Abstract

We discuss experimental results that demonstrate the existence of Bragg grating solitons in fiber gratings at high intensities. These solitons can exist because of the balance of the nonlinearity in the glass and the group-velocity dispersion introduced by the grating. We show that Bragg grating solitons can travel at velocities substantially below that in bare fiber and also how trains of such solitons can be generated.

© 1997 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. F. Ouellette, “Dispersion cancellation using linearly chirped Bragg filters in optical waveguides,” Opt. Lett. 12, 847–849 (1987).
    [Crossref] [PubMed]
  2. P. St. J. Russell, “Bloch wave analysis of dispersion and pulse propagation in pure distributed feedback structures,” J. Mod. Opt. 38, 1599–1619 (1991).
    [Crossref]
  3. P. A. Krug, T. Stephens, G. Dhosi, G. Yoffe, F. Ouellette, and P. Hill, “Dispersion compensation over 270 km at 10 Gbit/s using an offset-core chirped fibre Bragg grating,” Electron. Lett. 31, 1091–1093 (1995).
    [Crossref]
  4. W. H. Loh, R. I. Laming, N. Robinson, A. Cavaciuti, F. Vaninetti, C. J. Anderson, M. N. Zervas, and M. J. Cole, “Dispersion compensation over distances in excess of 500 km for 10 Gb/s systems using chirped fibre gratings,” IEEE Photonics Technol. Lett. 8, 944–946 (1996).
    [Crossref]
  5. B. J. Eggleton, T. Stephens, P. A. Krug, G. Dhosi, Z. Brodzeli, and F. Ouellette, “Dispersion compensation over 100 km at 10 Gbit/s using a fibre grating in transmission,” Electron. Lett. 32, 1610–1611 (1996).
    [Crossref]
  6. H. G. Winful, “Pulse compression in optical fiber filters,” Appl. Phys. Lett. 46, 527–529 (1985).
    [Crossref]
  7. W. Chen and D. L. Mills, “Optical response of a nonlinear dielectric film,” Phys. Rev. Lett. 58, 160–163 (1987).
    [Crossref] [PubMed]
  8. A. B. Aceves and S. Wabnitz, “Self-induced transparency solitons in nonlinear refractive periodic media,” Phys. Lett. A 141, 37–42 (1989).
    [Crossref]
  9. C. M. de Sterke and J. E. Sipe, “Gap solitons,” in Progress in Optics XXXIII, E. Wolf, ed. (Elsevier, Amsterdam, 1994), Chap. III.
  10. B. J. Eggleton, R. E. Slusher, C. M. de Sterke, P. A. Krug, and J. E. Sipe, “Bragg grating solitons,” Phys. Rev. Lett. 76, 1627–1630 (1996).
    [Crossref] [PubMed]
  11. N. D. Sankey, D. F. Prelewitz, and T. F. Brown, “All-optical switching in a nonlinear periodic-waveguide structure,” Appl. Phys. Lett. 60, 1427–1429 (1992).
    [Crossref]
  12. C. J. Herbert and M. S. Malcuit, “Optical bistability in nonlinear periodic structures,” Opt. Lett. 18, 1783–1785 (1993).
    [Crossref] [PubMed]
  13. M. Cada, J. He, B. Acklin, M. Proctor, D. Martin, F. Morier-Genaud, M.-A. Dupertuis, and J. M. Glinski, “All-optical reflectivity tuning and logic gating in a GaAs/AlAs periodic layered structure,” Appl. Phys. Lett. 60, 404–406 (1992).
    [Crossref]
  14. J. He, M. Cada, M.-A. Dupertuis, D. Martin, C. Rolland, and A. J. SpringThorpe, “All-optical bistable switching and signal regeneration in a semiconductor layered distributed-feedback/Fabry–Perot structure,” Appl. Phys. Lett. 63, 866–868 (1993).
    [Crossref]
  15. S. Janz, J. He, Z. R. Wasilewski, and M. Cada, “Low-threshold optical bistable switching in an asymmetric λ/4-shifted distributed-feedback heterostructure,” Appl. Phys. Lett. 67, 1051–1053 (1995).
    [Crossref]
  16. S. La Rochelle, Y. Hibino, V. Mizrahi, and G. I. Stegeman, “All-optical switching of grating transmission using cross-phase modulation in optical fibres,” Electron. Lett. 26, 1459–1460 (1990).
    [Crossref]
  17. G. P. Agrawal, Nonlinear Fiber Optics (Academic, San Diego, Calif., 1989).
  18. U. Mohideen, R. E. Slusher, V. Mizrahi, T. Erdogan, J. E. Sipe, M. Gonokami, P. J. Lemaire, C. M. de Sterke, and N. G. R. Broderick, “Gap soliton propagation in optical fiber gratings,” Opt. Lett. 20, 1674–1676 (1995).
    [Crossref] [PubMed]
  19. B. J. Eggleton, C. M. de Sterke, and R. E. Slusher, “Nonlinear propagation in superstructure Bragg gratings,” Opt. Lett. 21, 1223–1225 (1996).
    [Crossref] [PubMed]
  20. Y. Namahira, A. Miyamata, and N. Tanhahashik, “Nonlinear coefficient measurements for dispersion shifted fibres using self-phase modulation method at 1.55 µm,” Electron. Lett. 30, 1171–1172 (1994).
    [Crossref]
  21. R. H. Stolen and C. Lin, “Self-phase modulation in silica optical fibers,” Phys. Rev. A 17, 1448–1453 (1978).
    [Crossref]
  22. See, e.g., D. Marcuse, Theory of Dielectric Optical Waveguide, 2nd ed. (Academic, Boston, Mass., 1991), Chap. 7.
  23. J. E. Sipe, L. Poladian, and C. M. de Sterke, “Propagation through nonuniform Bragg gratings,” J. Opt. Soc. Am. A 11, 1307–1320 (1994).
    [Crossref]
  24. A. Hasagawa and F. Tappert, “Optical solitons,” Appl. Phys. Lett. 23, 142–144 (1973).
  25. L. F. Mollenauer, R. H. Stolen, and J. P. Gordon, “Experimental observation of picosecond pulse narrowing and solitons in optical fibers,” Phys. Rev. Lett. 45, 1095–1098 (1980).
    [Crossref]
  26. C. M. de Sterke, K. R. Jackson, and B. D. Robert, “Nonlinear coupled mode equations on a finite interval: a numerical procedure,” J. Opt. Soc. Am. B 8, 403–412 (1991).
    [Crossref]
  27. C. M. de Sterke and J. E. Sipe, “Coupled modes and the nonlinear Schrödinger equation,” Phys. Rev. A 42, 550–555 (1990).
    [Crossref]
  28. D. L. Mills and S. E. Trullinger, “Gap solitons in nonlinear periodic structures,” Phys. Rev. B 36, 947–952 (1987).
    [Crossref]
  29. R. J. Campbell and R. Kasyap, “The properties and applications of photosensitive germanosilicate fibre,” Int. J. Optoelectron. 9, 33–57 (1994).
  30. J. Martin and F. Ouellette, “Novel writing technique of long and highly reflective in-fibre gratings,” Electron. Lett. 30, 812–813 (1994).
    [Crossref]
  31. P. J. Lemaire, R. M. Atkins, V. Mizrahi, and W. A. Reed, “High-pressure H2 loading as a technique for achieving ultrahigh UV photosensitivity in GeO2 doped optical fibres,” Electron. Lett. 29, 1191–1193 (1993).
    [Crossref]
  32. F. Ouellette, P. A. Krug, and R. Pasman, “Characterisation of long phase masks for writing fibre Bragg gratings,” Opt. Fiber Technol. 2, 281–284 (1996).
  33. B. J. Eggleton, P. A. Krug, L. Poladian, and F. Ouellette, “Long periodic superstructure Bragg gratings in optical fibres,” Electron. Lett. 30, 1620–1622 (1994).
    [Crossref]
  34. N. G. R. Broderick, C. M. de Sterke, and B. J. Eggleton, “Soliton solutions in Rowland ghost gaps,” Phys. Rev. E 52, R5788–R5792 (1995).
    [Crossref]
  35. C. M. de Sterke and N. G. R. Broderick, “Coupled mode equations for periodic superstructure Bragg gratings,” Opt. Lett. 20, 2039–2041 (1995).
    [Crossref] [PubMed]
  36. A. M. Weiner, J. P. Heritage, and R. N. Thurston, “Synthesis of phase-coherent, picosecond optical square pulses,” Opt. Lett. 11, 153–155 (1986).
    [Crossref] [PubMed]
  37. K. Tai, A. Tomita, J. L. Jewell, and A. Hasegawa, “Generation of subpicosecond solitonlike optical pulses at 0.3 THz repetition rate by induced modulational instability,” Appl. Phys. Lett. 29, 236–239 (1986).
    [Crossref]
  38. H. G. Winful, R. Zamir, and S. Feldman, “Modulation instability in nonlinear periodic structures: implications for ‘gap solitons’,” Appl. Phys. Lett. 58, 1001–1003 (1991).
    [Crossref]
  39. C. M. de Sterke and J. E. Sipe, “Switching dynamics of finite periodic nonlinear media: a numerical study,” Phys. Rev. A 42, 2858–2869 (1990).
    [Crossref] [PubMed]
  40. C. M. de Sterke and J. E. Sipe, “Launching of gap solitons in non-uniform gratings,” Opt. Lett. 18, 269–271 (1993).
    [Crossref]
  41. N. G. R. Broderick, C. M. de Sterke, and J. E. Sipe, “Power estimates for the launching of gap solitons in nonuniform gratings,” Opt. Commun. 113, 118–124 (1994).
    [Crossref]
  42. H. A. Haus, “Matching of distributed-feedback structures,” Opt. Lett. 17, 1134–1136 (1992).
    [Crossref] [PubMed]

