Abstract

We give a comprehensive summary of the results on self-guided beams, bright spatial solitary waves, emphasizing the most recent advances. To be stable in a bulk medium, such beams should propagate in a non-Kerr medium. It is emphasized that all spatial solitons are generically the same, independent of the type of nonlinear medium, and such free-propagating beams can execute interesting dynamics, including spiraling around one another, self-tapering, periodically changing their shape, cross section, or polarization, and inelastically colliding to annihilate one another, fuse, or create a new beam. Most of these types of solitary-wave dynamics have recently been confirmed experimentally for self-guided beams propagating in different non-Kerr materials. Significantly, there exists no temporal analog (e.g., for pulse propagation in fibers) even for stationary spatial solitons of a bulk medium.

© 1997 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. W. Snyder, D. J. Mitchell, and Yu. S. Kivshar, “Unification of linear and nonlinear guided wave optics,” Mod. Phys. Lett. B 9, 1479–1506 (1995).
    [Crossref]
  2. The use of the nonlinearity-induced refractive-index change created by an intense beam for guiding particles (electrons and atoms) was suggested even earlier; see G. A. Askar’yan, “Effect of the gradient of a strong electromagnetic beam on electrons and atoms,” Sov. Phys. JETP 15, 1088–1090 (1962) [Zh. Eksp. Teor. Fiz. 42, 1567–1570 (1962)].
  3. R. Y. Chiao, E. Garmire, and C. H. Townes, “Self-trapping of optical beams,” Phys. Rev. Lett. 13, 479–480 (1964).
    [Crossref]
  4. S. A. Akhmanov, A. P. Sukhorukov, and R. V. Khokhlov, “Self-focusing and self-trapping of intense light beams in a nonlinear medium,” Sov. Phys. JETP 23, 1025–1033 (1966) [Zh. Eksp. Teor. Fiz. 50, 1537–1549 (1966)].
  5. J. T. Manassah, “Induced waveguiding effects in a two-dimensional nonlinear medium,” Opt. Lett. 16, 587–589 (1991).
    [Crossref] [PubMed]
  6. A. W. Snyder, D. J. Mitchell, and F. Ladouceur, “Self-induced optical fibers: spatial solitary waves,” Opt. Lett. 10, 21–23 (1991).
    [Crossref]
  7. D. J. Mitchell, A. W. Snyder, and L. Poladian, “Self-guided beam interaction: method of invariants,” Electron. Lett. 27, 848–849 (1991).
    [Crossref]
  8. L. Poladian, A. W. Snyder, and D. J. Mitchell, “Spiralling spatial solitons,” Opt. Commun. 85, 59–62 (1991).
    [Crossref]
  9. In a defocusing Kerr medium, the only known stable soliton is “a black spatial soliton of circular cross section” (sometimes called a vortex soliton; see Ref. 10), first predicted in optics in the paper by A. W. Snyder, L. Poladian, and D. J. Mitchell, “Stable black self-guided beams of circular symmetry in a bulk Kerr medium,” Opt. Lett. 17, 789–791 (1992). This letter is also the first to suggest such solitons as suitable for guiding signals.
    [Crossref] [PubMed]
  10. As spatially localized solutions of the defocusing cubic nonlinear Schrödinger equation, vortex solitons were first introduced by V. L. Ginzburg and L. P. Pitaevski, “On the theory of superfluidity,” Sov. Phys. JETP 7, 858–861 (1959) [Zh. Eksp. Teor. Fiz. 34, 1240–1245 (1958)]; see also L. P. Pitaevski, “Vortex lines in an imperfect Bose gas,” Sov. Phys. JETP 13, 451–454 (1961) [Zh. Eksp. Teor. Fiz. 40, 646–651 (1961)], on topological excitations in superfluids. The term vortex had been used much earlier for different (linear) physical processes and for different defining equations.
  11. A. W. Snyder and A. P. Sheppard, “Collisons, steering and guidance with spatial solitons,” Opt. Lett. 18, 482–484 (1993).
    [Crossref] [PubMed]
  12. A. W. Snyder, S. Hewlett, and D. J. Mitchell, “Dynamic spatial solitons,” Phys. Rev. Lett. 72, 1012–1016 (1994).
    [Crossref] [PubMed]
  13. A. W. Snyder, S. Hewlett, and D. J. Mitchell, “Periodic solitons in optics,” Phys. Rev. E 51, 6297–6300 (1995).
    [Crossref]
  14. A. W. Snyder, D. J. Mitchell, and M. Haelterman, “Parallel spatial solitons,” Opt. Commun. 116, 365–368 (1995).
    [Crossref]
  15. D. J. Mitchell, A. W. Snyder, and L. Poladian, “Interacting self-guided beams viewed as particles: Lorentz force derivation,” Phys. Rev. Lett. 77, 271–273 (1996).
    [Crossref] [PubMed]
  16. A. W. Snyder and D. J. Mitchell, “Mighty morphing spatial solitons and bullets,” Opt. Lett. 22, 16–18 (1997).
    [Crossref] [PubMed]
  17. A. W. Snyder, D. J. Mitchell, and Yu. S. Kivshar, “Linear perspective of solitons,” in Physics and Applications of Optical Solitons in Fibers, A. Hasegawa, ed. (Kluwer Academic, Amsterdam, 1996), pp. 263–275.
  18. A. W. Snyder, “The linear perspective to soliton dynamics,” Opt. Photonics News 7(12), 27–28 (1996).
    [Crossref]
  19. Yu. S. Kivshar and B. Luther-Davies, “Dark optical solitons: physics and applications,” Phys. Rep. (to be published).
  20. A. W. Snyder, D. J. Mitchell, and A. V. Buryak, “Qualitative theory of bright solitons—the soliton sketch,” J. Opt. Soc. Am. B 13, 1146–1150 (1996).
    [Crossref]
  21. A. W. Snyder and J. D. Love, Optical Waveguide Theory (Chapman & Hall, London, 1985).
  22. For the most recent overview of the experimental observations of spatial optical solitons, see the paper by G. I. Stegeman, “The growing family of spatial solitons,” Opt. Appl. 26, 240–248 (1996).
  23. V. E. Zakharov and A. B. Shabat, “Exact theory of two-dimensional self-focusing and one-dimensional self-modulation of waves in nonlinear media,” Zh. Eksp. Teor. Fiz. 61, 118–134 (1971) [Sov. Phys. JETP 34, 62–69 (1972)].
  24. P. L. Kelley, “Self-focusing of optical beams,” Phys. Rev. Lett. 15, 1005–1008 (1965).
    [Crossref]
  25. M. G. Vakhitov and A. A. Kolokolov, “Stationary solutions of the wave equation in a medium with nonlinearity saturation,” Radiophys. Quantum Electron. 16, 783–789 (1973); applies only for a Kerr medium and no waveguide structures.
    [Crossref]
  26. D. J. Mitchell and A. W. Snyder, “Stability of fundamental nonlinear guided waves,” J. Opt. Soc. Am. B 10, 1572–1580 (1993); applicable to all nonlinearities and also in the presence of waveguide structures.
    [Crossref]
  27. See, e.g., J. H. Marburger and E. L. Dawes, “Dynamic formation of a small-scale filament,” Phys. Rev. Lett. 21, 556–558 (1968); E. L. Dawes and J. H. Marburger, “Computer studies in self-focusing,” Phys. Rev. 179, 862–868 (1969).
    [Crossref]
  28. P. K. Kaw, K. Nishikawa, Y. Yoshida, and A. Hasegawa, “Two-dimensional and three-dimensional envelope solitons,” Phys. Rev. Lett. 35, 88–91 (1975); J. Z. Wilcox and T. J. Wilcox, “Stability of localized plasma model in two and three dimensions,” Phys. Rev. Lett. 34, 1160–1163 (1975).
    [Crossref]
  29. M. Segev, B. Crosignani, A. Yariv, and B. Fischer, “Spatial solitons in photorefractive media,” Phys. Rev. Lett. 68, 923–926 (1992).
    [Crossref] [PubMed]
  30. G. C. Duree, J. L. Shultz, G. J. Salamo, M. Segev, A. Yariv, B. Crosignani, P. DiPorto, E. J. Sharp, and R. R. Neurgaonkar, “Observation of self-trapping in an optical beam due to the photorefractive effect,” Phys. Rev. Lett. 71, 533–536 (1993).
    [Crossref] [PubMed]
  31. M. Segev, G. C. Valley, B. Crosignani, P. DiPorto, and A. Yariv, “Steady-state spatial screening solitons in photorefractive materials with external applied field,” Phys. Rev. Lett. 73, 3211–3214 (1994); M. Shih, P. Leach, M. Segev, M. H. Garrett, G. Salamo, and G. C. Valley, “Two-dimensional steady-state photorefractive screening solitons,” Opt. Lett. 21, 324–326 (1996).
    [Crossref] [PubMed]
  32. M. D. Iturbe-Castillo, P. A. Marquez Aguilar, J. J. Sanchez-Mondragon, S. Stepanov, and V. Vysloukh, “Spatial solitons in photorefractive Bi12TiO20 with drift mechanism of nonlinearity,” Appl. Phys. Lett. 64, 408–410 (1994).
    [Crossref]
  33. V. Tikhonenko, J. Christou, and B. Luther-Davies, “Spiraling bright spatial solitons formed by the breakup of an optical vortex in a saturable self-focusing medium,” J. Opt. Soc. Am. B 12, 2046–2052 (1995).
    [Crossref]
  34. V. Tikhonenko, J. Christou, and B. Luther-Davies, “Three-dimensional bright spatial soliton collision and fusion in a saturable nonlinear medium,” Phys. Rev. Lett. 76, 2698–2701 (1996).
    [Crossref] [PubMed]
  35. Yu. N. Karamzin and A. P. Sukhorukov, “Mutual focusing of high-power light beams in media with quadratic nonlinearity,” Zh. Eksp. Teor. Fiz. 68, 834–847 (1975) [Sov. Phys. JETP 41, 414–420 (1976)]; A. V. Buryak and Yu. S. Kivshar, “Spatial optical solitons governed by quadratic nonlinearity,” Opt. Lett. 19, 1612–1614 (1994); L. Torner, C. R. Menyuk, and G. I. Stegeman, “Excitation of solitons with cascaded χ(2) nonlinearity,” Opt. Lett. 19, 1615–1617 (1994).
    [Crossref] [PubMed]
  36. L. Torner, C. R. Menyuk, W. E. Torruellas, and G. I. Stegeman, “Two-dimensional solitons with second-harmonic nonlinearity,” Opt. Lett. 20, 13–15 (1995); A. V. Buryak, Yu. S. Kivshar, and V. V. Steblina, “Self-trapping of light beams and parametric solitons in diffractive quadratic media,” Phys. Rev. A 52, 1670–1674 (1995).
    [Crossref] [PubMed]
  37. W. E. Torruellas, Z. Wang, D. J. Hagan, E. W. Van Stryland, G. I. Stegeman, L. Torner, and C. R. Menyuk, “Observation of two-dimensional spatial solitary waves in a quadratic medium,” Phys. Rev. Lett. 74, 5036–5039 (1995).
    [Crossref] [PubMed]
  38. D. N. Christodoulides and R. I. Joseph, “Vector solitons in birefringent nonlinear dispersive media,” Opt. Lett. 13, 53–55 (1988); M. V. Tratnik and J. E. Sipe, “Bound solitary waves in a birefringent optical fiber,” Phys. Rev. A 38, 2011–2017 (1988); S. Trillo, S. Wabnitz, E. M. Wright, and G. Stegeman, “Optical solitary waves induced by cross-phase modulation,” Opt. Lett. 13, 871–873 (1988).
    [Crossref] [PubMed]
  39. N. N. Akhmediev, V. M. Eleonsky, N. E. Kulagin, and L. P. Shil’nikov, “Steady-state pulses in a birefringent nonlinear optical fibers: soliton multiplication process,” Pis’ma Zh. Tekh. Fiz. 15, 19–23 (1989) [Sov. Tech. Phys. Lett. 15, 587–588 (1989)]; M. Haelterman and A. P. Sheppard, “Bifurcation phenomena and multiple soliton-bound states in isotropic Kerr media,” Phys. Rev. E 49, 3376–3381 (1994).
    [Crossref]
  40. A. L. Berkhoer and V. E. Zakharov, “Self-excitation of waves with different polarizations in nonlinear media,” Sov. Phys. JETP 31, 486–493 (1970) [Zh. Eksp. Teor. Fiz. 58, 903–911 (1970)].
  41. S. V. Manakov, “On the theory of two-dimensional stationary self-focusing of electromagnetic waves,” Sov. Phys. JETP 38, 248–253 (1974) [Zh. Eksp. Teor. Fiz. 65, 505–516 (1973)].
  42. M. Shalaby and A. J. Barthelemy, “Observation of the self-guided propagation of a dark and bright spatial soliton pair in a focusing nonlinear medium,” IEEE J. Quantum Electron. 28, 2736–2741 (1992).
    [Crossref]
  43. J. U. Kang, G. I. Stegeman, J. S. Aitchison, and N. Akhmediev, “Observation of Manakov spatial solitons in AlGaAs planar waveguides,” Phys. Rev. Lett. 76, 3699–3702 (1996).
    [Crossref] [PubMed]
  44. Yu. S. Kivshar, V. V. Afanasjev, and A. W. Snyder, “Dark-like bright solitons,” Opt. Commun. 126, 348–356 (1996).
    [Crossref]
  45. A. W. Snyder and D. J. Mitchell, “Accessible solitons,” Science 276, 1538–1541 (1997).
    [Crossref]
  46. M. I. Weinstein, “Lyapunov stability of ground state of nonlinear evolution equations,” SIAM J. Math. Anal. 16, 472–483 (1985).
    [Crossref]
  47. C. K. R. T. Jones and J. Moloney, “Instability of standing waves in nonlinear optical waveguides,” Phys. Lett. A 117, 175–180 (1986).
    [Crossref]
  48. D. Hart and E. M. Wright, “Stability of the TE0 guided wave of a nonlinear waveguide with a self-defocusing bounding medium,” Opt. Lett. 17, 121–123 (1992).
    [Crossref] [PubMed]
  49. D. E. Pelinovsky, A. V. Buryak, and Yu. S. Kivshar, “Instability of solitons governed by quadratic nonlinearities,” Phys. Rev. Lett. 75, 591–595 (1995).
    [Crossref] [PubMed]
  50. D. E. Pelinovsky, Yu. S. Kivshar, and V. V. Afanasjev, “Instability-induced dynamics of dark solitons,” Phys. Rev. E 53, 2015–2032 (1996).
    [Crossref]
  51. D. E. Pelinovsky, V. V. Afanasjev, and Yu. S. Kivshar, “Nonlinear theory of oscillating, decaying, and collapsing solitons in the generalized nonlinear Schrödinger equation,” Phys. Rev. E 52, 1940–1953 (1996).
    [Crossref]
  52. A. V. Buryak, Yu. S. Kivshar, and D. F. Parker, “Coupling between bright and dark solitons,” Phys. Lett. A 215, 57–62 (1996).
    [Crossref]
  53. A. V. Buryak, Yu. S. Kivshar, and S. Trillo, “Stability of three-wave parametric solitons in diffractive quadratic media,” Phys. Rev. Lett. 77, 5210–5213 (1996); A. V. Buryak and Yu. S. Kivshar, “Multistability of three-wave parametric self-trapping,” Phys. Rev. Lett. 78, 3286–3289 (1997); C. Etrich, U. Peschel, F. Lederer, and B. A. Malomed, “Stability of temporal chirped solitary waves in quadratically nonlinear media,” Phys. Rev. E 55, 6155–6161 (1997).
    [Crossref] [PubMed]
  54. J. B. Keller, “The geometrical theory of diffraction,” J. Opt. Soc. Am. 12, 116–130 (1962).
    [Crossref]
  55. M. Shih, M. Segev, and G. Salamo, “Three-dimensional spiralling of interacting spatial solitons,” Phys. Rev. Lett. 78, 2551–2554 (1997).
    [Crossref]
  56. M. Shih and M. Segev, “Incoherent collision between two-dimensional bright steady-state photorefractive spatial screening solitons,” Opt. Lett. 21, 1538–1540 (1996).
    [Crossref] [PubMed]
  57. W. Krolikowski and S. A. Holmstrom, “Fusion and birth of spatial solitons upon collision,” Opt. Lett. 22, 369–371 (1997).
    [Crossref] [PubMed]
  58. V. Tikhonenko, Laser Physics Centre, Australian National University, ACT 0200 Canberra, Australia (personal communication, 1997).
  59. T. Thwaites, “Will optical fibres become obsolete?” New Scientist, January12, 1991, p. 14.
  60. M. Shih, M. Segev, and G. Salamo, “Circular waveguides induced by two-dimensional bright steady-state photorefractive screening solitons,” Opt. Lett. 21, 931–933 (1996).
    [Crossref] [PubMed]

