Abstract

We report the realization of ultrafast all-optical switching in an integrated strip-loaded waveguide Mach–Zehnder interferometer. The device was fabricated from a GaAs/AlGaAs multi-quantum-well structure grown by molecular-beam epitaxy upon a GaAs substrate. Although the slow-recovery carrier-induced nonlinearity is utilized to cause the switching, on–off switching within a time window of 10 ps has been realized in our experiment. Two control pulses, each with an energy of 11 pJ, were used to modulate the nonlinear refractive index. The first pulse switches the state at the output of the interferometer by creating a local population of free carriers asymmetrically across the device. The second control pulse balances the effect of the first one by creating an equal density of carriers as produced by the first one with a mirror image spatial distribution. In this configuration the finite lifetime of the carriers does not limit the speed of the device. However, the device can be used only in systems in which repetitive bursts of fast switching are followed by long enough latent periods to allow for the relaxation of the carriers.

© 1997 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. L. Esaki and R. Tsu, “Superlattice and negative differential conductivity in semiconductors,” IBM J. Res. Devel. 14, 61 (1970).
    [CrossRef]
  2. L. L. Chang, L. Esaki, W. E. Howard, and R. Ludeke, “The growth of a GaAs–GaAlAs superlattice,” J. Vac. Sci. Technol. 10, 11 (1973).
    [CrossRef]
  3. See, for example, C. Weisbuch and B. Vinter, Quantum Semiconductor Structures: Fundamentals and Applications (Academic, San Diego, Calif., 1991).
  4. S. Chelma and D. A. B. Miller, “Room-temperature excitonic nonlinear-optical effects in semiconductor quantum-well structures,” J. Opt. Soc. Am. B 2, 1155 (1985).
    [CrossRef]
  5. S. Chelma, D. A. B. Miller, P. W. Smith, A. C. Gossard, and W. Weigmann, “Room temperature excitonic nonlinear absorption and refraction in GaAs/AlGaAs multiple quantum well structures,” IEEE J. Quantum Electron. QE-20, 265 (1984).
  6. C. Weisbuch and B. Vinter, Quantum Semiconductor Structures (Academic, San Diego, Calif., 1991).
  7. P. LiKamWa, A. Miller, J. S. Roberts, and P. N. Robson, “130 ps recovery of all-optical switching in a GaAs multi-quantum well directional coupler,” Appl. Phys. Lett. 58, 2055 (1991).
    [CrossRef]
  8. L. Zhu, P. LiKamWa, J. Pamulapati, P. Cooke, and M. Dutta, “Lateral field effect optoelectronic waveguide devices employing multi-quantum wells,” in Photonic Component Engineering and Applications, A. R. Pirich, ed., Proc. SPIE2749, 112 (1996).
    [CrossRef]
  9. C. W. Lowry, H. M. Gibbs, and R. M. Pon, “Picosecond on-off switching using a pair of picosecond-on/nanosecond-off GaAs etalons,” Appl. Phys. Lett. 57, 2759 (1990).
    [CrossRef]
  10. J. P. Sokoloff, P. R. Prucnal, I. Glesk, and M. Kane, “A terahertz optical asymmetric demultiplexer (TOAD),” IEEE Photon. Technol. Lett. 5, 787 (1993).
    [CrossRef]
  11. K. Tajima, “All-optical switch with switch-off time unrestricted by carrier lifetime,” Jpn. J. Appl. Phys. 32, L1746 (1993).
    [CrossRef]
  12. S. Nakamura, K. Tajima, and Y. Sugimoto, “Experimental investigation of high speed switching characteristics of novel symmetric Mach–Zehnder all-optical switch,” Appl. Phys. Lett. 65, 283 (1994).
    [CrossRef]
  13. K. Al-hemyari, C. N. Ironside, and J. S. Aitchison, “Resonant nonlinear optical properties of GaAs-GaAlAs single quantum-well waveguide and an integrated asymmetric Mach–Zehnder interferometer,” IEEE J. Quantum Electron. 28, 2051 (1992).
    [CrossRef]
  14. K. I. Kang, T. G. Chang, I. Glesk, P. R. Prucnal, and R. K. Boueck, “Demonstration of ultrafast, all-optical, low control energy, single wavelength, polarization independent, cascadable, and integratable switch,” Appl. Phys. Lett. 67, 605 (1995).
    [CrossRef]
  15. S. Nakamura, K. Tajima, and Y. Sugimoto, “High-repetition operation of a symmetric Mach–Zehnder all-optical switch,” Appl. Phys. Lett. 66, 2457 (1995).
    [CrossRef]
  16. Y. Silberberg and B. G. Sfez, “All-optical phase and power controlled switching in nonlinear waveguide junctions,” Opt. Lett. 13, 1132 (1988).
    [CrossRef] [PubMed]
  17. H. Fouckhardt and Y. Silberberg, “All-optical switching in waveguide X junctions,” J. Opt. Soc. Am. B 7, 803 (1990).
    [CrossRef]
  18. K. Y. Liou, U. Koren, S. Chandrashekhar, T. L. Koch, A. Shahar, C. A. Burrus, and R. P. Gnall, “Monolithic integrated InGaAsP/InP distributed feedback laser with Y-branching waveguide and monitoring detector grown by MOCVD,” Appl. Phys. Lett. 54, 114 (1989).
    [CrossRef]
  19. K. J. Kang, T. G. Chang, I. Glesk, and P. R. Prucnal, “Comparison of Sagnac and Mach–Zehnder ultrafast all-optical interferometric switches based on a semiconductor resonant optical nonlinearity,” Appl. Opt. 35, 417 (1996).
    [CrossRef] [PubMed]
  20. K. Y. Liou, U. Koren, E. C. Burrous, M. Young, M. J. Martyak, M. Oron, and G. Raybon, “Y-junction power divider in InGaAsP-InP photonic integrated circuits,” IEEE J. Quantum Electron. 26, 1376 (1990).
    [CrossRef]
  21. S. Sakano, H. Inoue, H. Nakamura, T. Katsuyama, and H. Matsumura, “InGaAsP/InP monolithic integrated circuit with lasers and optical switch,” Electron. Lett. 22, 594 (1986).
    [CrossRef]
  22. T. C. Huang, G. J. Simonis, M. Stead, and R. P. Leavitt, “A Y-junction optical switch based on field-induced control of refractive index,” IEEE Photon. Technol. Lett. 5, 712 (1993).
    [CrossRef]
  23. P. LiKamWa and A. Kan'an, “Ultrafast all-optical switching in multiple-quantum-well Y-junction waveguides at the band gap resonance,” IEEE J. Sel. Top. Quantum Electron. 2, 655 (1996).
    [CrossRef]