1996 (5)

W. H. Loh, R. I. Laming, N. Robinson, A. Cavaciuti, F. Vaninetti, C. J. Anderson, M. N. Zervas, and M. J. Cole, “Dispersion compensation over distances in excess of 500 km for 10 Gb/s systems using chirped fibre gratings,” IEEE Photonics Technol. Lett. 8, 944–946 (1996).
[Crossref]

B. J. Eggleton, T. Stephens, P. A. Krug, G. Dhosi, Z. Brodzeli, and F. Ouellette, “Dispersion compensation over 100 km at 10 Gbit/s using a fibre grating in transmission,” Electron. Lett. 32, 1610–1611 (1996).
[Crossref]

B. J. Eggleton, R. E. Slusher, C. M. de Sterke, P. A. Krug, and J. E. Sipe, “Bragg grating solitons,” Phys. Rev. Lett. 76, 1627–1630 (1996).
[Crossref] [PubMed]

B. J. Eggleton, C. M. de Sterke, and R. E. Slusher, “Nonlinear propagation in superstructure Bragg gratings,” Opt. Lett. 21, 1223–1225 (1996).
[Crossref] [PubMed]

F. Ouellette, P. A. Krug, and R. Pasman, “Characterisation of long phase masks for writing fibre Bragg gratings,” Opt. Fiber Technol. 2, 281–284 (1996).

1995 (5)

N. G. R. Broderick, C. M. de Sterke, and B. J. Eggleton, “Soliton solutions in Rowland ghost gaps,” Phys. Rev. E 52, R5788–R5792 (1995).
[Crossref]

C. M. de Sterke and N. G. R. Broderick, “Coupled mode equations for periodic superstructure Bragg gratings,” Opt. Lett. 20, 2039–2041 (1995).
[Crossref] [PubMed]

U. Mohideen, R. E. Slusher, V. Mizrahi, T. Erdogan, J. E. Sipe, M. Gonokami, P. J. Lemaire, C. M. de Sterke, and N. G. R. Broderick, “Gap soliton propagation in optical fiber gratings,” Opt. Lett. 20, 1674–1676 (1995).
[Crossref] [PubMed]

S. Janz, J. He, Z. R. Wasilewski, and M. Cada, “Low-threshold optical bistable switching in an asymmetric λ/4-shifted distributed-feedback heterostructure,” Appl. Phys. Lett. 67, 1051–1053 (1995).
[Crossref]

P. A. Krug, T. Stephens, G. Dhosi, G. Yoffe, F. Ouellette, and P. Hill, “Dispersion compensation over 270 km at 10 Gbit/s using an offset-core chirped fibre Bragg grating,” Electron. Lett. 31, 1091–1093 (1995).
[Crossref]

1994 (6)

Y. Namahira, A. Miyamata, and N. Tanhahashik, “Nonlinear coefficient measurements for dispersion shifted fibres using self-phase modulation method at 1.55 µm,” Electron. Lett. 30, 1171–1172 (1994).
[Crossref]

J. E. Sipe, L. Poladian, and C. M. de Sterke, “Propagation through nonuniform Bragg gratings,” J. Opt. Soc. Am. A 11, 1307–1320 (1994).
[Crossref]

R. J. Campbell and R. Kasyap, “The properties and applications of photosensitive germanosilicate fibre,” Int. J. Optoelectron. 9, 33–57 (1994).

J. Martin and F. Ouellette, “Novel writing technique of long and highly reflective in-fibre gratings,” Electron. Lett. 30, 812–813 (1994).
[Crossref]

B. J. Eggleton, P. A. Krug, L. Poladian, and F. Ouellette, “Long periodic superstructure Bragg gratings in optical fibres,” Electron. Lett. 30, 1620–1622 (1994).
[Crossref]

N. G. R. Broderick, C. M. de Sterke, and J. E. Sipe, “Power estimates for the launching of gap solitons in nonuniform gratings,” Opt. Commun. 113, 118–124 (1994).
[Crossref]

1993 (4)

C. M. de Sterke and J. E. Sipe, “Launching of gap solitons in non-uniform gratings,” Opt. Lett. 18, 269–271 (1993).
[Crossref]

P. J. Lemaire, R. M. Atkins, V. Mizrahi, and W. A. Reed, “High-pressure H2 loading as a technique for achieving ultrahigh UV photosensitivity in GeO2 doped optical fibres,” Electron. Lett. 29, 1191–1193 (1993).
[Crossref]

C. J. Herbert and M. S. Malcuit, “Optical bistability in nonlinear periodic structures,” Opt. Lett. 18, 1783–1785 (1993).
[Crossref] [PubMed]

J. He, M. Cada, M.-A. Dupertuis, D. Martin, C. Rolland, and A. J. SpringThorpe, “All-optical bistable switching and signal regeneration in a semiconductor layered distributed-feedback/Fabry–Perot structure,” Appl. Phys. Lett. 63, 866–868 (1993).
[Crossref]

1992 (3)

M. Cada, J. He, B. Acklin, M. Proctor, D. Martin, F. Morier-Genaud, M.-A. Dupertuis, and J. M. Glinski, “All-optical reflectivity tuning and logic gating in a GaAs/AlAs periodic layered structure,” Appl. Phys. Lett. 60, 404–406 (1992).
[Crossref]

N. D. Sankey, D. F. Prelewitz, and T. F. Brown, “All-optical switching in a nonlinear periodic-waveguide structure,” Appl. Phys. Lett. 60, 1427–1429 (1992).
[Crossref]

H. A. Haus, “Matching of distributed-feedback structures,” Opt. Lett. 17, 1134–1136 (1992).
[Crossref] [PubMed]

1991 (3)

P. St. J. Russell, “Bloch wave analysis of dispersion and pulse propagation in pure distributed feedback structures,” J. Mod. Opt. 38, 1599–1619 (1991).
[Crossref]

C. M. de Sterke, K. R. Jackson, and B. D. Robert, “Nonlinear coupled mode equations on a finite interval: a numerical procedure,” J. Opt. Soc. Am. B 8, 403–412 (1991).
[Crossref]