1997 (4)

A. W. Snyder and D. J. Mitchell, “Mighty morphing spatial solitons and bullets,” Opt. Lett. 22, 16–18 (1997).
[Crossref] [PubMed]

A. W. Snyder and D. J. Mitchell, “Accessible solitons,” Science 276, 1538–1541 (1997).
[Crossref]

M. Shih, M. Segev, and G. Salamo, “Three-dimensional spiralling of interacting spatial solitons,” Phys. Rev. Lett. 78, 2551–2554 (1997).
[Crossref]

W. Krolikowski and S. A. Holmstrom, “Fusion and birth of spatial solitons upon collision,” Opt. Lett. 22, 369–371 (1997).
[Crossref] [PubMed]

1996 (13)

M. Shih, M. Segev, and G. Salamo, “Circular waveguides induced by two-dimensional bright steady-state photorefractive screening solitons,” Opt. Lett. 21, 931–933 (1996).
[Crossref] [PubMed]

M. Shih and M. Segev, “Incoherent collision between two-dimensional bright steady-state photorefractive spatial screening solitons,” Opt. Lett. 21, 1538–1540 (1996).
[Crossref] [PubMed]

D. E. Pelinovsky, Yu. S. Kivshar, and V. V. Afanasjev, “Instability-induced dynamics of dark solitons,” Phys. Rev. E 53, 2015–2032 (1996).
[Crossref]

D. E. Pelinovsky, V. V. Afanasjev, and Yu. S. Kivshar, “Nonlinear theory of oscillating, decaying, and collapsing solitons in the generalized nonlinear Schrödinger equation,” Phys. Rev. E 52, 1940–1953 (1996).
[Crossref]

A. V. Buryak, Yu. S. Kivshar, and D. F. Parker, “Coupling between bright and dark solitons,” Phys. Lett. A 215, 57–62 (1996).
[Crossref]

A. V. Buryak, Yu. S. Kivshar, and S. Trillo, “Stability of three-wave parametric solitons in diffractive quadratic media,” Phys. Rev. Lett. 77, 5210–5213 (1996); A. V. Buryak and Yu. S. Kivshar, “Multistability of three-wave parametric self-trapping,” Phys. Rev. Lett. 78, 3286–3289 (1997); C. Etrich, U. Peschel, F. Lederer, and B. A. Malomed, “Stability of temporal chirped solitary waves in quadratically nonlinear media,” Phys. Rev. E 55, 6155–6161 (1997).
[Crossref] [PubMed]

J. U. Kang, G. I. Stegeman, J. S. Aitchison, and N. Akhmediev, “Observation of Manakov spatial solitons in AlGaAs planar waveguides,” Phys. Rev. Lett. 76, 3699–3702 (1996).
[Crossref] [PubMed]

Yu. S. Kivshar, V. V. Afanasjev, and A. W. Snyder, “Dark-like bright solitons,” Opt. Commun. 126, 348–356 (1996).
[Crossref]

A. W. Snyder, “The linear perspective to soliton dynamics,” Opt. Photonics News 7(12), 27–28 (1996).
[Crossref]

A. W. Snyder, D. J. Mitchell, and A. V. Buryak, “Qualitative theory of bright solitons—the soliton sketch,” J. Opt. Soc. Am. B 13, 1146–1150 (1996).
[Crossref]

For the most recent overview of the experimental observations of spatial optical solitons, see the paper by G. I. Stegeman, “The growing family of spatial solitons,” Opt. Appl. 26, 240–248 (1996).

D. J. Mitchell, A. W. Snyder, and L. Poladian, “Interacting self-guided beams viewed as particles: Lorentz force derivation,” Phys. Rev. Lett. 77, 271–273 (1996).
[Crossref] [PubMed]

V. Tikhonenko, J. Christou, and B. Luther-Davies, “Three-dimensional bright spatial soliton collision and fusion in a saturable nonlinear medium,” Phys. Rev. Lett. 76, 2698–2701 (1996).
[Crossref] [PubMed]

1995 (7)

L. Torner, C. R. Menyuk, W. E. Torruellas, and G. I. Stegeman, “Two-dimensional solitons with second-harmonic nonlinearity,” Opt. Lett. 20, 13–15 (1995); A. V. Buryak, Yu. S. Kivshar, and V. V. Steblina, “Self-trapping of light beams and parametric solitons in diffractive quadratic media,” Phys. Rev. A 52, 1670–1674 (1995).
[Crossref] [PubMed]

W. E. Torruellas, Z. Wang, D. J. Hagan, E. W. Van Stryland, G. I. Stegeman, L. Torner, and C. R. Menyuk, “Observation of two-dimensional spatial solitary waves in a quadratic medium,” Phys. Rev. Lett. 74, 5036–5039 (1995).
[Crossref] [PubMed]

V. Tikhonenko, J. Christou, and B. Luther-Davies, “Spiraling bright spatial solitons formed by the breakup of an optical vortex in a saturable self-focusing medium,” J. Opt. Soc. Am. B 12, 2046–2052 (1995).
[Crossref]

A. W. Snyder, S. Hewlett, and D. J. Mitchell, “Periodic solitons in optics,” Phys. Rev. E 51, 6297–6300 (1995).
[Crossref]

A. W. Snyder, D. J. Mitchell, and M. Haelterman, “Parallel spatial solitons,” Opt. Commun. 116, 365–368 (1995).
[Crossref]