1996 (2)

P. LiKamWa and A. Kan'an, “Ultrafast all-optical switching in multiple-quantum-well Y-junction waveguides at the band gap resonance,” IEEE J. Sel. Top. Quantum Electron. 2, 655 (1996).
[CrossRef]

K. J. Kang, T. G. Chang, I. Glesk, and P. R. Prucnal, “Comparison of Sagnac and Mach–Zehnder ultrafast all-optical interferometric switches based on a semiconductor resonant optical nonlinearity,” Appl. Opt. 35, 417 (1996).
[CrossRef] [PubMed]

1995 (2)

K. I. Kang, T. G. Chang, I. Glesk, P. R. Prucnal, and R. K. Boueck, “Demonstration of ultrafast, all-optical, low control energy, single wavelength, polarization independent, cascadable, and integratable switch,” Appl. Phys. Lett. 67, 605 (1995).
[CrossRef]

S. Nakamura, K. Tajima, and Y. Sugimoto, “High-repetition operation of a symmetric Mach–Zehnder all-optical switch,” Appl. Phys. Lett. 66, 2457 (1995).
[CrossRef]

1994 (1)

S. Nakamura, K. Tajima, and Y. Sugimoto, “Experimental investigation of high speed switching characteristics of novel symmetric Mach–Zehnder all-optical switch,” Appl. Phys. Lett. 65, 283 (1994).
[CrossRef]

1993 (3)

J. P. Sokoloff, P. R. Prucnal, I. Glesk, and M. Kane, “A terahertz optical asymmetric demultiplexer (TOAD),” IEEE Photon. Technol. Lett. 5, 787 (1993).
[CrossRef]

K. Tajima, “All-optical switch with switch-off time unrestricted by carrier lifetime,” Jpn. J. Appl. Phys. 32, L1746 (1993).
[CrossRef]

T. C. Huang, G. J. Simonis, M. Stead, and R. P. Leavitt, “A Y-junction optical switch based on field-induced control of refractive index,” IEEE Photon. Technol. Lett. 5, 712 (1993).
[CrossRef]

1992 (1)

K. Al-hemyari, C. N. Ironside, and J. S. Aitchison, “Resonant nonlinear optical properties of GaAs-GaAlAs single quantum-well waveguide and an integrated asymmetric Mach–Zehnder interferometer,” IEEE J. Quantum Electron. 28, 2051 (1992).
[CrossRef]

1991 (1)

P. LiKamWa, A. Miller, J. S. Roberts, and P. N. Robson, “130 ps recovery of all-optical switching in a GaAs multi-quantum well directional coupler,” Appl. Phys. Lett. 58, 2055 (1991).
[CrossRef]

1990 (3)

C. W. Lowry, H. M. Gibbs, and R. M. Pon, “Picosecond on-off switching using a pair of picosecond-on/nanosecond-off GaAs etalons,” Appl. Phys. Lett. 57, 2759 (1990).
[CrossRef]

K. Y. Liou, U. Koren, E. C. Burrous, M. Young, M. J. Martyak, M. Oron, and G. Raybon, “Y-junction power divider in InGaAsP-InP photonic integrated circuits,” IEEE J. Quantum Electron. 26, 1376 (1990).
[CrossRef]