H. G. Winful, R. Zamir, and S. Feldman, “Modulation instability in nonlinear periodic structures: implications for ‘gap solitons’,” Appl. Phys. Lett. 58, 1001–1003 (1991).
[Crossref]

1990 (3)

C. M. de Sterke and J. E. Sipe, “Switching dynamics of finite periodic nonlinear media: a numerical study,” Phys. Rev. A 42, 2858–2869 (1990).
[Crossref] [PubMed]

C. M. de Sterke and J. E. Sipe, “Coupled modes and the nonlinear Schrödinger equation,” Phys. Rev. A 42, 550–555 (1990).
[Crossref]

S. La Rochelle, Y. Hibino, V. Mizrahi, and G. I. Stegeman, “All-optical switching of grating transmission using cross-phase modulation in optical fibres,” Electron. Lett. 26, 1459–1460 (1990).
[Crossref]

1989 (1)

A. B. Aceves and S. Wabnitz, “Self-induced transparency solitons in nonlinear refractive periodic media,” Phys. Lett. A 141, 37–42 (1989).
[Crossref]

1987 (3)

F. Ouellette, “Dispersion cancellation using linearly chirped Bragg filters in optical waveguides,” Opt. Lett. 12, 847–849 (1987).
[Crossref] [PubMed]

W. Chen and D. L. Mills, “Optical response of a nonlinear dielectric film,” Phys. Rev. Lett. 58, 160–163 (1987).
[Crossref] [PubMed]

D. L. Mills and S. E. Trullinger, “Gap solitons in nonlinear periodic structures,” Phys. Rev. B 36, 947–952 (1987).
[Crossref]

1986 (2)

A. M. Weiner, J. P. Heritage, and R. N. Thurston, “Synthesis of phase-coherent, picosecond optical square pulses,” Opt. Lett. 11, 153–155 (1986).
[Crossref] [PubMed]

K. Tai, A. Tomita, J. L. Jewell, and A. Hasegawa, “Generation of subpicosecond solitonlike optical pulses at 0.3 THz repetition rate by induced modulational instability,” Appl. Phys. Lett. 29, 236–239 (1986).
[Crossref]

1985 (1)

H. G. Winful, “Pulse compression in optical fiber filters,” Appl. Phys. Lett. 46, 527–529 (1985).
[Crossref]

1980 (1)

L. F. Mollenauer, R. H. Stolen, and J. P. Gordon, “Experimental observation of picosecond pulse narrowing and solitons in optical fibers,” Phys. Rev. Lett. 45, 1095–1098 (1980).
[Crossref]

1978 (1)

R. H. Stolen and C. Lin, “Self-phase modulation in silica optical fibers,” Phys. Rev. A 17, 1448–1453 (1978).
[Crossref]

1973 (1)

A. Hasagawa and F. Tappert, “Optical solitons,” Appl. Phys. Lett. 23, 142–144 (1973).

Aceves, A. B.

A. B. Aceves and S. Wabnitz, “Self-induced transparency solitons in nonlinear refractive periodic media,” Phys. Lett. A 141, 37–42 (1989).
[Crossref]

Acklin, B.

M. Cada, J. He, B. Acklin, M. Proctor, D. Martin, F. Morier-Genaud, M.-A. Dupertuis, and J. M. Glinski, “All-optical reflectivity tuning and logic gating in a GaAs/AlAs periodic layered structure,” Appl. Phys. Lett. 60, 404–406 (1992).
[Crossref]

Agrawal, G. P.

G. P. Agrawal, Nonlinear Fiber Optics (Academic, San Diego, Calif., 1989).

Anderson, C. J.

W. H. Loh, R. I. Laming, N. Robinson, A. Cavaciuti, F. Vaninetti, C. J. Anderson, M. N. Zervas, and M. J. Cole, “Dispersion compensation over distances in excess of 500 km for 10 Gb/s systems using chirped fibre gratings,” IEEE Photonics Technol. Lett. 8, 944–946 (1996).
[Crossref]

Atkins, R. M.

P. J. Lemaire, R. M. Atkins, V. Mizrahi, and W. A. Reed, “High-pressure H2 loading as a technique for achieving ultrahigh UV photosensitivity in GeO2 doped optical fibres,” Electron. Lett. 29, 1191–1193 (1993).
[Crossref]

Broderick, N. G. R.

N. G. R. Broderick, C. M. de Sterke, and B. J. Eggleton, “Soliton solutions in Rowland ghost gaps,” Phys. Rev. E 52, R5788–R5792 (1995).
[Crossref]

U. Mohideen, R. E. Slusher, V. Mizrahi, T. Erdogan, J. E. Sipe, M. Gonokami, P. J. Lemaire, C. M. de Sterke, and N. G. R. Broderick, “Gap soliton propagation in optical fiber gratings,” Opt. Lett. 20, 1674–1676 (1995).
[Crossref] [PubMed]

C. M. de Sterke and N. G. R. Broderick, “Coupled mode equations for periodic superstructure Bragg gratings,” Opt. Lett. 20, 2039–2041 (1995).
[Crossref] [PubMed]

N. G. R. Broderick, C. M. de Sterke, and J. E. Sipe, “Power estimates for the launching of gap solitons in nonuniform gratings,” Opt. Commun. 113, 118–124 (1994).
[Crossref]

Brodzeli, Z.

B. J. Eggleton, T. Stephens, P. A. Krug, G. Dhosi, Z. Brodzeli, and F. Ouellette, “Dispersion compensation over 100 km at 10 Gbit/s using a fibre grating in transmission,” Electron. Lett. 32, 1610–1611 (1996).
[Crossref]

Brown, T. F.

N. D. Sankey, D. F. Prelewitz, and T. F. Brown, “All-optical switching in a nonlinear periodic-waveguide structure,” Appl. Phys. Lett. 60, 1427–1429 (1992).
[Crossref]

Cada, M.

S. Janz, J. He, Z. R. Wasilewski, and M. Cada, “Low-threshold optical bistable switching in an asymmetric λ/4-shifted distributed-feedback heterostructure,” Appl. Phys. Lett. 67, 1051–1053 (1995).
[Crossref]

J. He, M. Cada, M.-A. Dupertuis, D. Martin, C. Rolland, and A. J. SpringThorpe, “All-optical bistable switching and signal regeneration in a semiconductor layered distributed-feedback/Fabry–Perot structure,” Appl. Phys. Lett. 63, 866–868 (1993).
[Crossref]

M. Cada, J. He, B. Acklin, M. Proctor, D. Martin, F. Morier-Genaud, M.-A. Dupertuis, and J. M. Glinski, “All-optical reflectivity tuning and logic gating in a GaAs/AlAs periodic layered structure,” Appl. Phys. Lett. 60, 404–406 (1992).
[Crossref]

Campbell, R. J.

R. J. Campbell and R. Kasyap, “The properties and applications of photosensitive germanosilicate fibre,” Int. J. Optoelectron. 9, 33–57 (1994).

Cavaciuti, A.

W. H. Loh, R. I. Laming, N. Robinson, A. Cavaciuti, F. Vaninetti, C. J. Anderson, M. N. Zervas, and M. J. Cole, “Dispersion compensation over distances in excess of 500 km for 10 Gb/s systems using chirped fibre gratings,” IEEE Photonics Technol. Lett. 8, 944–946 (1996).
[Crossref]

Chen, W.

W. Chen and D. L. Mills, “Optical response of a nonlinear dielectric film,” Phys. Rev. Lett. 58, 160–163 (1987).
[Crossref] [PubMed]

Cole, M. J.

W. H. Loh, R. I. Laming, N. Robinson, A. Cavaciuti, F. Vaninetti, C. J. Anderson, M. N. Zervas, and M. J. Cole, “Dispersion compensation over distances in excess of 500 km for 10 Gb/s systems using chirped fibre gratings,” IEEE Photonics Technol. Lett. 8, 944–946 (1996).
[Crossref]

de Sterke, C. M.