A. W. Snyder, D. J. Mitchell, and Yu. S. Kivshar, “Unification of linear and nonlinear guided wave optics,” Mod. Phys. Lett. B 9, 1479–1506 (1995).
[Crossref]

D. E. Pelinovsky, A. V. Buryak, and Yu. S. Kivshar, “Instability of solitons governed by quadratic nonlinearities,” Phys. Rev. Lett. 75, 591–595 (1995).
[Crossref] [PubMed]

1994 (3)

A. W. Snyder, S. Hewlett, and D. J. Mitchell, “Dynamic spatial solitons,” Phys. Rev. Lett. 72, 1012–1016 (1994).
[Crossref] [PubMed]

M. Segev, G. C. Valley, B. Crosignani, P. DiPorto, and A. Yariv, “Steady-state spatial screening solitons in photorefractive materials with external applied field,” Phys. Rev. Lett. 73, 3211–3214 (1994); M. Shih, P. Leach, M. Segev, M. H. Garrett, G. Salamo, and G. C. Valley, “Two-dimensional steady-state photorefractive screening solitons,” Opt. Lett. 21, 324–326 (1996).
[Crossref] [PubMed]

M. D. Iturbe-Castillo, P. A. Marquez Aguilar, J. J. Sanchez-Mondragon, S. Stepanov, and V. Vysloukh, “Spatial solitons in photorefractive Bi12TiO20 with drift mechanism of nonlinearity,” Appl. Phys. Lett. 64, 408–410 (1994).
[Crossref]

1993 (3)

1992 (4)

1991 (5)

T. Thwaites, “Will optical fibres become obsolete?” New Scientist, January12, 1991, p. 14.

J. T. Manassah, “Induced waveguiding effects in a two-dimensional nonlinear medium,” Opt. Lett. 16, 587–589 (1991).
[Crossref] [PubMed]

A. W. Snyder, D. J. Mitchell, and F. Ladouceur, “Self-induced optical fibers: spatial solitary waves,” Opt. Lett. 10, 21–23 (1991).
[Crossref]

D. J. Mitchell, A. W. Snyder, and L. Poladian, “Self-guided beam interaction: method of invariants,” Electron. Lett. 27, 848–849 (1991).
[Crossref]

L. Poladian, A. W. Snyder, and D. J. Mitchell, “Spiralling spatial solitons,” Opt. Commun. 85, 59–62 (1991).
[Crossref]

1989 (1)

N. N. Akhmediev, V. M. Eleonsky, N. E. Kulagin, and L. P. Shil’nikov, “Steady-state pulses in a birefringent nonlinear optical fibers: soliton multiplication process,” Pis’ma Zh. Tekh. Fiz. 15, 19–23 (1989) [Sov. Tech. Phys. Lett. 15, 587–588 (1989)]; M. Haelterman and A. P. Sheppard, “Bifurcation phenomena and multiple soliton-bound states in isotropic Kerr media,” Phys. Rev. E 49, 3376–3381 (1994).
[Crossref]

1988 (1)

1986 (1)

C. K. R. T. Jones and J. Moloney, “Instability of standing waves in nonlinear optical waveguides,” Phys. Lett. A 117, 175–180 (1986).
[Crossref]

1985 (1)

M. I. Weinstein, “Lyapunov stability of ground state of nonlinear evolution equations,” SIAM J. Math. Anal. 16, 472–483 (1985).
[Crossref]

1975 (2)

Yu. N. Karamzin and A. P. Sukhorukov, “Mutual focusing of high-power light beams in media with quadratic nonlinearity,” Zh. Eksp. Teor. Fiz. 68, 834–847 (1975) [Sov. Phys. JETP 41, 414–420 (1976)]; A. V. Buryak and Yu. S. Kivshar, “Spatial optical solitons governed by quadratic nonlinearity,” Opt. Lett. 19, 1612–1614 (1994); L. Torner, C. R. Menyuk, and G. I. Stegeman, “Excitation of solitons with cascaded χ(2) nonlinearity,” Opt. Lett. 19, 1615–1617 (1994).
[Crossref] [PubMed]

P. K. Kaw, K. Nishikawa, Y. Yoshida, and A. Hasegawa, “Two-dimensional and three-dimensional envelope solitons,” Phys. Rev. Lett. 35, 88–91 (1975); J. Z. Wilcox and T. J. Wilcox, “Stability of localized plasma model in two and three dimensions,” Phys. Rev. Lett. 34, 1160–1163 (1975).
[Crossref]

1974 (1)

S. V. Manakov, “On the theory of two-dimensional stationary self-focusing of electromagnetic waves,” Sov. Phys. JETP 38, 248–253 (1974) [Zh. Eksp. Teor. Fiz. 65, 505–516 (1973)].

1973 (1)

M. G. Vakhitov and A. A. Kolokolov, “Stationary solutions of the wave equation in a medium with nonlinearity saturation,” Radiophys. Quantum Electron. 16, 783–789 (1973); applies only for a Kerr medium and no waveguide structures.
[Crossref]

1971 (1)

V. E. Zakharov and A. B. Shabat, “Exact theory of two-dimensional self-focusing and one-dimensional self-modulation of waves in nonlinear media,” Zh. Eksp. Teor. Fiz. 61, 118–134 (1971) [Sov. Phys. JETP 34, 62–69 (1972)].

1970 (1)

A. L. Berkhoer and V. E. Zakharov, “Self-excitation of waves with different polarizations in nonlinear media,” Sov. Phys. JETP 31, 486–493 (1970) [Zh. Eksp. Teor. Fiz. 58, 903–911 (1970)].

1968 (1)

See, e.g., J. H. Marburger and E. L. Dawes, “Dynamic formation of a small-scale filament,” Phys. Rev. Lett. 21, 556–558 (1968); E. L. Dawes and J. H. Marburger, “Computer studies in self-focusing,” Phys. Rev. 179, 862–868 (1969).
[Crossref]

1966 (1)

S. A. Akhmanov, A. P. Sukhorukov, and R. V. Khokhlov, “Self-focusing and self-trapping of intense light beams in a nonlinear medium,” Sov. Phys. JETP 23, 1025–1033 (1966) [Zh. Eksp. Teor. Fiz. 50, 1537–1549 (1966)].

1965 (1)

P. L. Kelley, “Self-focusing of optical beams,” Phys. Rev. Lett. 15, 1005–1008 (1965).
[Crossref]

1964 (1)

R. Y. Chiao, E. Garmire, and C. H. Townes, “Self-trapping of optical beams,” Phys. Rev. Lett. 13, 479–480 (1964).
[Crossref]

1962 (2)

The use of the nonlinearity-induced refractive-index change created by an intense beam for guiding particles (electrons and atoms) was suggested even earlier; see G. A. Askar’yan, “Effect of the gradient of a strong electromagnetic beam on electrons and atoms,” Sov. Phys. JETP 15, 1088–1090 (1962) [Zh. Eksp. Teor. Fiz. 42, 1567–1570 (1962)].

J. B. Keller, “The geometrical theory of diffraction,” J. Opt. Soc. Am. 12, 116–130 (1962).
[Crossref]

1959 (1)

As spatially localized solutions of the defocusing cubic nonlinear Schrödinger equation, vortex solitons were first introduced by V. L. Ginzburg and L. P. Pitaevski, “On the theory of superfluidity,” Sov. Phys. JETP 7, 858–861 (1959) [Zh. Eksp. Teor. Fiz. 34, 1240–1245 (1958)]; see also L. P. Pitaevski, “Vortex lines in an imperfect Bose gas,” Sov. Phys. JETP 13, 451–454 (1961) [Zh. Eksp. Teor. Fiz. 40, 646–651 (1961)], on topological excitations in superfluids. The term vortex had been used much earlier for different (linear) physical processes and for different defining equations.

Afanasjev, V. V.

Yu. S. Kivshar, V. V. Afanasjev, and A. W. Snyder, “Dark-like bright solitons,” Opt. Commun. 126, 348–356 (1996).
[Crossref]

D. E. Pelinovsky, Yu. S. Kivshar, and V. V. Afanasjev, “Instability-induced dynamics of dark solitons,” Phys. Rev. E 53, 2015–2032 (1996).
[Crossref]

D. E. Pelinovsky, V. V. Afanasjev, and Yu. S. Kivshar, “Nonlinear theory of oscillating, decaying, and collapsing solitons in the generalized nonlinear Schrödinger equation,” Phys. Rev. E 52, 1940–1953 (1996).
[Crossref]

Aitchison, J. S.

J. U. Kang, G. I. Stegeman, J. S. Aitchison, and N. Akhmediev, “Observation of Manakov spatial solitons in AlGaAs planar waveguides,” Phys. Rev. Lett. 76, 3699–3702 (1996).
[Crossref] [PubMed]

Akhmanov, S. A.

S. A. Akhmanov, A. P. Sukhorukov, and R. V. Khokhlov, “Self-focusing and self-trapping of intense light beams in a nonlinear medium,” Sov. Phys. JETP 23, 1025–1033 (1966) [Zh. Eksp. Teor. Fiz. 50, 1537–1549 (1966)].

Akhmediev, N.

J. U. Kang, G. I. Stegeman, J. S. Aitchison, and N. Akhmediev, “Observation of Manakov spatial solitons in AlGaAs planar waveguides,” Phys. Rev. Lett. 76, 3699–3702 (1996).
[Crossref] [PubMed]

Akhmediev, N. N.

N. N. Akhmediev, V. M. Eleonsky, N. E. Kulagin, and L. P. Shil’nikov, “Steady-state pulses in a birefringent nonlinear optical fibers: soliton multiplication process,” Pis’ma Zh. Tekh. Fiz. 15, 19–23 (1989) [Sov. Tech. Phys. Lett. 15, 587–588 (1989)]; M. Haelterman and A. P. Sheppard, “Bifurcation phenomena and multiple soliton-bound states in isotropic Kerr media,” Phys. Rev. E 49, 3376–3381 (1994).
[Crossref]

Askar’yan, G. A.

The use of the nonlinearity-induced refractive-index change created by an intense beam for guiding particles (electrons and atoms) was suggested even earlier; see G. A. Askar’yan, “Effect of the gradient of a strong electromagnetic beam on electrons and atoms,” Sov. Phys. JETP 15, 1088–1090 (1962) [Zh. Eksp. Teor. Fiz. 42, 1567–1570 (1962)].

Barthelemy, A. J.

M. Shalaby and A. J. Barthelemy, “Observation of the self-guided propagation of a dark and bright spatial soliton pair in a focusing nonlinear medium,” IEEE J. Quantum Electron. 28, 2736–2741 (1992).
[Crossref]

Berkhoer, A. L.

A. L. Berkhoer and V. E. Zakharov, “Self-excitation of waves with different polarizations in nonlinear media,” Sov. Phys. JETP 31, 486–493 (1970) [Zh. Eksp. Teor. Fiz. 58, 903–911 (1970)].

Buryak, A. V.