H. Fouckhardt and Y. Silberberg, “All-optical switching in waveguide X junctions,” J. Opt. Soc. Am. B 7, 803 (1990).
[CrossRef]

1989 (1)

K. Y. Liou, U. Koren, S. Chandrashekhar, T. L. Koch, A. Shahar, C. A. Burrus, and R. P. Gnall, “Monolithic integrated InGaAsP/InP distributed feedback laser with Y-branching waveguide and monitoring detector grown by MOCVD,” Appl. Phys. Lett. 54, 114 (1989).
[CrossRef]

1988 (1)

1986 (1)

S. Sakano, H. Inoue, H. Nakamura, T. Katsuyama, and H. Matsumura, “InGaAsP/InP monolithic integrated circuit with lasers and optical switch,” Electron. Lett. 22, 594 (1986).
[CrossRef]

1985 (1)

1984 (1)

S. Chelma, D. A. B. Miller, P. W. Smith, A. C. Gossard, and W. Weigmann, “Room temperature excitonic nonlinear absorption and refraction in GaAs/AlGaAs multiple quantum well structures,” IEEE J. Quantum Electron. QE-20, 265 (1984).

1973 (1)

L. L. Chang, L. Esaki, W. E. Howard, and R. Ludeke, “The growth of a GaAs–GaAlAs superlattice,” J. Vac. Sci. Technol. 10, 11 (1973).
[CrossRef]

1970 (1)

L. Esaki and R. Tsu, “Superlattice and negative differential conductivity in semiconductors,” IBM J. Res. Devel. 14, 61 (1970).
[CrossRef]

Aitchison, J. S.

K. Al-hemyari, C. N. Ironside, and J. S. Aitchison, “Resonant nonlinear optical properties of GaAs-GaAlAs single quantum-well waveguide and an integrated asymmetric Mach–Zehnder interferometer,” IEEE J. Quantum Electron. 28, 2051 (1992).
[CrossRef]

Al-hemyari, K.

K. Al-hemyari, C. N. Ironside, and J. S. Aitchison, “Resonant nonlinear optical properties of GaAs-GaAlAs single quantum-well waveguide and an integrated asymmetric Mach–Zehnder interferometer,” IEEE J. Quantum Electron. 28, 2051 (1992).
[CrossRef]

Boueck, R. K.

K. I. Kang, T. G. Chang, I. Glesk, P. R. Prucnal, and R. K. Boueck, “Demonstration of ultrafast, all-optical, low control energy, single wavelength, polarization independent, cascadable, and integratable switch,” Appl. Phys. Lett. 67, 605 (1995).
[CrossRef]

Burrous, E. C.

K. Y. Liou, U. Koren, E. C. Burrous, M. Young, M. J. Martyak, M. Oron, and G. Raybon, “Y-junction power divider in InGaAsP-InP photonic integrated circuits,” IEEE J. Quantum Electron. 26, 1376 (1990).
[CrossRef]

Burrus, C. A.

K. Y. Liou, U. Koren, S. Chandrashekhar, T. L. Koch, A. Shahar, C. A. Burrus, and R. P. Gnall, “Monolithic integrated InGaAsP/InP distributed feedback laser with Y-branching waveguide and monitoring detector grown by MOCVD,” Appl. Phys. Lett. 54, 114 (1989).
[CrossRef]

Chandrashekhar, S.

K. Y. Liou, U. Koren, S. Chandrashekhar, T. L. Koch, A. Shahar, C. A. Burrus, and R. P. Gnall, “Monolithic integrated InGaAsP/InP distributed feedback laser with Y-branching waveguide and monitoring detector grown by MOCVD,” Appl. Phys. Lett. 54, 114 (1989).
[CrossRef]

Chang, L. L.

L. L. Chang, L. Esaki, W. E. Howard, and R. Ludeke, “The growth of a GaAs–GaAlAs superlattice,” J. Vac. Sci. Technol. 10, 11 (1973).
[CrossRef]

Chang, T. G.

K. J. Kang, T. G. Chang, I. Glesk, and P. R. Prucnal, “Comparison of Sagnac and Mach–Zehnder ultrafast all-optical interferometric switches based on a semiconductor resonant optical nonlinearity,” Appl. Opt. 35, 417 (1996).
[CrossRef] [PubMed]

K. I. Kang, T. G. Chang, I. Glesk, P. R. Prucnal, and R. K. Boueck, “Demonstration of ultrafast, all-optical, low control energy, single wavelength, polarization independent, cascadable, and integratable switch,” Appl. Phys. Lett. 67, 605 (1995).
[CrossRef]

Chelma, S.

S. Chelma and D. A. B. Miller, “Room-temperature excitonic nonlinear-optical effects in semiconductor quantum-well structures,” J. Opt. Soc. Am. B 2, 1155 (1985).
[CrossRef]

S. Chelma, D. A. B. Miller, P. W. Smith, A. C. Gossard, and W. Weigmann, “Room temperature excitonic nonlinear absorption and refraction in GaAs/AlGaAs multiple quantum well structures,” IEEE J. Quantum Electron. QE-20, 265 (1984).

