Abstract

We present a review of parametric fluorescence with bulk and guided geometries in quasi-phase matched lithium niobate. Whereas bulk experiments have yielded results close to theoretical predictions, waveguided versions have shown strongly reduced efficiencies. Attributing the observed conversion efficiency reductions to a loss of the material nonlinearity, to a destruction of the inverted domains during the waveguide fabrication, or to both, we carefully studied the influence of the proton-exchange process on the nonlinear and structural properties of the periodically poled lithium niobate. We found that an annealed proton-exchange process can essentially conserve the nonlinearity but will erase the periodic domain structure. This erasure can be avoided by use of a highly diluted proton-exchange melt. This direct proton-exchange process perfectly preserves all the nonlinear optical and structural properties of periodically poled LiNbO3.

© 1997 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Rauber, Chemistry and Physics of Lithium Niobate, Vol. 1 of Current Topics in Material Science, by E. Kaldis, ed. (North-Holland, Amsterdam, 1978), Chap. 7.
  2. J. Webjörn, V. Pruneri, P. Russel, J. R. M. Barr, and D. C. Hanna, “Blue light generation in bulk lithium niobate electrically poled via liquid electrode,” Electron. Lett. 30, 894 (1994).
    [Crossref]
  3. J. A. Amstrong, N. Bloembergen, J. Ducuing, and P. S. Pershan, “Interactions between light waves in nonlinear dielectric,” Phys. Rev. 127, 1918 (1962).
    [Crossref]
  4. E. J. Lim, M. M. Fejer, and R. L. Byer, “Second harmonic generation of green light in periodically poled lithium niobate waveguide,” Electron. Lett. 25, 174 (1989).
    [Crossref]
  5. J. Webjörn, F. Laurell, and G. Arvidsson, “Blue light generated by frequency doubling of laser diode light in a lithium niobate waveguide,” IEEE Photonics Technol. Lett. 1, 316 (1989).
    [Crossref]
  6. L. E. Myers, R. C. Eckardt, M. M. Fejer, R. L. Byer, W. R. Bosenberg, and J. W. Pierce, “Quasi-phase-matched optical parametric oscillators in bulk periodically poled LiNbO3,” J. Opt. Soc. Am. B 12, 2102 (1995).
    [Crossref]
  7. W. R. Bosenberg, A. Drobshoff, J. I. Alexander, L. E. Myers, and R. L. Byer, “Continuous-wave singly resonant optical parametric oscillator based on periodically poled LiNbO3,” Opt. Lett. 21, 713 (1996).
    [Crossref] [PubMed]
  8. J. L. Jackel, R. E. Rice, and J. J. Veslka, “Proton exchange for high index waveguides in LiNbO3,” Appl. Phys. Lett. 41, 607 (1982); M. De Micheli, J. Botineau, S. Neveu, P. Sibillot, D. B. Ostrowsky, and M. Papuchon, “Independent control of index and profiles in proton-exchanged lithium niobate guides,” Opt. Lett. 8, 114 (1983).
    [Crossref] [PubMed]
  9. D. A. Kleinman, “Theory of optical parametric noise,” Phys. Rev. 174, 1027 (1968).J. E. Pearson, A. Yariv, and U. Ganiel, “Observation of parametric fluorescence and oscillation in the infrared,” Appl. Opt. 12, 1165 (1973).
    [Crossref] [PubMed]
  10. E. C. Cheung, K. Koch, G. T. Moore, and J. M. Liu, “Measurements of second-order nonlinear optical coefficients from the spectral brightness of parametric fluorescence,” Opt. Lett. 19, 168 (1994).
    [Crossref]
  11. M. L. Bortz, M. A. Arbore, and M. M. Fejer, “Quasi-phase-matched optical parametric amplification and oscillation in periodically poled LiNbO3 waveguides,” Opt. Lett. 20, 49 (1995); M. Arbore and M. Fejer, “Quasi- phase-matched singly resonant parametric oscillation in periodically poled lithium niobate waveguides,” in Nonlinear Optics: Materials, Fundamentals, and Applications, Vol. 11 of 1996 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1996), pp. 112–114.
    [Crossref] [PubMed]
  12. S. E. Harris, M. K. Oshman, and R. L. Byer, “Observation of tunable optical parametric fluorescence,” Phys. Rev. Lett. 18, 732 (1967).
    [Crossref]
  13. P. Baldi, S. Nouh, M. De Micheli, D. B. Ostrowsky, D. Delacourt, X. Banti, and M. Papuchon, “Efficient quasi-phase-matched generation of parametric fluorescence in room temperature lithium niobate stripe waveguides,” Electron. Lett. 29, 1539 (1993).
    [Crossref]
  14. R. L. Byer and S. E. Harris, “Power and bandwidth of spontaneous parametric emission,” Phys. Rev. 168, 1064 (1968); A. Yariv, Quantum Electronics, 3rd ed. (Wiley, New York, 1989).
    [Crossref]
  15. P. Baldi, P. Aschieri, S. Nouh, M. De Micheli, D. B. Ostrowsky, D. Delacourt, and M. Papuchon, “Modeling and experimental observation of parametric fluorescence in periodically poled lithium niobate waveguides,” J. Quantum Electron. 31, 997 (1995).
  16. M. Haruna, Y. Segawa, and H. Nishihara, “Nondestructive and simple method of optical waveguide loss measurement with optimisation of end-fire coupling,” Electron. Lett. 28, 1612 (1992).
    [Crossref]
  17. Yu. N. Korkishko, V. A. Fedorov, M. De Micheli, P. Baldi, and K. El Hadi, “Relationships between structural and optical properties of proton-exchanged waveguides on Z-cut lithium niobate,” Appl. Opt. 35, 7056 (1996).
    [Crossref] [PubMed]
  18. C. E. Rice and J. L. Jackel, “Structural changes with composition and temperature in rhombohedral Li1-xHxNbO3,” Mater. Res. Bull. 19, 591 (1984).
    [Crossref]
  19. M. L. Bortz, L. A. Eyres, and M. M. Fejer, “Depth profiling of the d33 nonlinear coefficient in annealed proton exchanged LiNbO3 waveguides,” Appl. Phys. Lett. 62, 2012 (1993).
    [Crossref]
  20. X. Cao, R. Srivastava, R. V. Ramaswamy, and J. Natour, “Recovery of second order optical nonlinearity in annealed proton-exchanged LiNbO3,” IEEE Photonics Technol. Lett. 3, 25 (1991).
    [Crossref]
  21. F. Laurell, M. G. Roelofs, and H. Hsiung, “Loss of optical nonlinearity in proton-exchanged LiNbO3 waveguides,” Appl. Phys. Lett. 60, 301 (1992).
    [Crossref]
  22. H. Ahlfeldt, “Non-linear optical properties of proton-exchanged waveguides in Z-cut LiTaO3,” J. Appl. Phys. 76, 3255 (1994).
    [Crossref]
  23. M. J. Li, M. De Micheli, D. Ostrowsky, and M. Papuchon, “Fabrication et caractérisation des guides PE présentant une faible variation d'indice et une excellente qualité optique,” J. Opt. (Paris) 18, 139 (1987).
    [Crossref]
  24. K. Nassau, H. J. Levinstein, and G. M. Loïcano, “Ferroelectric lithium niobate. 1. Growth, domain structure, dislocations and etching,” J. Phys. Chem. Solids 27, 989 (1966).
    [Crossref]
  25. K. El Hadi, “Interactions parametriq̀ues dans des guides d'ondes réalisés par échange protoniq̀ue sur niobate de lithium polarisé périodiq̀uement,” Ph.D. dissertation (Université de Nice-Sophia Antipolis, Nice, France, 1996).