A. V. Buryak, Yu. S. Kivshar, and D. F. Parker, “Coupling between bright and dark solitons,” Phys. Lett. A 215, 57–62 (1996).
[Crossref]

A. V. Buryak, Yu. S. Kivshar, and S. Trillo, “Stability of three-wave parametric solitons in diffractive quadratic media,” Phys. Rev. Lett. 77, 5210–5213 (1996); A. V. Buryak and Yu. S. Kivshar, “Multistability of three-wave parametric self-trapping,” Phys. Rev. Lett. 78, 3286–3289 (1997); C. Etrich, U. Peschel, F. Lederer, and B. A. Malomed, “Stability of temporal chirped solitary waves in quadratically nonlinear media,” Phys. Rev. E 55, 6155–6161 (1997).
[Crossref] [PubMed]

A. W. Snyder, D. J. Mitchell, and A. V. Buryak, “Qualitative theory of bright solitons—the soliton sketch,” J. Opt. Soc. Am. B 13, 1146–1150 (1996).
[Crossref]

D. E. Pelinovsky, A. V. Buryak, and Yu. S. Kivshar, “Instability of solitons governed by quadratic nonlinearities,” Phys. Rev. Lett. 75, 591–595 (1995).
[Crossref] [PubMed]

Chiao, R. Y.

R. Y. Chiao, E. Garmire, and C. H. Townes, “Self-trapping of optical beams,” Phys. Rev. Lett. 13, 479–480 (1964).
[Crossref]

Christodoulides, D. N.

Christou, J.

V. Tikhonenko, J. Christou, and B. Luther-Davies, “Three-dimensional bright spatial soliton collision and fusion in a saturable nonlinear medium,” Phys. Rev. Lett. 76, 2698–2701 (1996).
[Crossref] [PubMed]

V. Tikhonenko, J. Christou, and B. Luther-Davies, “Spiraling bright spatial solitons formed by the breakup of an optical vortex in a saturable self-focusing medium,” J. Opt. Soc. Am. B 12, 2046–2052 (1995).
[Crossref]

Crosignani, B.

M. Segev, G. C. Valley, B. Crosignani, P. DiPorto, and A. Yariv, “Steady-state spatial screening solitons in photorefractive materials with external applied field,” Phys. Rev. Lett. 73, 3211–3214 (1994); M. Shih, P. Leach, M. Segev, M. H. Garrett, G. Salamo, and G. C. Valley, “Two-dimensional steady-state photorefractive screening solitons,” Opt. Lett. 21, 324–326 (1996).
[Crossref] [PubMed]

G. C. Duree, J. L. Shultz, G. J. Salamo, M. Segev, A. Yariv, B. Crosignani, P. DiPorto, E. J. Sharp, and R. R. Neurgaonkar, “Observation of self-trapping in an optical beam due to the photorefractive effect,” Phys. Rev. Lett. 71, 533–536 (1993).
[Crossref] [PubMed]

M. Segev, B. Crosignani, A. Yariv, and B. Fischer, “Spatial solitons in photorefractive media,” Phys. Rev. Lett. 68, 923–926 (1992).
[Crossref] [PubMed]

Dawes, E. L.

See, e.g., J. H. Marburger and E. L. Dawes, “Dynamic formation of a small-scale filament,” Phys. Rev. Lett. 21, 556–558 (1968); E. L. Dawes and J. H. Marburger, “Computer studies in self-focusing,” Phys. Rev. 179, 862–868 (1969).
[Crossref]

DiPorto, P.

M. Segev, G. C. Valley, B. Crosignani, P. DiPorto, and A. Yariv, “Steady-state spatial screening solitons in photorefractive materials with external applied field,” Phys. Rev. Lett. 73, 3211–3214 (1994); M. Shih, P. Leach, M. Segev, M. H. Garrett, G. Salamo, and G. C. Valley, “Two-dimensional steady-state photorefractive screening solitons,” Opt. Lett. 21, 324–326 (1996).
[Crossref] [PubMed]

G. C. Duree, J. L. Shultz, G. J. Salamo, M. Segev, A. Yariv, B. Crosignani, P. DiPorto, E. J. Sharp, and R. R. Neurgaonkar, “Observation of self-trapping in an optical beam due to the photorefractive effect,” Phys. Rev. Lett. 71, 533–536 (1993).
[Crossref] [PubMed]

Duree, G. C.

G. C. Duree, J. L. Shultz, G. J. Salamo, M. Segev, A. Yariv, B. Crosignani, P. DiPorto, E. J. Sharp, and R. R. Neurgaonkar, “Observation of self-trapping in an optical beam due to the photorefractive effect,” Phys. Rev. Lett. 71, 533–536 (1993).
[Crossref] [PubMed]

Eleonsky, V. M.

N. N. Akhmediev, V. M. Eleonsky, N. E. Kulagin, and L. P. Shil’nikov, “Steady-state pulses in a birefringent nonlinear optical fibers: soliton multiplication process,” Pis’ma Zh. Tekh. Fiz. 15, 19–23 (1989) [Sov. Tech. Phys. Lett. 15, 587–588 (1989)]; M. Haelterman and A. P. Sheppard, “Bifurcation phenomena and multiple soliton-bound states in isotropic Kerr media,” Phys. Rev. E 49, 3376–3381 (1994).
[Crossref]

Fischer, B.

M. Segev, B. Crosignani, A. Yariv, and B. Fischer, “Spatial solitons in photorefractive media,” Phys. Rev. Lett. 68, 923–926 (1992).
[Crossref] [PubMed]

Garmire, E.

R. Y. Chiao, E. Garmire, and C. H. Townes, “Self-trapping of optical beams,” Phys. Rev. Lett. 13, 479–480 (1964).
[Crossref]

Ginzburg, V. L.

As spatially localized solutions of the defocusing cubic nonlinear Schrödinger equation, vortex solitons were first introduced by V. L. Ginzburg and L. P. Pitaevski, “On the theory of superfluidity,” Sov. Phys. JETP 7, 858–861 (1959) [Zh. Eksp. Teor. Fiz. 34, 1240–1245 (1958)]; see also L. P. Pitaevski, “Vortex lines in an imperfect Bose gas,” Sov. Phys. JETP 13, 451–454 (1961) [Zh. Eksp. Teor. Fiz. 40, 646–651 (1961)], on topological excitations in superfluids. The term vortex had been used much earlier for different (linear) physical processes and for different defining equations.

Haelterman, M.

A. W. Snyder, D. J. Mitchell, and M. Haelterman, “Parallel spatial solitons,” Opt. Commun. 116, 365–368 (1995).
[Crossref]

Hagan, D. J.

W. E. Torruellas, Z. Wang, D. J. Hagan, E. W. Van Stryland, G. I. Stegeman, L. Torner, and C. R. Menyuk, “Observation of two-dimensional spatial solitary waves in a quadratic medium,” Phys. Rev. Lett. 74, 5036–5039 (1995).
[Crossref] [PubMed]

Hart, D.

Hasegawa, A.

P. K. Kaw, K. Nishikawa, Y. Yoshida, and A. Hasegawa, “Two-dimensional and three-dimensional envelope solitons,” Phys. Rev. Lett. 35, 88–91 (1975); J. Z. Wilcox and T. J. Wilcox, “Stability of localized plasma model in two and three dimensions,” Phys. Rev. Lett. 34, 1160–1163 (1975).
[Crossref]

Hewlett, S.

A. W. Snyder, S. Hewlett, and D. J. Mitchell, “Periodic solitons in optics,” Phys. Rev. E 51, 6297–6300 (1995).
[Crossref]

A. W. Snyder, S. Hewlett, and D. J. Mitchell, “Dynamic spatial solitons,” Phys. Rev. Lett. 72, 1012–1016 (1994).
[Crossref] [PubMed]

Holmstrom, S. A.

Iturbe-Castillo, M. D.

M. D. Iturbe-Castillo, P. A. Marquez Aguilar, J. J. Sanchez-Mondragon, S. Stepanov, and V. Vysloukh, “Spatial solitons in photorefractive Bi12TiO20 with drift mechanism of nonlinearity,” Appl. Phys. Lett. 64, 408–410 (1994).
[Crossref]

Jones, C. K. R. T.

C. K. R. T. Jones and J. Moloney, “Instability of standing waves in nonlinear optical waveguides,” Phys. Lett. A 117, 175–180 (1986).
[Crossref]

Joseph, R. I.

Kang, J. U.

J. U. Kang, G. I. Stegeman, J. S. Aitchison, and N. Akhmediev, “Observation of Manakov spatial solitons in AlGaAs planar waveguides,” Phys. Rev. Lett. 76, 3699–3702 (1996).
[Crossref] [PubMed]

Karamzin, Yu. N.

Yu. N. Karamzin and A. P. Sukhorukov, “Mutual focusing of high-power light beams in media with quadratic nonlinearity,” Zh. Eksp. Teor. Fiz. 68, 834–847 (1975) [Sov. Phys. JETP 41, 414–420 (1976)]; A. V. Buryak and Yu. S. Kivshar, “Spatial optical solitons governed by quadratic nonlinearity,” Opt. Lett. 19, 1612–1614 (1994); L. Torner, C. R. Menyuk, and G. I. Stegeman, “Excitation of solitons with cascaded χ(2) nonlinearity,” Opt. Lett. 19, 1615–1617 (1994).
[Crossref] [PubMed]

Kaw, P. K.

P. K. Kaw, K. Nishikawa, Y. Yoshida, and A. Hasegawa, “Two-dimensional and three-dimensional envelope solitons,” Phys. Rev. Lett. 35, 88–91 (1975); J. Z. Wilcox and T. J. Wilcox, “Stability of localized plasma model in two and three dimensions,” Phys. Rev. Lett. 34, 1160–1163 (1975).
[Crossref]

Keller, J. B.

J. B. Keller, “The geometrical theory of diffraction,” J. Opt. Soc. Am. 12, 116–130 (1962).
[Crossref]

Kelley, P. L.

P. L. Kelley, “Self-focusing of optical beams,” Phys. Rev. Lett. 15, 1005–1008 (1965).
[Crossref]

Khokhlov, R. V.

S. A. Akhmanov, A. P. Sukhorukov, and R. V. Khokhlov, “Self-focusing and self-trapping of intense light beams in a nonlinear medium,” Sov. Phys. JETP 23, 1025–1033 (1966) [Zh. Eksp. Teor. Fiz. 50, 1537–1549 (1966)].

Kivshar, Yu. S.