B. J. Eggleton, R. E. Slusher, C. M. de Sterke, P. A. Krug, and J. E. Sipe, “Bragg grating solitons,” Phys. Rev. Lett. 76, 1627–1630 (1996).
[Crossref] [PubMed]

B. J. Eggleton, C. M. de Sterke, and R. E. Slusher, “Nonlinear propagation in superstructure Bragg gratings,” Opt. Lett. 21, 1223–1225 (1996).
[Crossref] [PubMed]

C. M. de Sterke and N. G. R. Broderick, “Coupled mode equations for periodic superstructure Bragg gratings,” Opt. Lett. 20, 2039–2041 (1995).
[Crossref] [PubMed]

U. Mohideen, R. E. Slusher, V. Mizrahi, T. Erdogan, J. E. Sipe, M. Gonokami, P. J. Lemaire, C. M. de Sterke, and N. G. R. Broderick, “Gap soliton propagation in optical fiber gratings,” Opt. Lett. 20, 1674–1676 (1995).
[Crossref] [PubMed]

N. G. R. Broderick, C. M. de Sterke, and B. J. Eggleton, “Soliton solutions in Rowland ghost gaps,” Phys. Rev. E 52, R5788–R5792 (1995).
[Crossref]

N. G. R. Broderick, C. M. de Sterke, and J. E. Sipe, “Power estimates for the launching of gap solitons in nonuniform gratings,” Opt. Commun. 113, 118–124 (1994).
[Crossref]

J. E. Sipe, L. Poladian, and C. M. de Sterke, “Propagation through nonuniform Bragg gratings,” J. Opt. Soc. Am. A 11, 1307–1320 (1994).
[Crossref]

C. M. de Sterke and J. E. Sipe, “Launching of gap solitons in non-uniform gratings,” Opt. Lett. 18, 269–271 (1993).
[Crossref]

C. M. de Sterke, K. R. Jackson, and B. D. Robert, “Nonlinear coupled mode equations on a finite interval: a numerical procedure,” J. Opt. Soc. Am. B 8, 403–412 (1991).
[Crossref]

C. M. de Sterke and J. E. Sipe, “Switching dynamics of finite periodic nonlinear media: a numerical study,” Phys. Rev. A 42, 2858–2869 (1990).
[Crossref] [PubMed]

C. M. de Sterke and J. E. Sipe, “Coupled modes and the nonlinear Schrödinger equation,” Phys. Rev. A 42, 550–555 (1990).
[Crossref]

C. M. de Sterke and J. E. Sipe, “Gap solitons,” in Progress in Optics XXXIII, E. Wolf, ed. (Elsevier, Amsterdam, 1994), Chap. III.

Dhosi, G.

B. J. Eggleton, T. Stephens, P. A. Krug, G. Dhosi, Z. Brodzeli, and F. Ouellette, “Dispersion compensation over 100 km at 10 Gbit/s using a fibre grating in transmission,” Electron. Lett. 32, 1610–1611 (1996).
[Crossref]

P. A. Krug, T. Stephens, G. Dhosi, G. Yoffe, F. Ouellette, and P. Hill, “Dispersion compensation over 270 km at 10 Gbit/s using an offset-core chirped fibre Bragg grating,” Electron. Lett. 31, 1091–1093 (1995).
[Crossref]

Dupertuis, M.-A.

J. He, M. Cada, M.-A. Dupertuis, D. Martin, C. Rolland, and A. J. SpringThorpe, “All-optical bistable switching and signal regeneration in a semiconductor layered distributed-feedback/Fabry–Perot structure,” Appl. Phys. Lett. 63, 866–868 (1993).
[Crossref]

M. Cada, J. He, B. Acklin, M. Proctor, D. Martin, F. Morier-Genaud, M.-A. Dupertuis, and J. M. Glinski, “All-optical reflectivity tuning and logic gating in a GaAs/AlAs periodic layered structure,” Appl. Phys. Lett. 60, 404–406 (1992).
[Crossref]

Eggleton, B. J.

B. J. Eggleton, T. Stephens, P. A. Krug, G. Dhosi, Z. Brodzeli, and F. Ouellette, “Dispersion compensation over 100 km at 10 Gbit/s using a fibre grating in transmission,” Electron. Lett. 32, 1610–1611 (1996).
[Crossref]

B. J. Eggleton, R. E. Slusher, C. M. de Sterke, P. A. Krug, and J. E. Sipe, “Bragg grating solitons,” Phys. Rev. Lett. 76, 1627–1630 (1996).
[Crossref] [PubMed]

B. J. Eggleton, C. M. de Sterke, and R. E. Slusher, “Nonlinear propagation in superstructure Bragg gratings,” Opt. Lett. 21, 1223–1225 (1996).
[Crossref] [PubMed]

N. G. R. Broderick, C. M. de Sterke, and B. J. Eggleton, “Soliton solutions in Rowland ghost gaps,” Phys. Rev. E 52, R5788–R5792 (1995).
[Crossref]

B. J. Eggleton, P. A. Krug, L. Poladian, and F. Ouellette, “Long periodic superstructure Bragg gratings in optical fibres,” Electron. Lett. 30, 1620–1622 (1994).
[Crossref]

Erdogan, T.

Feldman, S.

H. G. Winful, R. Zamir, and S. Feldman, “Modulation instability in nonlinear periodic structures: implications for ‘gap solitons’,” Appl. Phys. Lett. 58, 1001–1003 (1991).
[Crossref]

Glinski, J. M.

M. Cada, J. He, B. Acklin, M. Proctor, D. Martin, F. Morier-Genaud, M.-A. Dupertuis, and J. M. Glinski, “All-optical reflectivity tuning and logic gating in a GaAs/AlAs periodic layered structure,” Appl. Phys. Lett. 60, 404–406 (1992).
[Crossref]

Gonokami, M.

Gordon, J. P.

L. F. Mollenauer, R. H. Stolen, and J. P. Gordon, “Experimental observation of picosecond pulse narrowing and solitons in optical fibers,” Phys. Rev. Lett. 45, 1095–1098 (1980).
[Crossref]

Hasagawa, A.

A. Hasagawa and F. Tappert, “Optical solitons,” Appl. Phys. Lett. 23, 142–144 (1973).

Hasegawa, A.

K. Tai, A. Tomita, J. L. Jewell, and A. Hasegawa, “Generation of subpicosecond solitonlike optical pulses at 0.3 THz repetition rate by induced modulational instability,” Appl. Phys. Lett. 29, 236–239 (1986).
[Crossref]

Haus, H. A.

He, J.

S. Janz, J. He, Z. R. Wasilewski, and M. Cada, “Low-threshold optical bistable switching in an asymmetric λ/4-shifted distributed-feedback heterostructure,” Appl. Phys. Lett. 67, 1051–1053 (1995).
[Crossref]

J. He, M. Cada, M.-A. Dupertuis, D. Martin, C. Rolland, and A. J. SpringThorpe, “All-optical bistable switching and signal regeneration in a semiconductor layered distributed-feedback/Fabry–Perot structure,” Appl. Phys. Lett. 63, 866–868 (1993).
[Crossref]

M. Cada, J. He, B. Acklin, M. Proctor, D. Martin, F. Morier-Genaud, M.-A. Dupertuis, and J. M. Glinski, “All-optical reflectivity tuning and logic gating in a GaAs/AlAs periodic layered structure,” Appl. Phys. Lett. 60, 404–406 (1992).
[Crossref]

Herbert, C. J.

Heritage, J. P.

Hibino, Y.

S. La Rochelle, Y. Hibino, V. Mizrahi, and G. I. Stegeman, “All-optical switching of grating transmission using cross-phase modulation in optical fibres,” Electron. Lett. 26, 1459–1460 (1990).
[Crossref]

Hill, P.