1996 (2)

1995 (3)

1994 (3)

E. C. Cheung, K. Koch, G. T. Moore, and J. M. Liu, “Measurements of second-order nonlinear optical coefficients from the spectral brightness of parametric fluorescence,” Opt. Lett. 19, 168 (1994).
[Crossref]

J. Webjörn, V. Pruneri, P. Russel, J. R. M. Barr, and D. C. Hanna, “Blue light generation in bulk lithium niobate electrically poled via liquid electrode,” Electron. Lett. 30, 894 (1994).
[Crossref]

H. Ahlfeldt, “Non-linear optical properties of proton-exchanged waveguides in Z-cut LiTaO3,” J. Appl. Phys. 76, 3255 (1994).
[Crossref]

1993 (2)

M. L. Bortz, L. A. Eyres, and M. M. Fejer, “Depth profiling of the d33 nonlinear coefficient in annealed proton exchanged LiNbO3 waveguides,” Appl. Phys. Lett. 62, 2012 (1993).
[Crossref]

P. Baldi, S. Nouh, M. De Micheli, D. B. Ostrowsky, D. Delacourt, X. Banti, and M. Papuchon, “Efficient quasi-phase-matched generation of parametric fluorescence in room temperature lithium niobate stripe waveguides,” Electron. Lett. 29, 1539 (1993).
[Crossref]

1992 (2)

M. Haruna, Y. Segawa, and H. Nishihara, “Nondestructive and simple method of optical waveguide loss measurement with optimisation of end-fire coupling,” Electron. Lett. 28, 1612 (1992).
[Crossref]

F. Laurell, M. G. Roelofs, and H. Hsiung, “Loss of optical nonlinearity in proton-exchanged LiNbO3 waveguides,” Appl. Phys. Lett. 60, 301 (1992).
[Crossref]

1991 (1)

X. Cao, R. Srivastava, R. V. Ramaswamy, and J. Natour, “Recovery of second order optical nonlinearity in annealed proton-exchanged LiNbO3,” IEEE Photonics Technol. Lett. 3, 25 (1991).
[Crossref]

1989 (2)

E. J. Lim, M. M. Fejer, and R. L. Byer, “Second harmonic generation of green light in periodically poled lithium niobate waveguide,” Electron. Lett. 25, 174 (1989).
[Crossref]