D. E. Pelinovsky, Yu. S. Kivshar, and V. V. Afanasjev, “Instability-induced dynamics of dark solitons,” Phys. Rev. E 53, 2015–2032 (1996).
[Crossref]

A. V. Buryak, Yu. S. Kivshar, and S. Trillo, “Stability of three-wave parametric solitons in diffractive quadratic media,” Phys. Rev. Lett. 77, 5210–5213 (1996); A. V. Buryak and Yu. S. Kivshar, “Multistability of three-wave parametric self-trapping,” Phys. Rev. Lett. 78, 3286–3289 (1997); C. Etrich, U. Peschel, F. Lederer, and B. A. Malomed, “Stability of temporal chirped solitary waves in quadratically nonlinear media,” Phys. Rev. E 55, 6155–6161 (1997).
[Crossref] [PubMed]

A. V. Buryak, Yu. S. Kivshar, and D. F. Parker, “Coupling between bright and dark solitons,” Phys. Lett. A 215, 57–62 (1996).
[Crossref]

D. E. Pelinovsky, V. V. Afanasjev, and Yu. S. Kivshar, “Nonlinear theory of oscillating, decaying, and collapsing solitons in the generalized nonlinear Schrödinger equation,” Phys. Rev. E 52, 1940–1953 (1996).
[Crossref]

Yu. S. Kivshar, V. V. Afanasjev, and A. W. Snyder, “Dark-like bright solitons,” Opt. Commun. 126, 348–356 (1996).
[Crossref]

D. E. Pelinovsky, A. V. Buryak, and Yu. S. Kivshar, “Instability of solitons governed by quadratic nonlinearities,” Phys. Rev. Lett. 75, 591–595 (1995).
[Crossref] [PubMed]

A. W. Snyder, D. J. Mitchell, and Yu. S. Kivshar, “Unification of linear and nonlinear guided wave optics,” Mod. Phys. Lett. B 9, 1479–1506 (1995).
[Crossref]

A. W. Snyder, D. J. Mitchell, and Yu. S. Kivshar, “Linear perspective of solitons,” in Physics and Applications of Optical Solitons in Fibers, A. Hasegawa, ed. (Kluwer Academic, Amsterdam, 1996), pp. 263–275.

Yu. S. Kivshar and B. Luther-Davies, “Dark optical solitons: physics and applications,” Phys. Rep. (to be published).

Kolokolov, A. A.

M. G. Vakhitov and A. A. Kolokolov, “Stationary solutions of the wave equation in a medium with nonlinearity saturation,” Radiophys. Quantum Electron. 16, 783–789 (1973); applies only for a Kerr medium and no waveguide structures.
[Crossref]

Krolikowski, W.

Kulagin, N. E.

N. N. Akhmediev, V. M. Eleonsky, N. E. Kulagin, and L. P. Shil’nikov, “Steady-state pulses in a birefringent nonlinear optical fibers: soliton multiplication process,” Pis’ma Zh. Tekh. Fiz. 15, 19–23 (1989) [Sov. Tech. Phys. Lett. 15, 587–588 (1989)]; M. Haelterman and A. P. Sheppard, “Bifurcation phenomena and multiple soliton-bound states in isotropic Kerr media,” Phys. Rev. E 49, 3376–3381 (1994).
[Crossref]

Ladouceur, F.

A. W. Snyder, D. J. Mitchell, and F. Ladouceur, “Self-induced optical fibers: spatial solitary waves,” Opt. Lett. 10, 21–23 (1991).
[Crossref]

Love, J. D.

A. W. Snyder and J. D. Love, Optical Waveguide Theory (Chapman & Hall, London, 1985).

Luther-Davies, B.

V. Tikhonenko, J. Christou, and B. Luther-Davies, “Three-dimensional bright spatial soliton collision and fusion in a saturable nonlinear medium,” Phys. Rev. Lett. 76, 2698–2701 (1996).
[Crossref] [PubMed]

V. Tikhonenko, J. Christou, and B. Luther-Davies, “Spiraling bright spatial solitons formed by the breakup of an optical vortex in a saturable self-focusing medium,” J. Opt. Soc. Am. B 12, 2046–2052 (1995).
[Crossref]

Yu. S. Kivshar and B. Luther-Davies, “Dark optical solitons: physics and applications,” Phys. Rep. (to be published).

Manakov, S. V.

S. V. Manakov, “On the theory of two-dimensional stationary self-focusing of electromagnetic waves,” Sov. Phys. JETP 38, 248–253 (1974) [Zh. Eksp. Teor. Fiz. 65, 505–516 (1973)].

Manassah, J. T.

Marburger, J. H.

See, e.g., J. H. Marburger and E. L. Dawes, “Dynamic formation of a small-scale filament,” Phys. Rev. Lett. 21, 556–558 (1968); E. L. Dawes and J. H. Marburger, “Computer studies in self-focusing,” Phys. Rev. 179, 862–868 (1969).
[Crossref]

Marquez Aguilar, P. A.

M. D. Iturbe-Castillo, P. A. Marquez Aguilar, J. J. Sanchez-Mondragon, S. Stepanov, and V. Vysloukh, “Spatial solitons in photorefractive Bi12TiO20 with drift mechanism of nonlinearity,” Appl. Phys. Lett. 64, 408–410 (1994).
[Crossref]

Menyuk, C. R.

Mitchell, D. J.

A. W. Snyder and D. J. Mitchell, “Accessible solitons,” Science 276, 1538–1541 (1997).
[Crossref]

A. W. Snyder and D. J. Mitchell, “Mighty morphing spatial solitons and bullets,” Opt. Lett. 22, 16–18 (1997).
[Crossref] [PubMed]

A. W. Snyder, D. J. Mitchell, and A. V. Buryak, “Qualitative theory of bright solitons—the soliton sketch,” J. Opt. Soc. Am. B 13, 1146–1150 (1996).
[Crossref]

D. J. Mitchell, A. W. Snyder, and L. Poladian, “Interacting self-guided beams viewed as particles: Lorentz force derivation,” Phys. Rev. Lett. 77, 271–273 (1996).
[Crossref] [PubMed]

A. W. Snyder, S. Hewlett, and D. J. Mitchell, “Periodic solitons in optics,” Phys. Rev. E 51, 6297–6300 (1995).
[Crossref]

A. W. Snyder, D. J. Mitchell, and Yu. S. Kivshar, “Unification of linear and nonlinear guided wave optics,” Mod. Phys. Lett. B 9, 1479–1506 (1995).
[Crossref]

A. W. Snyder, D. J. Mitchell, and M. Haelterman, “Parallel spatial solitons,” Opt. Commun. 116, 365–368 (1995).
[Crossref]

A. W. Snyder, S. Hewlett, and D. J. Mitchell, “Dynamic spatial solitons,” Phys. Rev. Lett. 72, 1012–1016 (1994).
[Crossref] [PubMed]

D. J. Mitchell and A. W. Snyder, “Stability of fundamental nonlinear guided waves,” J. Opt. Soc. Am. B 10, 1572–1580 (1993); applicable to all nonlinearities and also in the presence of waveguide structures.
[Crossref]

In a defocusing Kerr medium, the only known stable soliton is “a black spatial soliton of circular cross section” (sometimes called a vortex soliton; see Ref. 10), first predicted in optics in the paper by A. W. Snyder, L. Poladian, and D. J. Mitchell, “Stable black self-guided beams of circular symmetry in a bulk Kerr medium,” Opt. Lett. 17, 789–791 (1992). This letter is also the first to suggest such solitons as suitable for guiding signals.
[Crossref] [PubMed]

L. Poladian, A. W. Snyder, and D. J. Mitchell, “Spiralling spatial solitons,” Opt. Commun. 85, 59–62 (1991).
[Crossref]

A. W. Snyder, D. J. Mitchell, and F. Ladouceur, “Self-induced optical fibers: spatial solitary waves,” Opt. Lett. 10, 21–23 (1991).
[Crossref]

D. J. Mitchell, A. W. Snyder, and L. Poladian, “Self-guided beam interaction: method of invariants,” Electron. Lett. 27, 848–849 (1991).
[Crossref]

A. W. Snyder, D. J. Mitchell, and Yu. S. Kivshar, “Linear perspective of solitons,” in Physics and Applications of Optical Solitons in Fibers, A. Hasegawa, ed. (Kluwer Academic, Amsterdam, 1996), pp. 263–275.

Moloney, J.

C. K. R. T. Jones and J. Moloney, “Instability of standing waves in nonlinear optical waveguides,” Phys. Lett. A 117, 175–180 (1986).
[Crossref]

Neurgaonkar, R. R.

G. C. Duree, J. L. Shultz, G. J. Salamo, M. Segev, A. Yariv, B. Crosignani, P. DiPorto, E. J. Sharp, and R. R. Neurgaonkar, “Observation of self-trapping in an optical beam due to the photorefractive effect,” Phys. Rev. Lett. 71, 533–536 (1993).
[Crossref] [PubMed]

Nishikawa, K.

P. K. Kaw, K. Nishikawa, Y. Yoshida, and A. Hasegawa, “Two-dimensional and three-dimensional envelope solitons,” Phys. Rev. Lett. 35, 88–91 (1975); J. Z. Wilcox and T. J. Wilcox, “Stability of localized plasma model in two and three dimensions,” Phys. Rev. Lett. 34, 1160–1163 (1975).
[Crossref]

Parker, D. F.

A. V. Buryak, Yu. S. Kivshar, and D. F. Parker, “Coupling between bright and dark solitons,” Phys. Lett. A 215, 57–62 (1996).
[Crossref]

Pelinovsky, D. E.

D. E. Pelinovsky, Yu. S. Kivshar, and V. V. Afanasjev, “Instability-induced dynamics of dark solitons,” Phys. Rev. E 53, 2015–2032 (1996).
[Crossref]

D. E. Pelinovsky, V. V. Afanasjev, and Yu. S. Kivshar, “Nonlinear theory of oscillating, decaying, and collapsing solitons in the generalized nonlinear Schrödinger equation,” Phys. Rev. E 52, 1940–1953 (1996).
[Crossref]

D. E. Pelinovsky, A. V. Buryak, and Yu. S. Kivshar, “Instability of solitons governed by quadratic nonlinearities,” Phys. Rev. Lett. 75, 591–595 (1995).
[Crossref] [PubMed]

Pitaevski, L. P.

As spatially localized solutions of the defocusing cubic nonlinear Schrödinger equation, vortex solitons were first introduced by V. L. Ginzburg and L. P. Pitaevski, “On the theory of superfluidity,” Sov. Phys. JETP 7, 858–861 (1959) [Zh. Eksp. Teor. Fiz. 34, 1240–1245 (1958)]; see also L. P. Pitaevski, “Vortex lines in an imperfect Bose gas,” Sov. Phys. JETP 13, 451–454 (1961) [Zh. Eksp. Teor. Fiz. 40, 646–651 (1961)], on topological excitations in superfluids. The term vortex had been used much earlier for different (linear) physical processes and for different defining equations.

Poladian, L.

D. J. Mitchell, A. W. Snyder, and L. Poladian, “Interacting self-guided beams viewed as particles: Lorentz force derivation,” Phys. Rev. Lett. 77, 271–273 (1996).
[Crossref] [PubMed]

In a defocusing Kerr medium, the only known stable soliton is “a black spatial soliton of circular cross section” (sometimes called a vortex soliton; see Ref. 10), first predicted in optics in the paper by A. W. Snyder, L. Poladian, and D. J. Mitchell, “Stable black self-guided beams of circular symmetry in a bulk Kerr medium,” Opt. Lett. 17, 789–791 (1992). This letter is also the first to suggest such solitons as suitable for guiding signals.
[Crossref] [PubMed]

D. J. Mitchell, A. W. Snyder, and L. Poladian, “Self-guided beam interaction: method of invariants,” Electron. Lett. 27, 848–849 (1991).
[Crossref]

L. Poladian, A. W. Snyder, and D. J. Mitchell, “Spiralling spatial solitons,” Opt. Commun. 85, 59–62 (1991).
[Crossref]

Salamo, G.