P. A. Krug, T. Stephens, G. Dhosi, G. Yoffe, F. Ouellette, and P. Hill, “Dispersion compensation over 270 km at 10 Gbit/s using an offset-core chirped fibre Bragg grating,” Electron. Lett. 31, 1091–1093 (1995).
[Crossref]

Jackson, K. R.

Janz, S.

S. Janz, J. He, Z. R. Wasilewski, and M. Cada, “Low-threshold optical bistable switching in an asymmetric λ/4-shifted distributed-feedback heterostructure,” Appl. Phys. Lett. 67, 1051–1053 (1995).
[Crossref]

Jewell, J. L.

K. Tai, A. Tomita, J. L. Jewell, and A. Hasegawa, “Generation of subpicosecond solitonlike optical pulses at 0.3 THz repetition rate by induced modulational instability,” Appl. Phys. Lett. 29, 236–239 (1986).
[Crossref]

Kasyap, R.

R. J. Campbell and R. Kasyap, “The properties and applications of photosensitive germanosilicate fibre,” Int. J. Optoelectron. 9, 33–57 (1994).

Krug, P. A.

F. Ouellette, P. A. Krug, and R. Pasman, “Characterisation of long phase masks for writing fibre Bragg gratings,” Opt. Fiber Technol. 2, 281–284 (1996).

B. J. Eggleton, R. E. Slusher, C. M. de Sterke, P. A. Krug, and J. E. Sipe, “Bragg grating solitons,” Phys. Rev. Lett. 76, 1627–1630 (1996).
[Crossref] [PubMed]

B. J. Eggleton, T. Stephens, P. A. Krug, G. Dhosi, Z. Brodzeli, and F. Ouellette, “Dispersion compensation over 100 km at 10 Gbit/s using a fibre grating in transmission,” Electron. Lett. 32, 1610–1611 (1996).
[Crossref]

P. A. Krug, T. Stephens, G. Dhosi, G. Yoffe, F. Ouellette, and P. Hill, “Dispersion compensation over 270 km at 10 Gbit/s using an offset-core chirped fibre Bragg grating,” Electron. Lett. 31, 1091–1093 (1995).
[Crossref]

B. J. Eggleton, P. A. Krug, L. Poladian, and F. Ouellette, “Long periodic superstructure Bragg gratings in optical fibres,” Electron. Lett. 30, 1620–1622 (1994).
[Crossref]

La Rochelle, S.

S. La Rochelle, Y. Hibino, V. Mizrahi, and G. I. Stegeman, “All-optical switching of grating transmission using cross-phase modulation in optical fibres,” Electron. Lett. 26, 1459–1460 (1990).
[Crossref]

Laming, R. I.

W. H. Loh, R. I. Laming, N. Robinson, A. Cavaciuti, F. Vaninetti, C. J. Anderson, M. N. Zervas, and M. J. Cole, “Dispersion compensation over distances in excess of 500 km for 10 Gb/s systems using chirped fibre gratings,” IEEE Photonics Technol. Lett. 8, 944–946 (1996).
[Crossref]

Lemaire, P. J.

U. Mohideen, R. E. Slusher, V. Mizrahi, T. Erdogan, J. E. Sipe, M. Gonokami, P. J. Lemaire, C. M. de Sterke, and N. G. R. Broderick, “Gap soliton propagation in optical fiber gratings,” Opt. Lett. 20, 1674–1676 (1995).
[Crossref] [PubMed]

P. J. Lemaire, R. M. Atkins, V. Mizrahi, and W. A. Reed, “High-pressure H2 loading as a technique for achieving ultrahigh UV photosensitivity in GeO2 doped optical fibres,” Electron. Lett. 29, 1191–1193 (1993).
[Crossref]

Lin, C.

R. H. Stolen and C. Lin, “Self-phase modulation in silica optical fibers,” Phys. Rev. A 17, 1448–1453 (1978).
[Crossref]

Loh, W. H.

W. H. Loh, R. I. Laming, N. Robinson, A. Cavaciuti, F. Vaninetti, C. J. Anderson, M. N. Zervas, and M. J. Cole, “Dispersion compensation over distances in excess of 500 km for 10 Gb/s systems using chirped fibre gratings,” IEEE Photonics Technol. Lett. 8, 944–946 (1996).
[Crossref]

Malcuit, M. S.

Marcuse, D.

See, e.g., D. Marcuse, Theory of Dielectric Optical Waveguide, 2nd ed. (Academic, Boston, Mass., 1991), Chap. 7.

Martin, D.

J. He, M. Cada, M.-A. Dupertuis, D. Martin, C. Rolland, and A. J. SpringThorpe, “All-optical bistable switching and signal regeneration in a semiconductor layered distributed-feedback/Fabry–Perot structure,” Appl. Phys. Lett. 63, 866–868 (1993).
[Crossref]

M. Cada, J. He, B. Acklin, M. Proctor, D. Martin, F. Morier-Genaud, M.-A. Dupertuis, and J. M. Glinski, “All-optical reflectivity tuning and logic gating in a GaAs/AlAs periodic layered structure,” Appl. Phys. Lett. 60, 404–406 (1992).
[Crossref]

Martin, J.

J. Martin and F. Ouellette, “Novel writing technique of long and highly reflective in-fibre gratings,” Electron. Lett. 30, 812–813 (1994).
[Crossref]

Mills, D. L.

D. L. Mills and S. E. Trullinger, “Gap solitons in nonlinear periodic structures,” Phys. Rev. B 36, 947–952 (1987).
[Crossref]

W. Chen and D. L. Mills, “Optical response of a nonlinear dielectric film,” Phys. Rev. Lett. 58, 160–163 (1987).
[Crossref] [PubMed]

Miyamata, A.

Y. Namahira, A. Miyamata, and N. Tanhahashik, “Nonlinear coefficient measurements for dispersion shifted fibres using self-phase modulation method at 1.55 µm,” Electron. Lett. 30, 1171–1172 (1994).
[Crossref]

Mizrahi, V.

U. Mohideen, R. E. Slusher, V. Mizrahi, T. Erdogan, J. E. Sipe, M. Gonokami, P. J. Lemaire, C. M. de Sterke, and N. G. R. Broderick, “Gap soliton propagation in optical fiber gratings,” Opt. Lett. 20, 1674–1676 (1995).
[Crossref] [PubMed]

P. J. Lemaire, R. M. Atkins, V. Mizrahi, and W. A. Reed, “High-pressure H2 loading as a technique for achieving ultrahigh UV photosensitivity in GeO2 doped optical fibres,” Electron. Lett. 29, 1191–1193 (1993).
[Crossref]

S. La Rochelle, Y. Hibino, V. Mizrahi, and G. I. Stegeman, “All-optical switching of grating transmission using cross-phase modulation in optical fibres,” Electron. Lett. 26, 1459–1460 (1990).
[Crossref]

Mohideen, U.

Mollenauer, L. F.

L. F. Mollenauer, R. H. Stolen, and J. P. Gordon, “Experimental observation of picosecond pulse narrowing and solitons in optical fibers,” Phys. Rev. Lett. 45, 1095–1098 (1980).
[Crossref]

Morier-Genaud, F.

M. Cada, J. He, B. Acklin, M. Proctor, D. Martin, F. Morier-Genaud, M.-A. Dupertuis, and J. M. Glinski, “All-optical reflectivity tuning and logic gating in a GaAs/AlAs periodic layered structure,” Appl. Phys. Lett. 60, 404–406 (1992).
[Crossref]

Namahira, Y.

Y. Namahira, A. Miyamata, and N. Tanhahashik, “Nonlinear coefficient measurements for dispersion shifted fibres using self-phase modulation method at 1.55 µm,” Electron. Lett. 30, 1171–1172 (1994).
[Crossref]

Ouellette, F.

B. J. Eggleton, T. Stephens, P. A. Krug, G. Dhosi, Z. Brodzeli, and F. Ouellette, “Dispersion compensation over 100 km at 10 Gbit/s using a fibre grating in transmission,” Electron. Lett. 32, 1610–1611 (1996).
[Crossref]

F. Ouellette, P. A. Krug, and R. Pasman, “Characterisation of long phase masks for writing fibre Bragg gratings,” Opt. Fiber Technol. 2, 281–284 (1996).