J. Webjörn, F. Laurell, and G. Arvidsson, “Blue light generated by frequency doubling of laser diode light in a lithium niobate waveguide,” IEEE Photonics Technol. Lett. 1, 316 (1989).
[Crossref]

1987 (1)

M. J. Li, M. De Micheli, D. Ostrowsky, and M. Papuchon, “Fabrication et caractérisation des guides PE présentant une faible variation d'indice et une excellente qualité optique,” J. Opt. (Paris) 18, 139 (1987).
[Crossref]

1984 (1)

C. E. Rice and J. L. Jackel, “Structural changes with composition and temperature in rhombohedral Li1-xHxNbO3,” Mater. Res. Bull. 19, 591 (1984).
[Crossref]

1982 (1)

J. L. Jackel, R. E. Rice, and J. J. Veslka, “Proton exchange for high index waveguides in LiNbO3,” Appl. Phys. Lett. 41, 607 (1982); M. De Micheli, J. Botineau, S. Neveu, P. Sibillot, D. B. Ostrowsky, and M. Papuchon, “Independent control of index and profiles in proton-exchanged lithium niobate guides,” Opt. Lett. 8, 114 (1983).
[Crossref] [PubMed]

1968 (2)

D. A. Kleinman, “Theory of optical parametric noise,” Phys. Rev. 174, 1027 (1968).J. E. Pearson, A. Yariv, and U. Ganiel, “Observation of parametric fluorescence and oscillation in the infrared,” Appl. Opt. 12, 1165 (1973).
[Crossref] [PubMed]

R. L. Byer and S. E. Harris, “Power and bandwidth of spontaneous parametric emission,” Phys. Rev. 168, 1064 (1968); A. Yariv, Quantum Electronics, 3rd ed. (Wiley, New York, 1989).
[Crossref]

1967 (1)

S. E. Harris, M. K. Oshman, and R. L. Byer, “Observation of tunable optical parametric fluorescence,” Phys. Rev. Lett. 18, 732 (1967).
[Crossref]

1966 (1)

K. Nassau, H. J. Levinstein, and G. M. Loïcano, “Ferroelectric lithium niobate. 1. Growth, domain structure, dislocations and etching,” J. Phys. Chem. Solids 27, 989 (1966).
[Crossref]

1962 (1)

J. A. Amstrong, N. Bloembergen, J. Ducuing, and P. S. Pershan, “Interactions between light waves in nonlinear dielectric,” Phys. Rev. 127, 1918 (1962).
[Crossref]

Ahlfeldt, H.

H. Ahlfeldt, “Non-linear optical properties of proton-exchanged waveguides in Z-cut LiTaO3,” J. Appl. Phys. 76, 3255 (1994).
[Crossref]

Alexander, J. I.

Amstrong, J. A.

J. A. Amstrong, N. Bloembergen, J. Ducuing, and P. S. Pershan, “Interactions between light waves in nonlinear dielectric,” Phys. Rev. 127, 1918 (1962).
[Crossref]

Arbore, M. A.

Arvidsson, G.

J. Webjörn, F. Laurell, and G. Arvidsson, “Blue light generated by frequency doubling of laser diode light in a lithium niobate waveguide,” IEEE Photonics Technol. Lett. 1, 316 (1989).
[Crossref]

Aschieri, P.

P. Baldi, P. Aschieri, S. Nouh, M. De Micheli, D. B. Ostrowsky, D. Delacourt, and M. Papuchon, “Modeling and experimental observation of parametric fluorescence in periodically poled lithium niobate waveguides,” J. Quantum Electron. 31, 997 (1995).

Baldi, P.

Yu. N. Korkishko, V. A. Fedorov, M. De Micheli, P. Baldi, and K. El Hadi, “Relationships between structural and optical properties of proton-exchanged waveguides on Z-cut lithium niobate,” Appl. Opt. 35, 7056 (1996).
[Crossref] [PubMed]

P. Baldi, P. Aschieri, S. Nouh, M. De Micheli, D. B. Ostrowsky, D. Delacourt, and M. Papuchon, “Modeling and experimental observation of parametric fluorescence in periodically poled lithium niobate waveguides,” J. Quantum Electron. 31, 997 (1995).

P. Baldi, S. Nouh, M. De Micheli, D. B. Ostrowsky, D. Delacourt, X. Banti, and M. Papuchon, “Efficient quasi-phase-matched generation of parametric fluorescence in room temperature lithium niobate stripe waveguides,” Electron. Lett. 29, 1539 (1993).
[Crossref]

Banti, X.

P. Baldi, S. Nouh, M. De Micheli, D. B. Ostrowsky, D. Delacourt, X. Banti, and M. Papuchon, “Efficient quasi-phase-matched generation of parametric fluorescence in room temperature lithium niobate stripe waveguides,” Electron. Lett. 29, 1539 (1993).
[Crossref]

Barr, J. R. M.

J. Webjörn, V. Pruneri, P. Russel, J. R. M. Barr, and D. C. Hanna, “Blue light generation in bulk lithium niobate electrically poled via liquid electrode,” Electron. Lett. 30, 894 (1994).
[Crossref]

Bloembergen, N.