M. Shih, M. Segev, and G. Salamo, “Three-dimensional spiralling of interacting spatial solitons,” Phys. Rev. Lett. 78, 2551–2554 (1997).
[Crossref]

M. Shih, M. Segev, and G. Salamo, “Circular waveguides induced by two-dimensional bright steady-state photorefractive screening solitons,” Opt. Lett. 21, 931–933 (1996).
[Crossref] [PubMed]

Salamo, G. J.

G. C. Duree, J. L. Shultz, G. J. Salamo, M. Segev, A. Yariv, B. Crosignani, P. DiPorto, E. J. Sharp, and R. R. Neurgaonkar, “Observation of self-trapping in an optical beam due to the photorefractive effect,” Phys. Rev. Lett. 71, 533–536 (1993).
[Crossref] [PubMed]

Sanchez-Mondragon, J. J.

M. D. Iturbe-Castillo, P. A. Marquez Aguilar, J. J. Sanchez-Mondragon, S. Stepanov, and V. Vysloukh, “Spatial solitons in photorefractive Bi12TiO20 with drift mechanism of nonlinearity,” Appl. Phys. Lett. 64, 408–410 (1994).
[Crossref]

Segev, M.

M. Shih, M. Segev, and G. Salamo, “Three-dimensional spiralling of interacting spatial solitons,” Phys. Rev. Lett. 78, 2551–2554 (1997).
[Crossref]

M. Shih, M. Segev, and G. Salamo, “Circular waveguides induced by two-dimensional bright steady-state photorefractive screening solitons,” Opt. Lett. 21, 931–933 (1996).
[Crossref] [PubMed]

M. Shih and M. Segev, “Incoherent collision between two-dimensional bright steady-state photorefractive spatial screening solitons,” Opt. Lett. 21, 1538–1540 (1996).
[Crossref] [PubMed]

M. Segev, G. C. Valley, B. Crosignani, P. DiPorto, and A. Yariv, “Steady-state spatial screening solitons in photorefractive materials with external applied field,” Phys. Rev. Lett. 73, 3211–3214 (1994); M. Shih, P. Leach, M. Segev, M. H. Garrett, G. Salamo, and G. C. Valley, “Two-dimensional steady-state photorefractive screening solitons,” Opt. Lett. 21, 324–326 (1996).
[Crossref] [PubMed]

G. C. Duree, J. L. Shultz, G. J. Salamo, M. Segev, A. Yariv, B. Crosignani, P. DiPorto, E. J. Sharp, and R. R. Neurgaonkar, “Observation of self-trapping in an optical beam due to the photorefractive effect,” Phys. Rev. Lett. 71, 533–536 (1993).
[Crossref] [PubMed]

M. Segev, B. Crosignani, A. Yariv, and B. Fischer, “Spatial solitons in photorefractive media,” Phys. Rev. Lett. 68, 923–926 (1992).
[Crossref] [PubMed]

Shabat, A. B.

V. E. Zakharov and A. B. Shabat, “Exact theory of two-dimensional self-focusing and one-dimensional self-modulation of waves in nonlinear media,” Zh. Eksp. Teor. Fiz. 61, 118–134 (1971) [Sov. Phys. JETP 34, 62–69 (1972)].

Shalaby, M.

M. Shalaby and A. J. Barthelemy, “Observation of the self-guided propagation of a dark and bright spatial soliton pair in a focusing nonlinear medium,” IEEE J. Quantum Electron. 28, 2736–2741 (1992).
[Crossref]

Sharp, E. J.

G. C. Duree, J. L. Shultz, G. J. Salamo, M. Segev, A. Yariv, B. Crosignani, P. DiPorto, E. J. Sharp, and R. R. Neurgaonkar, “Observation of self-trapping in an optical beam due to the photorefractive effect,” Phys. Rev. Lett. 71, 533–536 (1993).
[Crossref] [PubMed]

Sheppard, A. P.

Shih, M.

Shil’nikov, L. P.

N. N. Akhmediev, V. M. Eleonsky, N. E. Kulagin, and L. P. Shil’nikov, “Steady-state pulses in a birefringent nonlinear optical fibers: soliton multiplication process,” Pis’ma Zh. Tekh. Fiz. 15, 19–23 (1989) [Sov. Tech. Phys. Lett. 15, 587–588 (1989)]; M. Haelterman and A. P. Sheppard, “Bifurcation phenomena and multiple soliton-bound states in isotropic Kerr media,” Phys. Rev. E 49, 3376–3381 (1994).
[Crossref]

Shultz, J. L.

G. C. Duree, J. L. Shultz, G. J. Salamo, M. Segev, A. Yariv, B. Crosignani, P. DiPorto, E. J. Sharp, and R. R. Neurgaonkar, “Observation of self-trapping in an optical beam due to the photorefractive effect,” Phys. Rev. Lett. 71, 533–536 (1993).
[Crossref] [PubMed]

Snyder, A. W.

A. W. Snyder and D. J. Mitchell, “Mighty morphing spatial solitons and bullets,” Opt. Lett. 22, 16–18 (1997).
[Crossref] [PubMed]

A. W. Snyder and D. J. Mitchell, “Accessible solitons,” Science 276, 1538–1541 (1997).
[Crossref]

Yu. S. Kivshar, V. V. Afanasjev, and A. W. Snyder, “Dark-like bright solitons,” Opt. Commun. 126, 348–356 (1996).
[Crossref]

D. J. Mitchell, A. W. Snyder, and L. Poladian, “Interacting self-guided beams viewed as particles: Lorentz force derivation,” Phys. Rev. Lett. 77, 271–273 (1996).
[Crossref] [PubMed]

A. W. Snyder, D. J. Mitchell, and A. V. Buryak, “Qualitative theory of bright solitons—the soliton sketch,” J. Opt. Soc. Am. B 13, 1146–1150 (1996).
[Crossref]

A. W. Snyder, “The linear perspective to soliton dynamics,” Opt. Photonics News 7(12), 27–28 (1996).
[Crossref]

A. W. Snyder, S. Hewlett, and D. J. Mitchell, “Periodic solitons in optics,” Phys. Rev. E 51, 6297–6300 (1995).
[Crossref]

A. W. Snyder, D. J. Mitchell, and M. Haelterman, “Parallel spatial solitons,” Opt. Commun. 116, 365–368 (1995).
[Crossref]

A. W. Snyder, D. J. Mitchell, and Yu. S. Kivshar, “Unification of linear and nonlinear guided wave optics,” Mod. Phys. Lett. B 9, 1479–1506 (1995).
[Crossref]

A. W. Snyder, S. Hewlett, and D. J. Mitchell, “Dynamic spatial solitons,” Phys. Rev. Lett. 72, 1012–1016 (1994).
[Crossref] [PubMed]

A. W. Snyder and A. P. Sheppard, “Collisons, steering and guidance with spatial solitons,” Opt. Lett. 18, 482–484 (1993).
[Crossref] [PubMed]

D. J. Mitchell and A. W. Snyder, “Stability of fundamental nonlinear guided waves,” J. Opt. Soc. Am. B 10, 1572–1580 (1993); applicable to all nonlinearities and also in the presence of waveguide structures.
[Crossref]

In a defocusing Kerr medium, the only known stable soliton is “a black spatial soliton of circular cross section” (sometimes called a vortex soliton; see Ref. 10), first predicted in optics in the paper by A. W. Snyder, L. Poladian, and D. J. Mitchell, “Stable black self-guided beams of circular symmetry in a bulk Kerr medium,” Opt. Lett. 17, 789–791 (1992). This letter is also the first to suggest such solitons as suitable for guiding signals.
[Crossref] [PubMed]

L. Poladian, A. W. Snyder, and D. J. Mitchell, “Spiralling spatial solitons,” Opt. Commun. 85, 59–62 (1991).
[Crossref]

D. J. Mitchell, A. W. Snyder, and L. Poladian, “Self-guided beam interaction: method of invariants,” Electron. Lett. 27, 848–849 (1991).
[Crossref]

A. W. Snyder, D. J. Mitchell, and F. Ladouceur, “Self-induced optical fibers: spatial solitary waves,” Opt. Lett. 10, 21–23 (1991).
[Crossref]

A. W. Snyder, D. J. Mitchell, and Yu. S. Kivshar, “Linear perspective of solitons,” in Physics and Applications of Optical Solitons in Fibers, A. Hasegawa, ed. (Kluwer Academic, Amsterdam, 1996), pp. 263–275.

A. W. Snyder and J. D. Love, Optical Waveguide Theory (Chapman & Hall, London, 1985).

Stegeman, G. I.

For the most recent overview of the experimental observations of spatial optical solitons, see the paper by G. I. Stegeman, “The growing family of spatial solitons,” Opt. Appl. 26, 240–248 (1996).

J. U. Kang, G. I. Stegeman, J. S. Aitchison, and N. Akhmediev, “Observation of Manakov spatial solitons in AlGaAs planar waveguides,” Phys. Rev. Lett. 76, 3699–3702 (1996).
[Crossref] [PubMed]

L. Torner, C. R. Menyuk, W. E. Torruellas, and G. I. Stegeman, “Two-dimensional solitons with second-harmonic nonlinearity,” Opt. Lett. 20, 13–15 (1995); A. V. Buryak, Yu. S. Kivshar, and V. V. Steblina, “Self-trapping of light beams and parametric solitons in diffractive quadratic media,” Phys. Rev. A 52, 1670–1674 (1995).
[Crossref] [PubMed]

W. E. Torruellas, Z. Wang, D. J. Hagan, E. W. Van Stryland, G. I. Stegeman, L. Torner, and C. R. Menyuk, “Observation of two-dimensional spatial solitary waves in a quadratic medium,” Phys. Rev. Lett. 74, 5036–5039 (1995).
[Crossref] [PubMed]

Stepanov, S.

M. D. Iturbe-Castillo, P. A. Marquez Aguilar, J. J. Sanchez-Mondragon, S. Stepanov, and V. Vysloukh, “Spatial solitons in photorefractive Bi12TiO20 with drift mechanism of nonlinearity,” Appl. Phys. Lett. 64, 408–410 (1994).
[Crossref]

Sukhorukov, A. P.

Yu. N. Karamzin and A. P. Sukhorukov, “Mutual focusing of high-power light beams in media with quadratic nonlinearity,” Zh. Eksp. Teor. Fiz. 68, 834–847 (1975) [Sov. Phys. JETP 41, 414–420 (1976)]; A. V. Buryak and Yu. S. Kivshar, “Spatial optical solitons governed by quadratic nonlinearity,” Opt. Lett. 19, 1612–1614 (1994); L. Torner, C. R. Menyuk, and G. I. Stegeman, “Excitation of solitons with cascaded χ(2) nonlinearity,” Opt. Lett. 19, 1615–1617 (1994).
[Crossref] [PubMed]

S. A. Akhmanov, A. P. Sukhorukov, and R. V. Khokhlov, “Self-focusing and self-trapping of intense light beams in a nonlinear medium,” Sov. Phys. JETP 23, 1025–1033 (1966) [Zh. Eksp. Teor. Fiz. 50, 1537–1549 (1966)].