P. A. Krug, T. Stephens, G. Dhosi, G. Yoffe, F. Ouellette, and P. Hill, “Dispersion compensation over 270 km at 10 Gbit/s using an offset-core chirped fibre Bragg grating,” Electron. Lett. 31, 1091–1093 (1995).
[Crossref]

B. J. Eggleton, P. A. Krug, L. Poladian, and F. Ouellette, “Long periodic superstructure Bragg gratings in optical fibres,” Electron. Lett. 30, 1620–1622 (1994).
[Crossref]

J. Martin and F. Ouellette, “Novel writing technique of long and highly reflective in-fibre gratings,” Electron. Lett. 30, 812–813 (1994).
[Crossref]

F. Ouellette, “Dispersion cancellation using linearly chirped Bragg filters in optical waveguides,” Opt. Lett. 12, 847–849 (1987).
[Crossref] [PubMed]

Pasman, R.

F. Ouellette, P. A. Krug, and R. Pasman, “Characterisation of long phase masks for writing fibre Bragg gratings,” Opt. Fiber Technol. 2, 281–284 (1996).

Poladian, L.

B. J. Eggleton, P. A. Krug, L. Poladian, and F. Ouellette, “Long periodic superstructure Bragg gratings in optical fibres,” Electron. Lett. 30, 1620–1622 (1994).
[Crossref]

J. E. Sipe, L. Poladian, and C. M. de Sterke, “Propagation through nonuniform Bragg gratings,” J. Opt. Soc. Am. A 11, 1307–1320 (1994).
[Crossref]

Prelewitz, D. F.

N. D. Sankey, D. F. Prelewitz, and T. F. Brown, “All-optical switching in a nonlinear periodic-waveguide structure,” Appl. Phys. Lett. 60, 1427–1429 (1992).
[Crossref]

Proctor, M.

M. Cada, J. He, B. Acklin, M. Proctor, D. Martin, F. Morier-Genaud, M.-A. Dupertuis, and J. M. Glinski, “All-optical reflectivity tuning and logic gating in a GaAs/AlAs periodic layered structure,” Appl. Phys. Lett. 60, 404–406 (1992).
[Crossref]

Reed, W. A.

P. J. Lemaire, R. M. Atkins, V. Mizrahi, and W. A. Reed, “High-pressure H2 loading as a technique for achieving ultrahigh UV photosensitivity in GeO2 doped optical fibres,” Electron. Lett. 29, 1191–1193 (1993).
[Crossref]

Robert, B. D.

Robinson, N.

W. H. Loh, R. I. Laming, N. Robinson, A. Cavaciuti, F. Vaninetti, C. J. Anderson, M. N. Zervas, and M. J. Cole, “Dispersion compensation over distances in excess of 500 km for 10 Gb/s systems using chirped fibre gratings,” IEEE Photonics Technol. Lett. 8, 944–946 (1996).
[Crossref]

Rolland, C.

J. He, M. Cada, M.-A. Dupertuis, D. Martin, C. Rolland, and A. J. SpringThorpe, “All-optical bistable switching and signal regeneration in a semiconductor layered distributed-feedback/Fabry–Perot structure,” Appl. Phys. Lett. 63, 866–868 (1993).
[Crossref]

Russell, P. St. J.

P. St. J. Russell, “Bloch wave analysis of dispersion and pulse propagation in pure distributed feedback structures,” J. Mod. Opt. 38, 1599–1619 (1991).
[Crossref]

Sankey, N. D.

N. D. Sankey, D. F. Prelewitz, and T. F. Brown, “All-optical switching in a nonlinear periodic-waveguide structure,” Appl. Phys. Lett. 60, 1427–1429 (1992).
[Crossref]

Sipe, J. E.

B. J. Eggleton, R. E. Slusher, C. M. de Sterke, P. A. Krug, and J. E. Sipe, “Bragg grating solitons,” Phys. Rev. Lett. 76, 1627–1630 (1996).
[Crossref] [PubMed]

U. Mohideen, R. E. Slusher, V. Mizrahi, T. Erdogan, J. E. Sipe, M. Gonokami, P. J. Lemaire, C. M. de Sterke, and N. G. R. Broderick, “Gap soliton propagation in optical fiber gratings,” Opt. Lett. 20, 1674–1676 (1995).
[Crossref] [PubMed]

N. G. R. Broderick, C. M. de Sterke, and J. E. Sipe, “Power estimates for the launching of gap solitons in nonuniform gratings,” Opt. Commun. 113, 118–124 (1994).
[Crossref]

J. E. Sipe, L. Poladian, and C. M. de Sterke, “Propagation through nonuniform Bragg gratings,” J. Opt. Soc. Am. A 11, 1307–1320 (1994).
[Crossref]

C. M. de Sterke and J. E. Sipe, “Launching of gap solitons in non-uniform gratings,” Opt. Lett. 18, 269–271 (1993).
[Crossref]

C. M. de Sterke and J. E. Sipe, “Switching dynamics of finite periodic nonlinear media: a numerical study,” Phys. Rev. A 42, 2858–2869 (1990).
[Crossref] [PubMed]

C. M. de Sterke and J. E. Sipe, “Coupled modes and the nonlinear Schrödinger equation,” Phys. Rev. A 42, 550–555 (1990).
[Crossref]

C. M. de Sterke and J. E. Sipe, “Gap solitons,” in Progress in Optics XXXIII, E. Wolf, ed. (Elsevier, Amsterdam, 1994), Chap. III.

Slusher, R. E.

SpringThorpe, A. J.

J. He, M. Cada, M.-A. Dupertuis, D. Martin, C. Rolland, and A. J. SpringThorpe, “All-optical bistable switching and signal regeneration in a semiconductor layered distributed-feedback/Fabry–Perot structure,” Appl. Phys. Lett. 63, 866–868 (1993).
[Crossref]

Stegeman, G. I.

S. La Rochelle, Y. Hibino, V. Mizrahi, and G. I. Stegeman, “All-optical switching of grating transmission using cross-phase modulation in optical fibres,” Electron. Lett. 26, 1459–1460 (1990).
[Crossref]

Stephens, T.

B. J. Eggleton, T. Stephens, P. A. Krug, G. Dhosi, Z. Brodzeli, and F. Ouellette, “Dispersion compensation over 100 km at 10 Gbit/s using a fibre grating in transmission,” Electron. Lett. 32, 1610–1611 (1996).
[Crossref]

P. A. Krug, T. Stephens, G. Dhosi, G. Yoffe, F. Ouellette, and P. Hill, “Dispersion compensation over 270 km at 10 Gbit/s using an offset-core chirped fibre Bragg grating,” Electron. Lett. 31, 1091–1093 (1995).
[Crossref]

Stolen, R. H.

L. F. Mollenauer, R. H. Stolen, and J. P. Gordon, “Experimental observation of picosecond pulse narrowing and solitons in optical fibers,” Phys. Rev. Lett. 45, 1095–1098 (1980).
[Crossref]

R. H. Stolen and C. Lin, “Self-phase modulation in silica optical fibers,” Phys. Rev. A 17, 1448–1453 (1978).
[Crossref]

Tai, K.

K. Tai, A. Tomita, J. L. Jewell, and A. Hasegawa, “Generation of subpicosecond solitonlike optical pulses at 0.3 THz repetition rate by induced modulational instability,” Appl. Phys. Lett. 29, 236–239 (1986).
[Crossref]

Tanhahashik, N.

Y. Namahira, A. Miyamata, and N. Tanhahashik, “Nonlinear coefficient measurements for dispersion shifted fibres using self-phase modulation method at 1.55 µm,” Electron. Lett. 30, 1171–1172 (1994).
[Crossref]

Tappert, F.