J. A. Amstrong, N. Bloembergen, J. Ducuing, and P. S. Pershan, “Interactions between light waves in nonlinear dielectric,” Phys. Rev. 127, 1918 (1962).
[Crossref]

Bortz, M. L.

Bosenberg, W. R.

Byer, R. L.

W. R. Bosenberg, A. Drobshoff, J. I. Alexander, L. E. Myers, and R. L. Byer, “Continuous-wave singly resonant optical parametric oscillator based on periodically poled LiNbO3,” Opt. Lett. 21, 713 (1996).
[Crossref] [PubMed]

L. E. Myers, R. C. Eckardt, M. M. Fejer, R. L. Byer, W. R. Bosenberg, and J. W. Pierce, “Quasi-phase-matched optical parametric oscillators in bulk periodically poled LiNbO3,” J. Opt. Soc. Am. B 12, 2102 (1995).
[Crossref]

E. J. Lim, M. M. Fejer, and R. L. Byer, “Second harmonic generation of green light in periodically poled lithium niobate waveguide,” Electron. Lett. 25, 174 (1989).
[Crossref]

R. L. Byer and S. E. Harris, “Power and bandwidth of spontaneous parametric emission,” Phys. Rev. 168, 1064 (1968); A. Yariv, Quantum Electronics, 3rd ed. (Wiley, New York, 1989).
[Crossref]

S. E. Harris, M. K. Oshman, and R. L. Byer, “Observation of tunable optical parametric fluorescence,” Phys. Rev. Lett. 18, 732 (1967).
[Crossref]

Cao, X.

X. Cao, R. Srivastava, R. V. Ramaswamy, and J. Natour, “Recovery of second order optical nonlinearity in annealed proton-exchanged LiNbO3,” IEEE Photonics Technol. Lett. 3, 25 (1991).
[Crossref]

Cheung, E. C.

De Micheli, M.

Yu. N. Korkishko, V. A. Fedorov, M. De Micheli, P. Baldi, and K. El Hadi, “Relationships between structural and optical properties of proton-exchanged waveguides on Z-cut lithium niobate,” Appl. Opt. 35, 7056 (1996).
[Crossref] [PubMed]

P. Baldi, P. Aschieri, S. Nouh, M. De Micheli, D. B. Ostrowsky, D. Delacourt, and M. Papuchon, “Modeling and experimental observation of parametric fluorescence in periodically poled lithium niobate waveguides,” J. Quantum Electron. 31, 997 (1995).

P. Baldi, S. Nouh, M. De Micheli, D. B. Ostrowsky, D. Delacourt, X. Banti, and M. Papuchon, “Efficient quasi-phase-matched generation of parametric fluorescence in room temperature lithium niobate stripe waveguides,” Electron. Lett. 29, 1539 (1993).
[Crossref]

M. J. Li, M. De Micheli, D. Ostrowsky, and M. Papuchon, “Fabrication et caractérisation des guides PE présentant une faible variation d'indice et une excellente qualité optique,” J. Opt. (Paris) 18, 139 (1987).
[Crossref]

Delacourt, D.

P. Baldi, P. Aschieri, S. Nouh, M. De Micheli, D. B. Ostrowsky, D. Delacourt, and M. Papuchon, “Modeling and experimental observation of parametric fluorescence in periodically poled lithium niobate waveguides,” J. Quantum Electron. 31, 997 (1995).

P. Baldi, S. Nouh, M. De Micheli, D. B. Ostrowsky, D. Delacourt, X. Banti, and M. Papuchon, “Efficient quasi-phase-matched generation of parametric fluorescence in room temperature lithium niobate stripe waveguides,” Electron. Lett. 29, 1539 (1993).
[Crossref]

Drobshoff, A.

Ducuing, J.

J. A. Amstrong, N. Bloembergen, J. Ducuing, and P. S. Pershan, “Interactions between light waves in nonlinear dielectric,” Phys. Rev. 127, 1918 (1962).
[Crossref]

Eckardt, R. C.

El Hadi, K.

Yu. N. Korkishko, V. A. Fedorov, M. De Micheli, P. Baldi, and K. El Hadi, “Relationships between structural and optical properties of proton-exchanged waveguides on Z-cut lithium niobate,” Appl. Opt. 35, 7056 (1996).
[Crossref] [PubMed]

K. El Hadi, “Interactions parametriq̀ues dans des guides d'ondes réalisés par échange protoniq̀ue sur niobate de lithium polarisé périodiq̀uement,” Ph.D. dissertation (Université de Nice-Sophia Antipolis, Nice, France, 1996).

Eyres, L. A.

M. L. Bortz, L. A. Eyres, and M. M. Fejer, “Depth profiling of the d33 nonlinear coefficient in annealed proton exchanged LiNbO3 waveguides,” Appl. Phys. Lett. 62, 2012 (1993).
[Crossref]

Fedorov, V. A.

Fejer, M. M.

Hanna, D. C.

J. Webjörn, V. Pruneri, P. Russel, J. R. M. Barr, and D. C. Hanna, “Blue light generation in bulk lithium niobate electrically poled via liquid electrode,” Electron. Lett. 30, 894 (1994).
[Crossref]

Harris, S. E.