Cooke, P.

L. Zhu, P. LiKamWa, J. Pamulapati, P. Cooke, and M. Dutta, “Lateral field effect optoelectronic waveguide devices employing multi-quantum wells,” in Photonic Component Engineering and Applications, A. R. Pirich, ed., Proc. SPIE2749, 112 (1996).
[CrossRef]

Dutta, M.

L. Zhu, P. LiKamWa, J. Pamulapati, P. Cooke, and M. Dutta, “Lateral field effect optoelectronic waveguide devices employing multi-quantum wells,” in Photonic Component Engineering and Applications, A. R. Pirich, ed., Proc. SPIE2749, 112 (1996).
[CrossRef]

Esaki, L.

L. L. Chang, L. Esaki, W. E. Howard, and R. Ludeke, “The growth of a GaAs–GaAlAs superlattice,” J. Vac. Sci. Technol. 10, 11 (1973).
[CrossRef]

L. Esaki and R. Tsu, “Superlattice and negative differential conductivity in semiconductors,” IBM J. Res. Devel. 14, 61 (1970).
[CrossRef]

Fouckhardt, H.

Gibbs, H. M.

C. W. Lowry, H. M. Gibbs, and R. M. Pon, “Picosecond on-off switching using a pair of picosecond-on/nanosecond-off GaAs etalons,” Appl. Phys. Lett. 57, 2759 (1990).
[CrossRef]

Glesk, I.

K. J. Kang, T. G. Chang, I. Glesk, and P. R. Prucnal, “Comparison of Sagnac and Mach–Zehnder ultrafast all-optical interferometric switches based on a semiconductor resonant optical nonlinearity,” Appl. Opt. 35, 417 (1996).
[CrossRef] [PubMed]

K. I. Kang, T. G. Chang, I. Glesk, P. R. Prucnal, and R. K. Boueck, “Demonstration of ultrafast, all-optical, low control energy, single wavelength, polarization independent, cascadable, and integratable switch,” Appl. Phys. Lett. 67, 605 (1995).
[CrossRef]

J. P. Sokoloff, P. R. Prucnal, I. Glesk, and M. Kane, “A terahertz optical asymmetric demultiplexer (TOAD),” IEEE Photon. Technol. Lett. 5, 787 (1993).
[CrossRef]

Gnall, R. P.

K. Y. Liou, U. Koren, S. Chandrashekhar, T. L. Koch, A. Shahar, C. A. Burrus, and R. P. Gnall, “Monolithic integrated InGaAsP/InP distributed feedback laser with Y-branching waveguide and monitoring detector grown by MOCVD,” Appl. Phys. Lett. 54, 114 (1989).
[CrossRef]

Gossard, A. C.

S. Chelma, D. A. B. Miller, P. W. Smith, A. C. Gossard, and W. Weigmann, “Room temperature excitonic nonlinear absorption and refraction in GaAs/AlGaAs multiple quantum well structures,” IEEE J. Quantum Electron. QE-20, 265 (1984).

Howard, W. E.

L. L. Chang, L. Esaki, W. E. Howard, and R. Ludeke, “The growth of a GaAs–GaAlAs superlattice,” J. Vac. Sci. Technol. 10, 11 (1973).
[CrossRef]

Huang, T. C.

T. C. Huang, G. J. Simonis, M. Stead, and R. P. Leavitt, “A Y-junction optical switch based on field-induced control of refractive index,” IEEE Photon. Technol. Lett. 5, 712 (1993).
[CrossRef]

Inoue, H.

S. Sakano, H. Inoue, H. Nakamura, T. Katsuyama, and H. Matsumura, “InGaAsP/InP monolithic integrated circuit with lasers and optical switch,” Electron. Lett. 22, 594 (1986).
[CrossRef]

Ironside, C. N.

K. Al-hemyari, C. N. Ironside, and J. S. Aitchison, “Resonant nonlinear optical properties of GaAs-GaAlAs single quantum-well waveguide and an integrated asymmetric Mach–Zehnder interferometer,” IEEE J. Quantum Electron. 28, 2051 (1992).
[CrossRef]

Kan'an, A.

P. LiKamWa and A. Kan'an, “Ultrafast all-optical switching in multiple-quantum-well Y-junction waveguides at the band gap resonance,” IEEE J. Sel. Top. Quantum Electron. 2, 655 (1996).
[CrossRef]

Kane, M.

J. P. Sokoloff, P. R. Prucnal, I. Glesk, and M. Kane, “A terahertz optical asymmetric demultiplexer (TOAD),” IEEE Photon. Technol. Lett. 5, 787 (1993).
[CrossRef]

Kang, K. I.

K. I. Kang, T. G. Chang, I. Glesk, P. R. Prucnal, and R. K. Boueck, “Demonstration of ultrafast, all-optical, low control energy, single wavelength, polarization independent, cascadable, and integratable switch,” Appl. Phys. Lett. 67, 605 (1995).
[CrossRef]

Kang, K. J.

Katsuyama, T.