Thwaites, T.

T. Thwaites, “Will optical fibres become obsolete?” New Scientist, January12, 1991, p. 14.

Tikhonenko, V.

V. Tikhonenko, J. Christou, and B. Luther-Davies, “Three-dimensional bright spatial soliton collision and fusion in a saturable nonlinear medium,” Phys. Rev. Lett. 76, 2698–2701 (1996).
[Crossref] [PubMed]

V. Tikhonenko, J. Christou, and B. Luther-Davies, “Spiraling bright spatial solitons formed by the breakup of an optical vortex in a saturable self-focusing medium,” J. Opt. Soc. Am. B 12, 2046–2052 (1995).
[Crossref]

V. Tikhonenko, Laser Physics Centre, Australian National University, ACT 0200 Canberra, Australia (personal communication, 1997).

Torner, L.

Torruellas, W. E.

Townes, C. H.

R. Y. Chiao, E. Garmire, and C. H. Townes, “Self-trapping of optical beams,” Phys. Rev. Lett. 13, 479–480 (1964).
[Crossref]

Trillo, S.

A. V. Buryak, Yu. S. Kivshar, and S. Trillo, “Stability of three-wave parametric solitons in diffractive quadratic media,” Phys. Rev. Lett. 77, 5210–5213 (1996); A. V. Buryak and Yu. S. Kivshar, “Multistability of three-wave parametric self-trapping,” Phys. Rev. Lett. 78, 3286–3289 (1997); C. Etrich, U. Peschel, F. Lederer, and B. A. Malomed, “Stability of temporal chirped solitary waves in quadratically nonlinear media,” Phys. Rev. E 55, 6155–6161 (1997).
[Crossref] [PubMed]

Vakhitov, M. G.

M. G. Vakhitov and A. A. Kolokolov, “Stationary solutions of the wave equation in a medium with nonlinearity saturation,” Radiophys. Quantum Electron. 16, 783–789 (1973); applies only for a Kerr medium and no waveguide structures.
[Crossref]

Valley, G. C.

M. Segev, G. C. Valley, B. Crosignani, P. DiPorto, and A. Yariv, “Steady-state spatial screening solitons in photorefractive materials with external applied field,” Phys. Rev. Lett. 73, 3211–3214 (1994); M. Shih, P. Leach, M. Segev, M. H. Garrett, G. Salamo, and G. C. Valley, “Two-dimensional steady-state photorefractive screening solitons,” Opt. Lett. 21, 324–326 (1996).
[Crossref] [PubMed]

Van Stryland, E. W.

W. E. Torruellas, Z. Wang, D. J. Hagan, E. W. Van Stryland, G. I. Stegeman, L. Torner, and C. R. Menyuk, “Observation of two-dimensional spatial solitary waves in a quadratic medium,” Phys. Rev. Lett. 74, 5036–5039 (1995).
[Crossref] [PubMed]

Vysloukh, V.

M. D. Iturbe-Castillo, P. A. Marquez Aguilar, J. J. Sanchez-Mondragon, S. Stepanov, and V. Vysloukh, “Spatial solitons in photorefractive Bi12TiO20 with drift mechanism of nonlinearity,” Appl. Phys. Lett. 64, 408–410 (1994).
[Crossref]

Wang, Z.

W. E. Torruellas, Z. Wang, D. J. Hagan, E. W. Van Stryland, G. I. Stegeman, L. Torner, and C. R. Menyuk, “Observation of two-dimensional spatial solitary waves in a quadratic medium,” Phys. Rev. Lett. 74, 5036–5039 (1995).
[Crossref] [PubMed]

Weinstein, M. I.

M. I. Weinstein, “Lyapunov stability of ground state of nonlinear evolution equations,” SIAM J. Math. Anal. 16, 472–483 (1985).
[Crossref]

Wright, E. M.

Yariv, A.

M. Segev, G. C. Valley, B. Crosignani, P. DiPorto, and A. Yariv, “Steady-state spatial screening solitons in photorefractive materials with external applied field,” Phys. Rev. Lett. 73, 3211–3214 (1994); M. Shih, P. Leach, M. Segev, M. H. Garrett, G. Salamo, and G. C. Valley, “Two-dimensional steady-state photorefractive screening solitons,” Opt. Lett. 21, 324–326 (1996).
[Crossref] [PubMed]

G. C. Duree, J. L. Shultz, G. J. Salamo, M. Segev, A. Yariv, B. Crosignani, P. DiPorto, E. J. Sharp, and R. R. Neurgaonkar, “Observation of self-trapping in an optical beam due to the photorefractive effect,” Phys. Rev. Lett. 71, 533–536 (1993).
[Crossref] [PubMed]

M. Segev, B. Crosignani, A. Yariv, and B. Fischer, “Spatial solitons in photorefractive media,” Phys. Rev. Lett. 68, 923–926 (1992).
[Crossref] [PubMed]

Yoshida, Y.

P. K. Kaw, K. Nishikawa, Y. Yoshida, and A. Hasegawa, “Two-dimensional and three-dimensional envelope solitons,” Phys. Rev. Lett. 35, 88–91 (1975); J. Z. Wilcox and T. J. Wilcox, “Stability of localized plasma model in two and three dimensions,” Phys. Rev. Lett. 34, 1160–1163 (1975).
[Crossref]

Zakharov, V. E.

V. E. Zakharov and A. B. Shabat, “Exact theory of two-dimensional self-focusing and one-dimensional self-modulation of waves in nonlinear media,” Zh. Eksp. Teor. Fiz. 61, 118–134 (1971) [Sov. Phys. JETP 34, 62–69 (1972)].

A. L. Berkhoer and V. E. Zakharov, “Self-excitation of waves with different polarizations in nonlinear media,” Sov. Phys. JETP 31, 486–493 (1970) [Zh. Eksp. Teor. Fiz. 58, 903–911 (1970)].

Appl. Phys. Lett. (1)

M. D. Iturbe-Castillo, P. A. Marquez Aguilar, J. J. Sanchez-Mondragon, S. Stepanov, and V. Vysloukh, “Spatial solitons in photorefractive Bi12TiO20 with drift mechanism of nonlinearity,” Appl. Phys. Lett. 64, 408–410 (1994).
[Crossref]

Electron. Lett. (1)

D. J. Mitchell, A. W. Snyder, and L. Poladian, “Self-guided beam interaction: method of invariants,” Electron. Lett. 27, 848–849 (1991).
[Crossref]

IEEE J. Quantum Electron. (1)

M. Shalaby and A. J. Barthelemy, “Observation of the self-guided propagation of a dark and bright spatial soliton pair in a focusing nonlinear medium,” IEEE J. Quantum Electron. 28, 2736–2741 (1992).
[Crossref]

J. Opt. Soc. Am. (1)

J. B. Keller, “The geometrical theory of diffraction,” J. Opt. Soc. Am. 12, 116–130 (1962).
[Crossref]

J. Opt. Soc. Am. B (3)

Mod. Phys. Lett. B (1)

A. W. Snyder, D. J. Mitchell, and Yu. S. Kivshar, “Unification of linear and nonlinear guided wave optics,” Mod. Phys. Lett. B 9, 1479–1506 (1995).
[Crossref]

New Scientist (1)

T. Thwaites, “Will optical fibres become obsolete?” New Scientist, January12, 1991, p. 14.

Opt. Appl. (1)

For the most recent overview of the experimental observations of spatial optical solitons, see the paper by G. I. Stegeman, “The growing family of spatial solitons,” Opt. Appl. 26, 240–248 (1996).

Opt. Commun. (3)

L. Poladian, A. W. Snyder, and D. J. Mitchell, “Spiralling spatial solitons,” Opt. Commun. 85, 59–62 (1991).
[Crossref]

A. W. Snyder, D. J. Mitchell, and M. Haelterman, “Parallel spatial solitons,” Opt. Commun. 116, 365–368 (1995).
[Crossref]

Yu. S. Kivshar, V. V. Afanasjev, and A. W. Snyder, “Dark-like bright solitons,” Opt. Commun. 126, 348–356 (1996).
[Crossref]

Opt. Lett. (11)

D. Hart and E. M. Wright, “Stability of the TE0 guided wave of a nonlinear waveguide with a self-defocusing bounding medium,” Opt. Lett. 17, 121–123 (1992).
[Crossref] [PubMed]

L. Torner, C. R. Menyuk, W. E. Torruellas, and G. I. Stegeman, “Two-dimensional solitons with second-harmonic nonlinearity,” Opt. Lett. 20, 13–15 (1995); A. V. Buryak, Yu. S. Kivshar, and V. V. Steblina, “Self-trapping of light beams and parametric solitons in diffractive quadratic media,” Phys. Rev. A 52, 1670–1674 (1995).
[Crossref] [PubMed]

D. N. Christodoulides and R. I. Joseph, “Vector solitons in birefringent nonlinear dispersive media,” Opt. Lett. 13, 53–55 (1988); M. V. Tratnik and J. E. Sipe, “Bound solitary waves in a birefringent optical fiber,” Phys. Rev. A 38, 2011–2017 (1988); S. Trillo, S. Wabnitz, E. M. Wright, and G. Stegeman, “Optical solitary waves induced by cross-phase modulation,” Opt. Lett. 13, 871–873 (1988).
[Crossref] [PubMed]

M. Shih, M. Segev, and G. Salamo, “Circular waveguides induced by two-dimensional bright steady-state photorefractive screening solitons,” Opt. Lett. 21, 931–933 (1996).
[Crossref] [PubMed]

M. Shih and M. Segev, “Incoherent collision between two-dimensional bright steady-state photorefractive spatial screening solitons,” Opt. Lett. 21, 1538–1540 (1996).
[Crossref] [PubMed]

W. Krolikowski and S. A. Holmstrom, “Fusion and birth of spatial solitons upon collision,” Opt. Lett. 22, 369–371 (1997).
[Crossref] [PubMed]

A. W. Snyder and D. J. Mitchell, “Mighty morphing spatial solitons and bullets,” Opt. Lett. 22, 16–18 (1997).
[Crossref] [PubMed]

J. T. Manassah, “Induced waveguiding effects in a two-dimensional nonlinear medium,” Opt. Lett. 16, 587–589 (1991).
[Crossref] [PubMed]

A. W. Snyder, D. J. Mitchell, and F. Ladouceur, “Self-induced optical fibers: spatial solitary waves,” Opt. Lett. 10, 21–23 (1991).
[Crossref]

A. W. Snyder and A. P. Sheppard, “Collisons, steering and guidance with spatial solitons,” Opt. Lett. 18, 482–484 (1993).
[Crossref] [PubMed]

In a defocusing Kerr medium, the only known stable soliton is “a black spatial soliton of circular cross section” (sometimes called a vortex soliton; see Ref. 10), first predicted in optics in the paper by A. W. Snyder, L. Poladian, and D. J. Mitchell, “Stable black self-guided beams of circular symmetry in a bulk Kerr medium,” Opt. Lett. 17, 789–791 (1992). This letter is also the first to suggest such solitons as suitable for guiding signals.
[Crossref] [PubMed]