R. L. Byer and S. E. Harris, “Power and bandwidth of spontaneous parametric emission,” Phys. Rev. 168, 1064 (1968); A. Yariv, Quantum Electronics, 3rd ed. (Wiley, New York, 1989).
[Crossref]

S. E. Harris, M. K. Oshman, and R. L. Byer, “Observation of tunable optical parametric fluorescence,” Phys. Rev. Lett. 18, 732 (1967).
[Crossref]

Haruna, M.

M. Haruna, Y. Segawa, and H. Nishihara, “Nondestructive and simple method of optical waveguide loss measurement with optimisation of end-fire coupling,” Electron. Lett. 28, 1612 (1992).
[Crossref]

Hsiung, H.

F. Laurell, M. G. Roelofs, and H. Hsiung, “Loss of optical nonlinearity in proton-exchanged LiNbO3 waveguides,” Appl. Phys. Lett. 60, 301 (1992).
[Crossref]

Jackel, J. L.

C. E. Rice and J. L. Jackel, “Structural changes with composition and temperature in rhombohedral Li1-xHxNbO3,” Mater. Res. Bull. 19, 591 (1984).
[Crossref]

J. L. Jackel, R. E. Rice, and J. J. Veslka, “Proton exchange for high index waveguides in LiNbO3,” Appl. Phys. Lett. 41, 607 (1982); M. De Micheli, J. Botineau, S. Neveu, P. Sibillot, D. B. Ostrowsky, and M. Papuchon, “Independent control of index and profiles in proton-exchanged lithium niobate guides,” Opt. Lett. 8, 114 (1983).
[Crossref] [PubMed]

Kleinman, D. A.

D. A. Kleinman, “Theory of optical parametric noise,” Phys. Rev. 174, 1027 (1968).J. E. Pearson, A. Yariv, and U. Ganiel, “Observation of parametric fluorescence and oscillation in the infrared,” Appl. Opt. 12, 1165 (1973).
[Crossref] [PubMed]

Koch, K.

Korkishko, Yu. N.

Laurell, F.

F. Laurell, M. G. Roelofs, and H. Hsiung, “Loss of optical nonlinearity in proton-exchanged LiNbO3 waveguides,” Appl. Phys. Lett. 60, 301 (1992).
[Crossref]

J. Webjörn, F. Laurell, and G. Arvidsson, “Blue light generated by frequency doubling of laser diode light in a lithium niobate waveguide,” IEEE Photonics Technol. Lett. 1, 316 (1989).
[Crossref]

Levinstein, H. J.

K. Nassau, H. J. Levinstein, and G. M. Loïcano, “Ferroelectric lithium niobate. 1. Growth, domain structure, dislocations and etching,” J. Phys. Chem. Solids 27, 989 (1966).
[Crossref]

Li, M. J.

M. J. Li, M. De Micheli, D. Ostrowsky, and M. Papuchon, “Fabrication et caractérisation des guides PE présentant une faible variation d'indice et une excellente qualité optique,” J. Opt. (Paris) 18, 139 (1987).
[Crossref]

Lim, E. J.

E. J. Lim, M. M. Fejer, and R. L. Byer, “Second harmonic generation of green light in periodically poled lithium niobate waveguide,” Electron. Lett. 25, 174 (1989).
[Crossref]

Liu, J. M.

Loïcano, G. M.

K. Nassau, H. J. Levinstein, and G. M. Loïcano, “Ferroelectric lithium niobate. 1. Growth, domain structure, dislocations and etching,” J. Phys. Chem. Solids 27, 989 (1966).
[Crossref]

Moore, G. T.

Myers, L. E.

Nassau, K.

K. Nassau, H. J. Levinstein, and G. M. Loïcano, “Ferroelectric lithium niobate. 1. Growth, domain structure, dislocations and etching,” J. Phys. Chem. Solids 27, 989 (1966).
[Crossref]

Natour, J.

X. Cao, R. Srivastava, R. V. Ramaswamy, and J. Natour, “Recovery of second order optical nonlinearity in annealed proton-exchanged LiNbO3,” IEEE Photonics Technol. Lett. 3, 25 (1991).
[Crossref]

Nishihara, H.

M. Haruna, Y. Segawa, and H. Nishihara, “Nondestructive and simple method of optical waveguide loss measurement with optimisation of end-fire coupling,” Electron. Lett. 28, 1612 (1992).
[Crossref]

Nouh, S.

P. Baldi, P. Aschieri, S. Nouh, M. De Micheli, D. B. Ostrowsky, D. Delacourt, and M. Papuchon, “Modeling and experimental observation of parametric fluorescence in periodically poled lithium niobate waveguides,” J. Quantum Electron. 31, 997 (1995).

P. Baldi, S. Nouh, M. De Micheli, D. B. Ostrowsky, D. Delacourt, X. Banti, and M. Papuchon, “Efficient quasi-phase-matched generation of parametric fluorescence in room temperature lithium niobate stripe waveguides,” Electron. Lett. 29, 1539 (1993).
[Crossref]

Oshman, M. K.