S. Sakano, H. Inoue, H. Nakamura, T. Katsuyama, and H. Matsumura, “InGaAsP/InP monolithic integrated circuit with lasers and optical switch,” Electron. Lett. 22, 594 (1986).
[CrossRef]

Koch, T. L.

K. Y. Liou, U. Koren, S. Chandrashekhar, T. L. Koch, A. Shahar, C. A. Burrus, and R. P. Gnall, “Monolithic integrated InGaAsP/InP distributed feedback laser with Y-branching waveguide and monitoring detector grown by MOCVD,” Appl. Phys. Lett. 54, 114 (1989).
[CrossRef]

Koren, U.

K. Y. Liou, U. Koren, E. C. Burrous, M. Young, M. J. Martyak, M. Oron, and G. Raybon, “Y-junction power divider in InGaAsP-InP photonic integrated circuits,” IEEE J. Quantum Electron. 26, 1376 (1990).
[CrossRef]

K. Y. Liou, U. Koren, S. Chandrashekhar, T. L. Koch, A. Shahar, C. A. Burrus, and R. P. Gnall, “Monolithic integrated InGaAsP/InP distributed feedback laser with Y-branching waveguide and monitoring detector grown by MOCVD,” Appl. Phys. Lett. 54, 114 (1989).
[CrossRef]

Leavitt, R. P.

T. C. Huang, G. J. Simonis, M. Stead, and R. P. Leavitt, “A Y-junction optical switch based on field-induced control of refractive index,” IEEE Photon. Technol. Lett. 5, 712 (1993).
[CrossRef]

LiKamWa, P.

P. LiKamWa and A. Kan'an, “Ultrafast all-optical switching in multiple-quantum-well Y-junction waveguides at the band gap resonance,” IEEE J. Sel. Top. Quantum Electron. 2, 655 (1996).
[CrossRef]

P. LiKamWa, A. Miller, J. S. Roberts, and P. N. Robson, “130 ps recovery of all-optical switching in a GaAs multi-quantum well directional coupler,” Appl. Phys. Lett. 58, 2055 (1991).
[CrossRef]

L. Zhu, P. LiKamWa, J. Pamulapati, P. Cooke, and M. Dutta, “Lateral field effect optoelectronic waveguide devices employing multi-quantum wells,” in Photonic Component Engineering and Applications, A. R. Pirich, ed., Proc. SPIE2749, 112 (1996).
[CrossRef]

Liou, K. Y.

K. Y. Liou, U. Koren, E. C. Burrous, M. Young, M. J. Martyak, M. Oron, and G. Raybon, “Y-junction power divider in InGaAsP-InP photonic integrated circuits,” IEEE J. Quantum Electron. 26, 1376 (1990).
[CrossRef]

K. Y. Liou, U. Koren, S. Chandrashekhar, T. L. Koch, A. Shahar, C. A. Burrus, and R. P. Gnall, “Monolithic integrated InGaAsP/InP distributed feedback laser with Y-branching waveguide and monitoring detector grown by MOCVD,” Appl. Phys. Lett. 54, 114 (1989).
[CrossRef]

Lowry, C. W.

C. W. Lowry, H. M. Gibbs, and R. M. Pon, “Picosecond on-off switching using a pair of picosecond-on/nanosecond-off GaAs etalons,” Appl. Phys. Lett. 57, 2759 (1990).
[CrossRef]

Ludeke, R.

L. L. Chang, L. Esaki, W. E. Howard, and R. Ludeke, “The growth of a GaAs–GaAlAs superlattice,” J. Vac. Sci. Technol. 10, 11 (1973).
[CrossRef]

Martyak, M. J.

K. Y. Liou, U. Koren, E. C. Burrous, M. Young, M. J. Martyak, M. Oron, and G. Raybon, “Y-junction power divider in InGaAsP-InP photonic integrated circuits,” IEEE J. Quantum Electron. 26, 1376 (1990).
[CrossRef]

Matsumura, H.

S. Sakano, H. Inoue, H. Nakamura, T. Katsuyama, and H. Matsumura, “InGaAsP/InP monolithic integrated circuit with lasers and optical switch,” Electron. Lett. 22, 594 (1986).
[CrossRef]

Miller, A.

P. LiKamWa, A. Miller, J. S. Roberts, and P. N. Robson, “130 ps recovery of all-optical switching in a GaAs multi-quantum well directional coupler,” Appl. Phys. Lett. 58, 2055 (1991).
[CrossRef]

Miller, D. A. B.

S. Chelma and D. A. B. Miller, “Room-temperature excitonic nonlinear-optical effects in semiconductor quantum-well structures,” J. Opt. Soc. Am. B 2, 1155 (1985).
[CrossRef]

S. Chelma, D. A. B. Miller, P. W. Smith, A. C. Gossard, and W. Weigmann, “Room temperature excitonic nonlinear absorption and refraction in GaAs/AlGaAs multiple quantum well structures,” IEEE J. Quantum Electron. QE-20, 265 (1984).

Nakamura, H.