A. Hasagawa and F. Tappert, “Optical solitons,” Appl. Phys. Lett. 23, 142–144 (1973).

Thurston, R. N.

Tomita, A.

K. Tai, A. Tomita, J. L. Jewell, and A. Hasegawa, “Generation of subpicosecond solitonlike optical pulses at 0.3 THz repetition rate by induced modulational instability,” Appl. Phys. Lett. 29, 236–239 (1986).
[Crossref]

Trullinger, S. E.

D. L. Mills and S. E. Trullinger, “Gap solitons in nonlinear periodic structures,” Phys. Rev. B 36, 947–952 (1987).
[Crossref]

Vaninetti, F.

W. H. Loh, R. I. Laming, N. Robinson, A. Cavaciuti, F. Vaninetti, C. J. Anderson, M. N. Zervas, and M. J. Cole, “Dispersion compensation over distances in excess of 500 km for 10 Gb/s systems using chirped fibre gratings,” IEEE Photonics Technol. Lett. 8, 944–946 (1996).
[Crossref]

Wabnitz, S.

A. B. Aceves and S. Wabnitz, “Self-induced transparency solitons in nonlinear refractive periodic media,” Phys. Lett. A 141, 37–42 (1989).
[Crossref]

Wasilewski, Z. R.

S. Janz, J. He, Z. R. Wasilewski, and M. Cada, “Low-threshold optical bistable switching in an asymmetric λ/4-shifted distributed-feedback heterostructure,” Appl. Phys. Lett. 67, 1051–1053 (1995).
[Crossref]

Weiner, A. M.

Winful, H. G.

H. G. Winful, R. Zamir, and S. Feldman, “Modulation instability in nonlinear periodic structures: implications for ‘gap solitons’,” Appl. Phys. Lett. 58, 1001–1003 (1991).
[Crossref]

H. G. Winful, “Pulse compression in optical fiber filters,” Appl. Phys. Lett. 46, 527–529 (1985).
[Crossref]

Yoffe, G.

P. A. Krug, T. Stephens, G. Dhosi, G. Yoffe, F. Ouellette, and P. Hill, “Dispersion compensation over 270 km at 10 Gbit/s using an offset-core chirped fibre Bragg grating,” Electron. Lett. 31, 1091–1093 (1995).
[Crossref]

Zamir, R.

H. G. Winful, R. Zamir, and S. Feldman, “Modulation instability in nonlinear periodic structures: implications for ‘gap solitons’,” Appl. Phys. Lett. 58, 1001–1003 (1991).
[Crossref]

Zervas, M. N.

W. H. Loh, R. I. Laming, N. Robinson, A. Cavaciuti, F. Vaninetti, C. J. Anderson, M. N. Zervas, and M. J. Cole, “Dispersion compensation over distances in excess of 500 km for 10 Gb/s systems using chirped fibre gratings,” IEEE Photonics Technol. Lett. 8, 944–946 (1996).
[Crossref]

Appl. Phys. Lett. (8)

H. G. Winful, “Pulse compression in optical fiber filters,” Appl. Phys. Lett. 46, 527–529 (1985).
[Crossref]

N. D. Sankey, D. F. Prelewitz, and T. F. Brown, “All-optical switching in a nonlinear periodic-waveguide structure,” Appl. Phys. Lett. 60, 1427–1429 (1992).
[Crossref]

M. Cada, J. He, B. Acklin, M. Proctor, D. Martin, F. Morier-Genaud, M.-A. Dupertuis, and J. M. Glinski, “All-optical reflectivity tuning and logic gating in a GaAs/AlAs periodic layered structure,” Appl. Phys. Lett. 60, 404–406 (1992).
[Crossref]

J. He, M. Cada, M.-A. Dupertuis, D. Martin, C. Rolland, and A. J. SpringThorpe, “All-optical bistable switching and signal regeneration in a semiconductor layered distributed-feedback/Fabry–Perot structure,” Appl. Phys. Lett. 63, 866–868 (1993).
[Crossref]

S. Janz, J. He, Z. R. Wasilewski, and M. Cada, “Low-threshold optical bistable switching in an asymmetric λ/4-shifted distributed-feedback heterostructure,” Appl. Phys. Lett. 67, 1051–1053 (1995).
[Crossref]

A. Hasagawa and F. Tappert, “Optical solitons,” Appl. Phys. Lett. 23, 142–144 (1973).

K. Tai, A. Tomita, J. L. Jewell, and A. Hasegawa, “Generation of subpicosecond solitonlike optical pulses at 0.3 THz repetition rate by induced modulational instability,” Appl. Phys. Lett. 29, 236–239 (1986).
[Crossref]

H. G. Winful, R. Zamir, and S. Feldman, “Modulation instability in nonlinear periodic structures: implications for ‘gap solitons’,” Appl. Phys. Lett. 58, 1001–1003 (1991).
[Crossref]

Electron. Lett. (7)

Y. Namahira, A. Miyamata, and N. Tanhahashik, “Nonlinear coefficient measurements for dispersion shifted fibres using self-phase modulation method at 1.55 µm,” Electron. Lett. 30, 1171–1172 (1994).
[Crossref]

J. Martin and F. Ouellette, “Novel writing technique of long and highly reflective in-fibre gratings,” Electron. Lett. 30, 812–813 (1994).
[Crossref]

P. J. Lemaire, R. M. Atkins, V. Mizrahi, and W. A. Reed, “High-pressure H2 loading as a technique for achieving ultrahigh UV photosensitivity in GeO2 doped optical fibres,” Electron. Lett. 29, 1191–1193 (1993).
[Crossref]

B. J. Eggleton, P. A. Krug, L. Poladian, and F. Ouellette, “Long periodic superstructure Bragg gratings in optical fibres,” Electron. Lett. 30, 1620–1622 (1994).
[Crossref]

S. La Rochelle, Y. Hibino, V. Mizrahi, and G. I. Stegeman, “All-optical switching of grating transmission using cross-phase modulation in optical fibres,” Electron. Lett. 26, 1459–1460 (1990).
[Crossref]

B. J. Eggleton, T. Stephens, P. A. Krug, G. Dhosi, Z. Brodzeli, and F. Ouellette, “Dispersion compensation over 100 km at 10 Gbit/s using a fibre grating in transmission,” Electron. Lett. 32, 1610–1611 (1996).
[Crossref]

P. A. Krug, T. Stephens, G. Dhosi, G. Yoffe, F. Ouellette, and P. Hill, “Dispersion compensation over 270 km at 10 Gbit/s using an offset-core chirped fibre Bragg grating,” Electron. Lett. 31, 1091–1093 (1995).
[Crossref]

IEEE Photonics Technol. Lett. (1)

W. H. Loh, R. I. Laming, N. Robinson, A. Cavaciuti, F. Vaninetti, C. J. Anderson, M. N. Zervas, and M. J. Cole, “Dispersion compensation over distances in excess of 500 km for 10 Gb/s systems using chirped fibre gratings,” IEEE Photonics Technol. Lett. 8, 944–946 (1996).
[Crossref]

Int. J. Optoelectron. (1)

R. J. Campbell and R. Kasyap, “The properties and applications of photosensitive germanosilicate fibre,” Int. J. Optoelectron. 9, 33–57 (1994).

J. Mod. Opt. (1)

P. St. J. Russell, “Bloch wave analysis of dispersion and pulse propagation in pure distributed feedback structures,” J. Mod. Opt. 38, 1599–1619 (1991).
[Crossref]

J. Opt. Soc. Am. A (1)

J. Opt. Soc. Am. B (1)

Opt. Commun. (1)

N. G. R. Broderick, C. M. de Sterke, and J. E. Sipe, “Power estimates for the launching of gap solitons in nonuniform gratings,” Opt. Commun. 113, 118–124 (1994).
[Crossref]

Opt. Fiber Technol. (1)

F. Ouellette, P. A. Krug, and R. Pasman, “Characterisation of long phase masks for writing fibre Bragg gratings,” Opt. Fiber Technol. 2, 281–284 (1996).