Opt. Photonics News (1)

A. W. Snyder, “The linear perspective to soliton dynamics,” Opt. Photonics News 7(12), 27–28 (1996).
[Crossref]

Phys. Lett. A (2)

A. V. Buryak, Yu. S. Kivshar, and D. F. Parker, “Coupling between bright and dark solitons,” Phys. Lett. A 215, 57–62 (1996).
[Crossref]

C. K. R. T. Jones and J. Moloney, “Instability of standing waves in nonlinear optical waveguides,” Phys. Lett. A 117, 175–180 (1986).
[Crossref]

Phys. Rev. E (3)

A. W. Snyder, S. Hewlett, and D. J. Mitchell, “Periodic solitons in optics,” Phys. Rev. E 51, 6297–6300 (1995).
[Crossref]

D. E. Pelinovsky, Yu. S. Kivshar, and V. V. Afanasjev, “Instability-induced dynamics of dark solitons,” Phys. Rev. E 53, 2015–2032 (1996).
[Crossref]

D. E. Pelinovsky, V. V. Afanasjev, and Yu. S. Kivshar, “Nonlinear theory of oscillating, decaying, and collapsing solitons in the generalized nonlinear Schrödinger equation,” Phys. Rev. E 52, 1940–1953 (1996).
[Crossref]

Phys. Rev. Lett. (15)

D. E. Pelinovsky, A. V. Buryak, and Yu. S. Kivshar, “Instability of solitons governed by quadratic nonlinearities,” Phys. Rev. Lett. 75, 591–595 (1995).
[Crossref] [PubMed]

W. E. Torruellas, Z. Wang, D. J. Hagan, E. W. Van Stryland, G. I. Stegeman, L. Torner, and C. R. Menyuk, “Observation of two-dimensional spatial solitary waves in a quadratic medium,” Phys. Rev. Lett. 74, 5036–5039 (1995).
[Crossref] [PubMed]

J. U. Kang, G. I. Stegeman, J. S. Aitchison, and N. Akhmediev, “Observation of Manakov spatial solitons in AlGaAs planar waveguides,” Phys. Rev. Lett. 76, 3699–3702 (1996).
[Crossref] [PubMed]

A. V. Buryak, Yu. S. Kivshar, and S. Trillo, “Stability of three-wave parametric solitons in diffractive quadratic media,” Phys. Rev. Lett. 77, 5210–5213 (1996); A. V. Buryak and Yu. S. Kivshar, “Multistability of three-wave parametric self-trapping,” Phys. Rev. Lett. 78, 3286–3289 (1997); C. Etrich, U. Peschel, F. Lederer, and B. A. Malomed, “Stability of temporal chirped solitary waves in quadratically nonlinear media,” Phys. Rev. E 55, 6155–6161 (1997).
[Crossref] [PubMed]

M. Shih, M. Segev, and G. Salamo, “Three-dimensional spiralling of interacting spatial solitons,” Phys. Rev. Lett. 78, 2551–2554 (1997).
[Crossref]

P. L. Kelley, “Self-focusing of optical beams,” Phys. Rev. Lett. 15, 1005–1008 (1965).
[Crossref]

See, e.g., J. H. Marburger and E. L. Dawes, “Dynamic formation of a small-scale filament,” Phys. Rev. Lett. 21, 556–558 (1968); E. L. Dawes and J. H. Marburger, “Computer studies in self-focusing,” Phys. Rev. 179, 862–868 (1969).
[Crossref]

P. K. Kaw, K. Nishikawa, Y. Yoshida, and A. Hasegawa, “Two-dimensional and three-dimensional envelope solitons,” Phys. Rev. Lett. 35, 88–91 (1975); J. Z. Wilcox and T. J. Wilcox, “Stability of localized plasma model in two and three dimensions,” Phys. Rev. Lett. 34, 1160–1163 (1975).
[Crossref]

M. Segev, B. Crosignani, A. Yariv, and B. Fischer, “Spatial solitons in photorefractive media,” Phys. Rev. Lett. 68, 923–926 (1992).
[Crossref] [PubMed]

G. C. Duree, J. L. Shultz, G. J. Salamo, M. Segev, A. Yariv, B. Crosignani, P. DiPorto, E. J. Sharp, and R. R. Neurgaonkar, “Observation of self-trapping in an optical beam due to the photorefractive effect,” Phys. Rev. Lett. 71, 533–536 (1993).
[Crossref] [PubMed]

M. Segev, G. C. Valley, B. Crosignani, P. DiPorto, and A. Yariv, “Steady-state spatial screening solitons in photorefractive materials with external applied field,” Phys. Rev. Lett. 73, 3211–3214 (1994); M. Shih, P. Leach, M. Segev, M. H. Garrett, G. Salamo, and G. C. Valley, “Two-dimensional steady-state photorefractive screening solitons,” Opt. Lett. 21, 324–326 (1996).
[Crossref] [PubMed]

V. Tikhonenko, J. Christou, and B. Luther-Davies, “Three-dimensional bright spatial soliton collision and fusion in a saturable nonlinear medium,” Phys. Rev. Lett. 76, 2698–2701 (1996).
[Crossref] [PubMed]

R. Y. Chiao, E. Garmire, and C. H. Townes, “Self-trapping of optical beams,” Phys. Rev. Lett. 13, 479–480 (1964).
[Crossref]

A. W. Snyder, S. Hewlett, and D. J. Mitchell, “Dynamic spatial solitons,” Phys. Rev. Lett. 72, 1012–1016 (1994).
[Crossref] [PubMed]

D. J. Mitchell, A. W. Snyder, and L. Poladian, “Interacting self-guided beams viewed as particles: Lorentz force derivation,” Phys. Rev. Lett. 77, 271–273 (1996).
[Crossref] [PubMed]

Pis’ma Zh. Tekh. Fiz. (1)

N. N. Akhmediev, V. M. Eleonsky, N. E. Kulagin, and L. P. Shil’nikov, “Steady-state pulses in a birefringent nonlinear optical fibers: soliton multiplication process,” Pis’ma Zh. Tekh. Fiz. 15, 19–23 (1989) [Sov. Tech. Phys. Lett. 15, 587–588 (1989)]; M. Haelterman and A. P. Sheppard, “Bifurcation phenomena and multiple soliton-bound states in isotropic Kerr media,” Phys. Rev. E 49, 3376–3381 (1994).
[Crossref]

Radiophys. Quantum Electron. (1)

M. G. Vakhitov and A. A. Kolokolov, “Stationary solutions of the wave equation in a medium with nonlinearity saturation,” Radiophys. Quantum Electron. 16, 783–789 (1973); applies only for a Kerr medium and no waveguide structures.
[Crossref]

Science (1)

A. W. Snyder and D. J. Mitchell, “Accessible solitons,” Science 276, 1538–1541 (1997).
[Crossref]

SIAM J. Math. Anal. (1)

M. I. Weinstein, “Lyapunov stability of ground state of nonlinear evolution equations,” SIAM J. Math. Anal. 16, 472–483 (1985).
[Crossref]

Sov. Phys. JETP (5)

A. L. Berkhoer and V. E. Zakharov, “Self-excitation of waves with different polarizations in nonlinear media,” Sov. Phys. JETP 31, 486–493 (1970) [Zh. Eksp. Teor. Fiz. 58, 903–911 (1970)].

S. V. Manakov, “On the theory of two-dimensional stationary self-focusing of electromagnetic waves,” Sov. Phys. JETP 38, 248–253 (1974) [Zh. Eksp. Teor. Fiz. 65, 505–516 (1973)].

S. A. Akhmanov, A. P. Sukhorukov, and R. V. Khokhlov, “Self-focusing and self-trapping of intense light beams in a nonlinear medium,” Sov. Phys. JETP 23, 1025–1033 (1966) [Zh. Eksp. Teor. Fiz. 50, 1537–1549 (1966)].

The use of the nonlinearity-induced refractive-index change created by an intense beam for guiding particles (electrons and atoms) was suggested even earlier; see G. A. Askar’yan, “Effect of the gradient of a strong electromagnetic beam on electrons and atoms,” Sov. Phys. JETP 15, 1088–1090 (1962) [Zh. Eksp. Teor. Fiz. 42, 1567–1570 (1962)].

As spatially localized solutions of the defocusing cubic nonlinear Schrödinger equation, vortex solitons were first introduced by V. L. Ginzburg and L. P. Pitaevski, “On the theory of superfluidity,” Sov. Phys. JETP 7, 858–861 (1959) [Zh. Eksp. Teor. Fiz. 34, 1240–1245 (1958)]; see also L. P. Pitaevski, “Vortex lines in an imperfect Bose gas,” Sov. Phys. JETP 13, 451–454 (1961) [Zh. Eksp. Teor. Fiz. 40, 646–651 (1961)], on topological excitations in superfluids. The term vortex had been used much earlier for different (linear) physical processes and for different defining equations.

Zh. Eksp. Teor. Fiz. (2)

V. E. Zakharov and A. B. Shabat, “Exact theory of two-dimensional self-focusing and one-dimensional self-modulation of waves in nonlinear media,” Zh. Eksp. Teor. Fiz. 61, 118–134 (1971) [Sov. Phys. JETP 34, 62–69 (1972)].

Yu. N. Karamzin and A. P. Sukhorukov, “Mutual focusing of high-power light beams in media with quadratic nonlinearity,” Zh. Eksp. Teor. Fiz. 68, 834–847 (1975) [Sov. Phys. JETP 41, 414–420 (1976)]; A. V. Buryak and Yu. S. Kivshar, “Spatial optical solitons governed by quadratic nonlinearity,” Opt. Lett. 19, 1612–1614 (1994); L. Torner, C. R. Menyuk, and G. I. Stegeman, “Excitation of solitons with cascaded χ(2) nonlinearity,” Opt. Lett. 19, 1615–1617 (1994).
[Crossref] [PubMed]

Other (4)

Yu. S. Kivshar and B. Luther-Davies, “Dark optical solitons: physics and applications,” Phys. Rep. (to be published).

A. W. Snyder and J. D. Love, Optical Waveguide Theory (Chapman & Hall, London, 1985).

A. W. Snyder, D. J. Mitchell, and Yu. S. Kivshar, “Linear perspective of solitons,” in Physics and Applications of Optical Solitons in Fibers, A. Hasegawa, ed. (Kluwer Academic, Amsterdam, 1996), pp. 263–275.

V. Tikhonenko, Laser Physics Centre, Australian National University, ACT 0200 Canberra, Australia (personal communication, 1997).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Equations (7)

Equations on this page are rendered with MathJax. Learn more.

2ikn0Ez+2E+k2(n2·E-n02E)=0,
E(r, z)=eE(r; β)exp(iβz),
(F1, F2)(β1, β2)F1β1F2β2-F1β2F2β1=0,
E(r, z)=Eˆ(r-r0; β)exp[iS(r-r0, z)],
dr0dz=k,dkdz=-Wr0,
W(r0, z)=(n2-n02)|E|2dAn02|E|2dA.
I=I0ρx0ρy0ρxρyexp-x2ρx2-y2ρy2,

Metrics