S. Sakano, H. Inoue, H. Nakamura, T. Katsuyama, and H. Matsumura, “InGaAsP/InP monolithic integrated circuit with lasers and optical switch,” Electron. Lett. 22, 594 (1986).
[CrossRef]

Nakamura, S.

S. Nakamura, K. Tajima, and Y. Sugimoto, “High-repetition operation of a symmetric Mach–Zehnder all-optical switch,” Appl. Phys. Lett. 66, 2457 (1995).
[CrossRef]

S. Nakamura, K. Tajima, and Y. Sugimoto, “Experimental investigation of high speed switching characteristics of novel symmetric Mach–Zehnder all-optical switch,” Appl. Phys. Lett. 65, 283 (1994).
[CrossRef]

Oron, M.

K. Y. Liou, U. Koren, E. C. Burrous, M. Young, M. J. Martyak, M. Oron, and G. Raybon, “Y-junction power divider in InGaAsP-InP photonic integrated circuits,” IEEE J. Quantum Electron. 26, 1376 (1990).
[CrossRef]

Pamulapati, J.

L. Zhu, P. LiKamWa, J. Pamulapati, P. Cooke, and M. Dutta, “Lateral field effect optoelectronic waveguide devices employing multi-quantum wells,” in Photonic Component Engineering and Applications, A. R. Pirich, ed., Proc. SPIE2749, 112 (1996).
[CrossRef]

Pon, R. M.

C. W. Lowry, H. M. Gibbs, and R. M. Pon, “Picosecond on-off switching using a pair of picosecond-on/nanosecond-off GaAs etalons,” Appl. Phys. Lett. 57, 2759 (1990).
[CrossRef]

Prucnal, P. R.

K. J. Kang, T. G. Chang, I. Glesk, and P. R. Prucnal, “Comparison of Sagnac and Mach–Zehnder ultrafast all-optical interferometric switches based on a semiconductor resonant optical nonlinearity,” Appl. Opt. 35, 417 (1996).
[CrossRef] [PubMed]

K. I. Kang, T. G. Chang, I. Glesk, P. R. Prucnal, and R. K. Boueck, “Demonstration of ultrafast, all-optical, low control energy, single wavelength, polarization independent, cascadable, and integratable switch,” Appl. Phys. Lett. 67, 605 (1995).
[CrossRef]

J. P. Sokoloff, P. R. Prucnal, I. Glesk, and M. Kane, “A terahertz optical asymmetric demultiplexer (TOAD),” IEEE Photon. Technol. Lett. 5, 787 (1993).
[CrossRef]

Raybon, G.

K. Y. Liou, U. Koren, E. C. Burrous, M. Young, M. J. Martyak, M. Oron, and G. Raybon, “Y-junction power divider in InGaAsP-InP photonic integrated circuits,” IEEE J. Quantum Electron. 26, 1376 (1990).
[CrossRef]

Roberts, J. S.

P. LiKamWa, A. Miller, J. S. Roberts, and P. N. Robson, “130 ps recovery of all-optical switching in a GaAs multi-quantum well directional coupler,” Appl. Phys. Lett. 58, 2055 (1991).
[CrossRef]

Robson, P. N.

P. LiKamWa, A. Miller, J. S. Roberts, and P. N. Robson, “130 ps recovery of all-optical switching in a GaAs multi-quantum well directional coupler,” Appl. Phys. Lett. 58, 2055 (1991).
[CrossRef]

Sakano, S.

S. Sakano, H. Inoue, H. Nakamura, T. Katsuyama, and H. Matsumura, “InGaAsP/InP monolithic integrated circuit with lasers and optical switch,” Electron. Lett. 22, 594 (1986).
[CrossRef]

Sfez, B. G.

Shahar, A.

K. Y. Liou, U. Koren, S. Chandrashekhar, T. L. Koch, A. Shahar, C. A. Burrus, and R. P. Gnall, “Monolithic integrated InGaAsP/InP distributed feedback laser with Y-branching waveguide and monitoring detector grown by MOCVD,” Appl. Phys. Lett. 54, 114 (1989).
[CrossRef]

Silberberg, Y.

Simonis, G. J.

T. C. Huang, G. J. Simonis, M. Stead, and R. P. Leavitt, “A Y-junction optical switch based on field-induced control of refractive index,” IEEE Photon. Technol. Lett. 5, 712 (1993).
[CrossRef]

Smith, P. W.

S. Chelma, D. A. B. Miller, P. W. Smith, A. C. Gossard, and W. Weigmann, “Room temperature excitonic nonlinear absorption and refraction in GaAs/AlGaAs multiple quantum well structures,” IEEE J. Quantum Electron. QE-20, 265 (1984).

Sokoloff, J. P.

J. P. Sokoloff, P. R. Prucnal, I. Glesk, and M. Kane, “A terahertz optical asymmetric demultiplexer (TOAD),” IEEE Photon. Technol. Lett. 5, 787 (1993).
[CrossRef]

Stead, M.