S. E. Harris, M. K. Oshman, and R. L. Byer, “Observation of tunable optical parametric fluorescence,” Phys. Rev. Lett. 18, 732 (1967).
[Crossref]

Ostrowsky, D.

M. J. Li, M. De Micheli, D. Ostrowsky, and M. Papuchon, “Fabrication et caractérisation des guides PE présentant une faible variation d'indice et une excellente qualité optique,” J. Opt. (Paris) 18, 139 (1987).
[Crossref]

Ostrowsky, D. B.

P. Baldi, P. Aschieri, S. Nouh, M. De Micheli, D. B. Ostrowsky, D. Delacourt, and M. Papuchon, “Modeling and experimental observation of parametric fluorescence in periodically poled lithium niobate waveguides,” J. Quantum Electron. 31, 997 (1995).

P. Baldi, S. Nouh, M. De Micheli, D. B. Ostrowsky, D. Delacourt, X. Banti, and M. Papuchon, “Efficient quasi-phase-matched generation of parametric fluorescence in room temperature lithium niobate stripe waveguides,” Electron. Lett. 29, 1539 (1993).
[Crossref]

Papuchon, M.

P. Baldi, P. Aschieri, S. Nouh, M. De Micheli, D. B. Ostrowsky, D. Delacourt, and M. Papuchon, “Modeling and experimental observation of parametric fluorescence in periodically poled lithium niobate waveguides,” J. Quantum Electron. 31, 997 (1995).

P. Baldi, S. Nouh, M. De Micheli, D. B. Ostrowsky, D. Delacourt, X. Banti, and M. Papuchon, “Efficient quasi-phase-matched generation of parametric fluorescence in room temperature lithium niobate stripe waveguides,” Electron. Lett. 29, 1539 (1993).
[Crossref]

M. J. Li, M. De Micheli, D. Ostrowsky, and M. Papuchon, “Fabrication et caractérisation des guides PE présentant une faible variation d'indice et une excellente qualité optique,” J. Opt. (Paris) 18, 139 (1987).
[Crossref]

Pershan, P. S.

J. A. Amstrong, N. Bloembergen, J. Ducuing, and P. S. Pershan, “Interactions between light waves in nonlinear dielectric,” Phys. Rev. 127, 1918 (1962).
[Crossref]

Pierce, J. W.

Pruneri, V.

J. Webjörn, V. Pruneri, P. Russel, J. R. M. Barr, and D. C. Hanna, “Blue light generation in bulk lithium niobate electrically poled via liquid electrode,” Electron. Lett. 30, 894 (1994).
[Crossref]

Ramaswamy, R. V.

X. Cao, R. Srivastava, R. V. Ramaswamy, and J. Natour, “Recovery of second order optical nonlinearity in annealed proton-exchanged LiNbO3,” IEEE Photonics Technol. Lett. 3, 25 (1991).
[Crossref]

Rauber, A.

A. Rauber, Chemistry and Physics of Lithium Niobate, Vol. 1 of Current Topics in Material Science, by E. Kaldis, ed. (North-Holland, Amsterdam, 1978), Chap. 7.

Rice, C. E.

C. E. Rice and J. L. Jackel, “Structural changes with composition and temperature in rhombohedral Li1-xHxNbO3,” Mater. Res. Bull. 19, 591 (1984).
[Crossref]

Rice, R. E.

J. L. Jackel, R. E. Rice, and J. J. Veslka, “Proton exchange for high index waveguides in LiNbO3,” Appl. Phys. Lett. 41, 607 (1982); M. De Micheli, J. Botineau, S. Neveu, P. Sibillot, D. B. Ostrowsky, and M. Papuchon, “Independent control of index and profiles in proton-exchanged lithium niobate guides,” Opt. Lett. 8, 114 (1983).
[Crossref] [PubMed]

Roelofs, M. G.

F. Laurell, M. G. Roelofs, and H. Hsiung, “Loss of optical nonlinearity in proton-exchanged LiNbO3 waveguides,” Appl. Phys. Lett. 60, 301 (1992).
[Crossref]

Russel, P.

J. Webjörn, V. Pruneri, P. Russel, J. R. M. Barr, and D. C. Hanna, “Blue light generation in bulk lithium niobate electrically poled via liquid electrode,” Electron. Lett. 30, 894 (1994).
[Crossref]

Segawa, Y.

M. Haruna, Y. Segawa, and H. Nishihara, “Nondestructive and simple method of optical waveguide loss measurement with optimisation of end-fire coupling,” Electron. Lett. 28, 1612 (1992).
[Crossref]

Srivastava, R.

X. Cao, R. Srivastava, R. V. Ramaswamy, and J. Natour, “Recovery of second order optical nonlinearity in annealed proton-exchanged LiNbO3,” IEEE Photonics Technol. Lett. 3, 25 (1991).
[Crossref]

Veslka, J. J.

