, J. Webjörn, D. W. Nam, R. J. Lang, D. G. Mehuys, R. G. Waarts, and D. F. Welch, “Broadly tunable laser-diode-based mid-infrared source with up to 31 μW of power at 4.3-μm wavelength,” Opt. Lett. 21, 952 (1996).
[PubMed]

C. D. Nabors, R. C. Eckardt, W. J. Kozlovsky, and R. L. Byer, “Efficient, single axial mode operation of a monolithic MgO:LiNbO3 optical parametric oscillator,” Opt. Lett. 14, 1134 (1989).
[CrossRef] [PubMed]

J. Yao, W. Q. Shi, J. E. Millerd, G. F. Xu, E. Garmire, and M. Birnbaum, “Room temperature 1.06–0.53-μm second-harmonic generation with MgO:LiNbO3,”Opt. Lett. 15, 1339 (1990).
[CrossRef] [PubMed]

D. C. Gerstenberger, G. E. Tye, and R. W. Wallace, “Efficient second-harmonic conversion of cw single-frequency Nd:YAG laser light by frequency locking to a monolithic ring frequency doubler,” Opt. Lett. 16, 992 (1991).
[CrossRef] [PubMed]

Ya-lin Lu, Lun Mao, and Nai-ben Ming, “Blue-light generation by frequency doubling of an 810-nm cd GaAlAs diode laser in a quasi-phase matched LiNbO3 crystal,” Opt. Lett. 19, 1037 (1994).
[CrossRef] [PubMed]

Opt. Quantum Electron. (1)

G. J. Edwards and M. Lawrence, “A temperature dependent dispersion equation for congruently grown lithium niobate,” Opt. Quantum Electron. 16, 373 (1984).
[CrossRef]

Opt. Spectrosc. (USSR) (1)

A. M. Mamedov, “Optical properties (VUV region) of LiNbO3,”Opt. Spectrosc. (USSR) 56, 645 (1984).

Phys. Rev. (1)

A. S. Barker, Jr., and R. Louden, “Dielectric properties and optical phonons in LiNbO3,”Phys. Rev. 158, 433 (1967).
[CrossRef]

Phys. Rev. B (2)

U. Schlarb and K. Betzler, “Influence of the defect structure on the refractive indices of undoped and Mg-doped lithium niobate,” Phys. Rev. B 50, 751 (1994).
[CrossRef]

U. Schlarb and K. Betzler, “Refractive indices of lithium niobate as function of temperature, wavelength, and composition: a generalized fit,” Phys. Rev. B 48, 15613 (1993).

Proc. SPIE (1)

D. Yu. Sugak, A. O. Matkovskii, I. M. Solskii, I. V. Stefanskii, V. M. Gaba, A. T. Mikhalevich, V. V. Grabovskii, V. I. Prokhorenko, B. N. Kopko, and V. Ya. Oliinyk, “Growth and Investigation of LiNbO3:MgO single crystals,” in Nonlinear Optics of Liquid and Photorefractive Crystals, G. V. Klimusheva and A. G. Iljin, eds., Proc. SPIE 2795, 257 (1996).
[CrossRef]

Other (3)

S. D. Smith, H. D. Riccius, and R. P. Edwin, “Refractive indices of lithium niobate,” Opt. Commun. 17, 332 (1976); errata 20, 188 (1977).
[CrossRef]

P. F. Bordui, C. D. Bird, R. Blachman, R. G. Schlecht, and C. I. Zanelli, “Recent developments in growth and characterization of magnesium-doped lithium niobate,” presented at the Thirty-eighth Sagamore Army Materials Research Conference, Watertown, Mass., 1991.

M. Born and E. Wolf, Principles of Optics, 6th ed. (Pergamon, Oxford, 1980), p. 94.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Refractive indices of undoped congruently grown LiNbO3 as a function of wavelength. The solid curves represent the three-oscillator Sellmeier fit to the data.

Fig. 2
Fig. 2

Refractive indices of congruently grown LiNbO3 doped with 5-mol. % MgO as a function of wavelength. The solid curves represent the three-oscillator Sellmeier fit to the data.

Fig. 3
Fig. 3

Signal and idler wavelengths of a 1.064-µm-pumped OPO in periodically poled LiNbO3 as a function of grating period.

Fig. 4
Fig. 4

Predicted signal and idler wavelengths of a 1.064-µm-pumped OPO in 5-mol. % MgO-doped periodically poled LiNbO3 as a function of grating period.

Tables (2)

Tables Icon

Table 1 Sellmeier Coefficients for Congruently Grown LiNbO3

Tables Icon

Table 2 Sellmeier Coefficients for Congruently Grown LiNbO3 Doped with 5-mol. % MgO

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

n2-1=Aλ2/(λ2-B)+Cλ2/(λ2-D)+Eλ2/(λ2-F).

Metrics