T. C. Huang, G. J. Simonis, M. Stead, and R. P. Leavitt, “A Y-junction optical switch based on field-induced control of refractive index,” IEEE Photon. Technol. Lett. 5, 712 (1993).
[CrossRef]

Sugimoto, Y.

S. Nakamura, K. Tajima, and Y. Sugimoto, “High-repetition operation of a symmetric Mach–Zehnder all-optical switch,” Appl. Phys. Lett. 66, 2457 (1995).
[CrossRef]

S. Nakamura, K. Tajima, and Y. Sugimoto, “Experimental investigation of high speed switching characteristics of novel symmetric Mach–Zehnder all-optical switch,” Appl. Phys. Lett. 65, 283 (1994).
[CrossRef]

Tajima, K.

S. Nakamura, K. Tajima, and Y. Sugimoto, “High-repetition operation of a symmetric Mach–Zehnder all-optical switch,” Appl. Phys. Lett. 66, 2457 (1995).
[CrossRef]

S. Nakamura, K. Tajima, and Y. Sugimoto, “Experimental investigation of high speed switching characteristics of novel symmetric Mach–Zehnder all-optical switch,” Appl. Phys. Lett. 65, 283 (1994).
[CrossRef]

K. Tajima, “All-optical switch with switch-off time unrestricted by carrier lifetime,” Jpn. J. Appl. Phys. 32, L1746 (1993).
[CrossRef]

Tsu, R.

L. Esaki and R. Tsu, “Superlattice and negative differential conductivity in semiconductors,” IBM J. Res. Devel. 14, 61 (1970).
[CrossRef]

Vinter, B.

C. Weisbuch and B. Vinter, Quantum Semiconductor Structures (Academic, San Diego, Calif., 1991).

See, for example, C. Weisbuch and B. Vinter, Quantum Semiconductor Structures: Fundamentals and Applications (Academic, San Diego, Calif., 1991).

Weigmann, W.

S. Chelma, D. A. B. Miller, P. W. Smith, A. C. Gossard, and W. Weigmann, “Room temperature excitonic nonlinear absorption and refraction in GaAs/AlGaAs multiple quantum well structures,” IEEE J. Quantum Electron. QE-20, 265 (1984).

Weisbuch, C.

C. Weisbuch and B. Vinter, Quantum Semiconductor Structures (Academic, San Diego, Calif., 1991).

See, for example, C. Weisbuch and B. Vinter, Quantum Semiconductor Structures: Fundamentals and Applications (Academic, San Diego, Calif., 1991).

Young, M.

K. Y. Liou, U. Koren, E. C. Burrous, M. Young, M. J. Martyak, M. Oron, and G. Raybon, “Y-junction power divider in InGaAsP-InP photonic integrated circuits,” IEEE J. Quantum Electron. 26, 1376 (1990).
[CrossRef]

Zhu, L.

L. Zhu, P. LiKamWa, J. Pamulapati, P. Cooke, and M. Dutta, “Lateral field effect optoelectronic waveguide devices employing multi-quantum wells,” in Photonic Component Engineering and Applications, A. R. Pirich, ed., Proc. SPIE2749, 112 (1996).
[CrossRef]

Appl. Opt. (1)

Appl. Phys. Lett. (6)

S. Nakamura, K. Tajima, and Y. Sugimoto, “Experimental investigation of high speed switching characteristics of novel symmetric Mach–Zehnder all-optical switch,” Appl. Phys. Lett. 65, 283 (1994).
[CrossRef]

K. I. Kang, T. G. Chang, I. Glesk, P. R. Prucnal, and R. K. Boueck, “Demonstration of ultrafast, all-optical, low control energy, single wavelength, polarization independent, cascadable, and integratable switch,” Appl. Phys. Lett. 67, 605 (1995).
[CrossRef]

S. Nakamura, K. Tajima, and Y. Sugimoto, “High-repetition operation of a symmetric Mach–Zehnder all-optical switch,” Appl. Phys. Lett. 66, 2457 (1995).
[CrossRef]

P. LiKamWa, A. Miller, J. S. Roberts, and P. N. Robson, “130 ps recovery of all-optical switching in a GaAs multi-quantum well directional coupler,” Appl. Phys. Lett. 58, 2055 (1991).
[CrossRef]

C. W. Lowry, H. M. Gibbs, and R. M. Pon, “Picosecond on-off switching using a pair of picosecond-on/nanosecond-off GaAs etalons,” Appl. Phys. Lett. 57, 2759 (1990).
[CrossRef]

K. Y. Liou, U. Koren, S. Chandrashekhar, T. L. Koch, A. Shahar, C. A. Burrus, and R. P. Gnall, “Monolithic integrated InGaAsP/InP distributed feedback laser with Y-branching waveguide and monitoring detector grown by MOCVD,” Appl. Phys. Lett. 54, 114 (1989).
[CrossRef]

Electron. Lett. (1)

S. Sakano, H. Inoue, H. Nakamura, T. Katsuyama, and H. Matsumura, “InGaAsP/InP monolithic integrated circuit with lasers and optical switch,” Electron. Lett. 22, 594 (1986).
[CrossRef]

IBM J. Res. Devel. (1)

L. Esaki and R. Tsu, “Superlattice and negative differential conductivity in semiconductors,” IBM J. Res. Devel. 14, 61 (1970).
[CrossRef]

IEEE J. Quantum Electron. (3)

S. Chelma, D. A. B. Miller, P. W. Smith, A. C. Gossard, and W. Weigmann, “Room temperature excitonic nonlinear absorption and refraction in GaAs/AlGaAs multiple quantum well structures,” IEEE J. Quantum Electron. QE-20, 265 (1984).