J. L. Jackel, R. E. Rice, and J. J. Veslka, “Proton exchange for high index waveguides in LiNbO3,” Appl. Phys. Lett. 41, 607 (1982); M. De Micheli, J. Botineau, S. Neveu, P. Sibillot, D. B. Ostrowsky, and M. Papuchon, “Independent control of index and profiles in proton-exchanged lithium niobate guides,” Opt. Lett. 8, 114 (1983).
[Crossref] [PubMed]

Webjörn, J.

J. Webjörn, V. Pruneri, P. Russel, J. R. M. Barr, and D. C. Hanna, “Blue light generation in bulk lithium niobate electrically poled via liquid electrode,” Electron. Lett. 30, 894 (1994).
[Crossref]

J. Webjörn, F. Laurell, and G. Arvidsson, “Blue light generated by frequency doubling of laser diode light in a lithium niobate waveguide,” IEEE Photonics Technol. Lett. 1, 316 (1989).
[Crossref]

Appl. Opt. (1)

Appl. Phys. Lett. (3)

J. L. Jackel, R. E. Rice, and J. J. Veslka, “Proton exchange for high index waveguides in LiNbO3,” Appl. Phys. Lett. 41, 607 (1982); M. De Micheli, J. Botineau, S. Neveu, P. Sibillot, D. B. Ostrowsky, and M. Papuchon, “Independent control of index and profiles in proton-exchanged lithium niobate guides,” Opt. Lett. 8, 114 (1983).
[Crossref] [PubMed]

F. Laurell, M. G. Roelofs, and H. Hsiung, “Loss of optical nonlinearity in proton-exchanged LiNbO3 waveguides,” Appl. Phys. Lett. 60, 301 (1992).
[Crossref]

M. L. Bortz, L. A. Eyres, and M. M. Fejer, “Depth profiling of the d33 nonlinear coefficient in annealed proton exchanged LiNbO3 waveguides,” Appl. Phys. Lett. 62, 2012 (1993).
[Crossref]

Electron. Lett. (4)

P. Baldi, S. Nouh, M. De Micheli, D. B. Ostrowsky, D. Delacourt, X. Banti, and M. Papuchon, “Efficient quasi-phase-matched generation of parametric fluorescence in room temperature lithium niobate stripe waveguides,” Electron. Lett. 29, 1539 (1993).
[Crossref]

J. Webjörn, V. Pruneri, P. Russel, J. R. M. Barr, and D. C. Hanna, “Blue light generation in bulk lithium niobate electrically poled via liquid electrode,” Electron. Lett. 30, 894 (1994).
[Crossref]

E. J. Lim, M. M. Fejer, and R. L. Byer, “Second harmonic generation of green light in periodically poled lithium niobate waveguide,” Electron. Lett. 25, 174 (1989).
[Crossref]

M. Haruna, Y. Segawa, and H. Nishihara, “Nondestructive and simple method of optical waveguide loss measurement with optimisation of end-fire coupling,” Electron. Lett. 28, 1612 (1992).
[Crossref]

IEEE Photonics Technol. Lett. (2)

J. Webjörn, F. Laurell, and G. Arvidsson, “Blue light generated by frequency doubling of laser diode light in a lithium niobate waveguide,” IEEE Photonics Technol. Lett. 1, 316 (1989).
[Crossref]

X. Cao, R. Srivastava, R. V. Ramaswamy, and J. Natour, “Recovery of second order optical nonlinearity in annealed proton-exchanged LiNbO3,” IEEE Photonics Technol. Lett. 3, 25 (1991).
[Crossref]

J. Appl. Phys. (1)

H. Ahlfeldt, “Non-linear optical properties of proton-exchanged waveguides in Z-cut LiTaO3,” J. Appl. Phys. 76, 3255 (1994).
[Crossref]

J. Opt. (Paris) (1)

M. J. Li, M. De Micheli, D. Ostrowsky, and M. Papuchon, “Fabrication et caractérisation des guides PE présentant une faible variation d'indice et une excellente qualité optique,” J. Opt. (Paris) 18, 139 (1987).
[Crossref]

J. Opt. Soc. Am. B (1)

J. Phys. Chem. Solids (1)

K. Nassau, H. J. Levinstein, and G. M. Loïcano, “Ferroelectric lithium niobate. 1. Growth, domain structure, dislocations and etching,” J. Phys. Chem. Solids 27, 989 (1966).
[Crossref]

J. Quantum Electron. (1)

P. Baldi, P. Aschieri, S. Nouh, M. De Micheli, D. B. Ostrowsky, D. Delacourt, and M. Papuchon, “Modeling and experimental observation of parametric fluorescence in periodically poled lithium niobate waveguides,” J. Quantum Electron. 31, 997 (1995).