K. Al-hemyari, C. N. Ironside, and J. S. Aitchison, “Resonant nonlinear optical properties of GaAs-GaAlAs single quantum-well waveguide and an integrated asymmetric Mach–Zehnder interferometer,” IEEE J. Quantum Electron. 28, 2051 (1992).
[CrossRef]

K. Y. Liou, U. Koren, E. C. Burrous, M. Young, M. J. Martyak, M. Oron, and G. Raybon, “Y-junction power divider in InGaAsP-InP photonic integrated circuits,” IEEE J. Quantum Electron. 26, 1376 (1990).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (1)

P. LiKamWa and A. Kan'an, “Ultrafast all-optical switching in multiple-quantum-well Y-junction waveguides at the band gap resonance,” IEEE J. Sel. Top. Quantum Electron. 2, 655 (1996).
[CrossRef]

IEEE Photon. Technol. Lett. (2)

T. C. Huang, G. J. Simonis, M. Stead, and R. P. Leavitt, “A Y-junction optical switch based on field-induced control of refractive index,” IEEE Photon. Technol. Lett. 5, 712 (1993).
[CrossRef]

J. P. Sokoloff, P. R. Prucnal, I. Glesk, and M. Kane, “A terahertz optical asymmetric demultiplexer (TOAD),” IEEE Photon. Technol. Lett. 5, 787 (1993).
[CrossRef]

J. Opt. Soc. Am. B (2)

J. Vac. Sci. Technol. (1)

L. L. Chang, L. Esaki, W. E. Howard, and R. Ludeke, “The growth of a GaAs–GaAlAs superlattice,” J. Vac. Sci. Technol. 10, 11 (1973).
[CrossRef]

Jpn. J. Appl. Phys. (1)

K. Tajima, “All-optical switch with switch-off time unrestricted by carrier lifetime,” Jpn. J. Appl. Phys. 32, L1746 (1993).
[CrossRef]

Opt. Lett. (1)

Other (3)

L. Zhu, P. LiKamWa, J. Pamulapati, P. Cooke, and M. Dutta, “Lateral field effect optoelectronic waveguide devices employing multi-quantum wells,” in Photonic Component Engineering and Applications, A. R. Pirich, ed., Proc. SPIE2749, 112 (1996).
[CrossRef]

See, for example, C. Weisbuch and B. Vinter, Quantum Semiconductor Structures: Fundamentals and Applications (Academic, San Diego, Calif., 1991).

C. Weisbuch and B. Vinter, Quantum Semiconductor Structures (Academic, San Diego, Calif., 1991).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

Schematic diagram of the integrated Mach–Zehnder interferometer.

Fig. 2
Fig. 2

All-optical switching in the Y-junction device.

Fig. 3
Fig. 3

All-optical switching in the Y-junction device with the alignment of the pump different from that shown in Fig. 2.

Fig. 4
Fig. 4

Variation of Iout/Iin for the Mach–Zehnder interferometer as the split ratio a and the phase difference ϕ are changed.

Fig. 5
Fig. 5

Iout/Iin for the Mach–Zehnder device for three cases: (1) the effect of nonlinear switching at the Y junction only, (2) the effect of a phase difference between the two arms, and (3) the combined effect of both cases (1) and (2).

Fig. 6
Fig. 6

Schematic drawing of the optical setup for the time-resolved switching measurements: BS's, beam splitters; M's, mirrors; HWP's, half-wave plates.

Fig. 7
Fig. 7

Downswitching at the output waveguide of the Mach–Zehnder device.

Fig. 8
Fig. 8

Upswitching at the output waveguide of the Mach–Zehnder device.

Fig. 9
Fig. 9

Switching in the Mach–Zehnder device for the case of upswitching, with (a) only the first control pulse, (b) only the second control pulse, (c) both control pulses present. In this case the main switching effect is explained by the nonlinear behavior of the input Y function.

Fig. 10
Fig. 10

Switching in the Mach–Zehnder device for the case of downswitching, with (a) only the first control pulse, (b) only the second control pulse, (c) both control pulses present. Here both changes in a and ϕ account for the switching.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

IoutIin=0.5+a 1a-11/2 cos ϕ.
a(t)=c+b exp(-t/τ),
ϕ(t)=dπ exp(-t/τ),
Iout=Iin0.5+a(t)1a(t)-11/2 cos[ϕ(t)].

Metrics