Mater. Res. Bull. (1)

C. E. Rice and J. L. Jackel, “Structural changes with composition and temperature in rhombohedral Li1-xHxNbO3,” Mater. Res. Bull. 19, 591 (1984).
[Crossref]

Opt. Lett. (3)

Phys. Rev. (3)

D. A. Kleinman, “Theory of optical parametric noise,” Phys. Rev. 174, 1027 (1968).J. E. Pearson, A. Yariv, and U. Ganiel, “Observation of parametric fluorescence and oscillation in the infrared,” Appl. Opt. 12, 1165 (1973).
[Crossref] [PubMed]

J. A. Amstrong, N. Bloembergen, J. Ducuing, and P. S. Pershan, “Interactions between light waves in nonlinear dielectric,” Phys. Rev. 127, 1918 (1962).
[Crossref]

R. L. Byer and S. E. Harris, “Power and bandwidth of spontaneous parametric emission,” Phys. Rev. 168, 1064 (1968); A. Yariv, Quantum Electronics, 3rd ed. (Wiley, New York, 1989).
[Crossref]

Phys. Rev. Lett. (1)

S. E. Harris, M. K. Oshman, and R. L. Byer, “Observation of tunable optical parametric fluorescence,” Phys. Rev. Lett. 18, 732 (1967).
[Crossref]

Other (2)

K. El Hadi, “Interactions parametriq̀ues dans des guides d'ondes réalisés par échange protoniq̀ue sur niobate de lithium polarisé périodiq̀uement,” Ph.D. dissertation (Université de Nice-Sophia Antipolis, Nice, France, 1996).

A. Rauber, Chemistry and Physics of Lithium Niobate, Vol. 1 of Current Topics in Material Science, by E. Kaldis, ed. (North-Holland, Amsterdam, 1978), Chap. 7.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1
Fig. 1

Geometry used for bulk parametric fluorescence measurements. The solid angle subtended by the detector at the crystal is ΔΩ=πθ2.

Fig. 2
Fig. 2

Dependence of the fluorescence power on the square of the detector acceptance angle. The linear dependence obtained from small angles leads to deff. Saturation occurs when all the fluorescence reaches the detector.

Fig. 3
Fig. 3

Typical index profiles corresponding to three PE conditions: PEI, step-index profile obtained with a high-proton-concentration melt (ρ<2.6%); APE, Gaussian index profile obtained by annealing PEI waveguides; and, PEIII, exponential index profile waveguide obtained by use of a low-acidity melt (ρ >2.6%).

Fig. 4
Fig. 4

Phase diagram of HxLi1-xNbO3. With a melt of BA and LB, all the phases, except β3 and β4, can be produced. The β1 and β2 phases correspond to the PEI waveguides and are obtained by direct exchange. The α phase can be obtained either by direct exchange (PEIII waveguides) or by annealing (APE waveguides). The κ1 and κ2 phases can be obtained only by annealing. They have never been used, as their optical quality is rather poor (propagation losses 3 dB/cm).

Fig. 5
Fig. 5

Experimental setup for reflected SHG signal measurements.

Fig. 6
Fig. 6

(a) Index profile of the PEIII waveguide whose fabrication conditions are (3% LB, 300 °C, 70 h). (b) The corresponding measured responses. The nonlinear signal (2ω) is identical in the waveguide and the bulk regions. SH, second harmonic.

Fig. 7
Fig. 7

(a) Step-index profile of a PEI waveguide. The PE conditions (1% LB, 300 °C, 5 h) correspond to those for a β1 phase HxLi1-xLiNbO3 structure. (b) Measured responses for the reflected beams. In the waveguide region (4.7 µm) the nonlinear signal (2ω) is less than 5% of its bulk value. SH, second harmonic.

Fig. 8
Fig. 8

(a) Index profile of the APE waveguide. The initial exchange is the same as in Fig. 7(a). The sample was five times annealed at 350 °C (5 h+10 h+8 h+15 h+25 h). (b) Measured responses for the reflected beams. The shape of the second-harmonic (SH) beam is certainly due to the different phase transitions.

Fig. 9
Fig. 9

Sample polished at a wedge angle θ of ∼0.3°, permitting observation of both the waveguide and the substrate regions in the top view.

Fig. 10
Fig. 10

Top view of a PEI waveguide taken through an optical microscope after 10 min of chemical etching. The poling period is 18 µm, which gives the scale. The waveguide region is on the left-hand side of the picture, and the unpolished surface is identified by the black scratch line.

Fig. 11
Fig. 11

Picture of the etched APE waveguide, which shows that in this case also the domains are erased at the surface. The left-hand side of the picture represents the exchanged region, and the unpolished surface is identified by the black scratch line.

Fig. 12
Fig. 12

Picture of the etched PEIII waveguide, showing that there is no degradation of the domain structure even in the waveguide region.

Tables (1)

Tables Icon

Table 1 Comparison of Theoretical and Measured Values of deff and Efficiencies for Bulk and Waveguide Configurationsa

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

Ps(l)=β|b|deff2lPp(0)πθ2,
β=ωiωs4nsπ2c5ninpε03,b=ksωsωs0-kiωiωi0
Ps(l)=γ|b|deff2lPp(0)I,
γ=exp(αsl)1-exp(-αpl)αpl2 2ωiωs2μ03c4neffpneffsneffi,
I=Ep(x, y)Es(x, y)Ei(x, y)dxdy2Ep2(x, y)dxdyEs2(x, y)dxdyEi2(x, y)dxdy,

Metrics