Opt. Lett. (8)

Phys. Lett. A (1)

A. B. Aceves and S. Wabnitz, “Self-induced transparency solitons in nonlinear refractive periodic media,” Phys. Lett. A 141, 37–42 (1989).
[Crossref]

Phys. Rev. A (3)

R. H. Stolen and C. Lin, “Self-phase modulation in silica optical fibers,” Phys. Rev. A 17, 1448–1453 (1978).
[Crossref]

C. M. de Sterke and J. E. Sipe, “Coupled modes and the nonlinear Schrödinger equation,” Phys. Rev. A 42, 550–555 (1990).
[Crossref]

C. M. de Sterke and J. E. Sipe, “Switching dynamics of finite periodic nonlinear media: a numerical study,” Phys. Rev. A 42, 2858–2869 (1990).
[Crossref] [PubMed]

Phys. Rev. B (1)

D. L. Mills and S. E. Trullinger, “Gap solitons in nonlinear periodic structures,” Phys. Rev. B 36, 947–952 (1987).
[Crossref]

Phys. Rev. E (1)

N. G. R. Broderick, C. M. de Sterke, and B. J. Eggleton, “Soliton solutions in Rowland ghost gaps,” Phys. Rev. E 52, R5788–R5792 (1995).
[Crossref]

Phys. Rev. Lett. (3)

L. F. Mollenauer, R. H. Stolen, and J. P. Gordon, “Experimental observation of picosecond pulse narrowing and solitons in optical fibers,” Phys. Rev. Lett. 45, 1095–1098 (1980).
[Crossref]

W. Chen and D. L. Mills, “Optical response of a nonlinear dielectric film,” Phys. Rev. Lett. 58, 160–163 (1987).
[Crossref] [PubMed]

B. J. Eggleton, R. E. Slusher, C. M. de Sterke, P. A. Krug, and J. E. Sipe, “Bragg grating solitons,” Phys. Rev. Lett. 76, 1627–1630 (1996).
[Crossref] [PubMed]

Other (3)

G. P. Agrawal, Nonlinear Fiber Optics (Academic, San Diego, Calif., 1989).

C. M. de Sterke and J. E. Sipe, “Gap solitons,” in Progress in Optics XXXIII, E. Wolf, ed. (Elsevier, Amsterdam, 1994), Chap. III.

See, e.g., D. Marcuse, Theory of Dielectric Optical Waveguide, 2nd ed. (Academic, Boston, Mass., 1991), Chap. 7.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (17)

Fig. 1
Fig. 1

Dispersion relation (11) showing the relationship among detuning, δ, and wave number Q for a uniform medium (dashed lines) and for a uniform grating (solid curves); the latter exhibits a photonic bandgap of size 2κ, consistent with inequality (12).

Fig. 2
Fig. 2

Group velocity (in units of c/n¯) as a function of detuning for a uniform grating with a strength κ=10 cm-1. Short-dashed lines: boundaries of the photonic bandgap, long-dashed curve: spectrum of a typical pulse used in the experiments.

Fig. 3
Fig. 3

Calculated group delay in transmission for a uniform grating of length 1 cm and κ=10 cm-1, obtained with Eq. (16) (solid curve), and that (ignoring end effects) obtained from Eq. (13) (dashed curve).

Fig. 4
Fig. 4

Schematic diagram of the experiment. The total length of the fiber is 55 mm; the grating begins approximately 10 mm from the front of the fiber and ends 10 mm from the back end of the fiber. Light is coupled into the fiber via a microscope objective, and a second microscope objective collects the light at the output. An aperture spatially filters the light guided by the cladding.

Fig. 5
Fig. 5

Measured transmission as a function of wavelength (bottom scale) and detuning (top scale) of the fiber grating used in the experiment, obtained by shifting the grating spectrum by straining the fiber with respect to the fixed laser wavelength (solid curve). Short-dashed lines: approximate positions of the edges of the photonic bandgap, long-dashed curve: calculated power spectrum of a typical incident laser pulse of 80 ps.

Fig. 6
Fig. 6

Filled circles: transmitted energy for various values of the incident intensity for wavelengths well away from λB, where the effect of the grating is negligible. Note the sublinear losses, which we believe to be associated with Raman loss. Straight line: the linear regime.

Fig. 7
Fig. 7

Numerically obtained transmitted intensities for an incident pulse with parameters I=20 GW/cm2, τ=80 ps (FWHM), and Δ=15 cm-1 incident upon a grating with parameters κ=10 cm-1, L=3.5 cm, and LB=0 (solid curve), LB=1 cm (short-and-long-dashed curve), LB=2 cm (long-dashed curve), and LB=3 cm (short-dashed curve).

Fig. 8
Fig. 8

Experimental results of the pulse-propagation experiment in a fiber grating with L=35 mm at low intensity, where nonlinear effects do not play a role. Solid curve: result for a pulse tuned far from the Bragg resonance, where the dispersion is unimportant; dashed curve: result for a pulse tuned close to the Bragg resonance, where the grating dispersion leads to pulse broadening.

Fig. 9
Fig. 9

Experimentally measured transmitted intensities as a function of time. Solid curves: transmitted pulse for detunings far from the Bragg resonance, where the grating does not play a role. It has a pulse width of τ80 ps and a peak intensity of 18 GW/cm2. Dashed curves: transmitted pulse at the same input intensity, when the grating detuning is (a) 15 cm-1, (b) 13.2 cm-1, and (c) 11.4 cm-1.

Fig. 10
Fig. 10

Compressed pulse according to numerical calculations. Grating parameters: κ=10 cm-1 and L=3.5 cm. Pulse parameters: τ=80 ps (FWHM), δ=13.2 cm-1, and I=18 GW/cm2, roughly corresponding to the situation in Fig. 9(b).

Fig. 11
Fig. 11

Pulse width (FWHM) of transmitted pulse versus incident intensity at a fixed detuning of δ=15 cm-1. Filled circles:  experimental results, dashed curve: results of numerical calculations.

Fig. 12
Fig. 12

Experimentally measured (filled circles) and numerically obtained (long-dashed curves) (a) width (FWHM) of the transmitted compressed pulse as a function of detuning and (b) retardation of the transmitted compressed pulse as a function of detuning, at a fixed input intensity of 20 GW/cm2. The edge of the photonic bandgap is indicated by the short-dashed vertical lines.

Fig. 13
Fig. 13

Experimentally measured transmitted intensity as a function of time at a frequency below the photonic bandgap where the grating dispersion is normal. Here the nonlinearity and the dispersion cause the pulse to broaden rapidly from 80 to approximately 150 ps.

Fig. 14
Fig. 14

Transmitted intensity as a function of time at a fixed frequency for four different intensities of the incident pulse: (a), (b) 10 GW/cm2; (c), (d) 27 GW/cm2; (e), (f) 55 GW/cm2; (g), (h) 65 GW/cm2. Experimental results are shown in the left-hand panels, and the numerically obtained results are shown on the right-hand side.

Fig. 15
Fig. 15

Numerically obtained peak intensity and width of a high-intensity pulse propagating through a grating. Incident intensity, 20 GW/cm2; initial pulse width, τ=70 ps (FWHM); spectrum centered at δ=13 cm-1; grating strength, κ=10 cm-1.

Fig. 16
Fig. 16

Solid curve: numerically obtained spectrum of a high-intensity pulse after propagation through a grating of 50 cm. Incident intensity, 20 GW/cm2; initial pulse width, τ=80 ps (FWHM); spectrum centered 0.060 nm below the bandgap of the grating; grating strength, κ=10 cm-1. Dashed curve: spectrum of BGS with parameters δ˜=0.1 and v=0.74.

Fig. 17
Fig. 17

Evolution of fields inside grating at times (a) 0 ps, (b) 150 ps, and (c) 300 ps. The parameters are κ=10 cm-1, L=10 cm, δ=15 cm-1, and I=100 GW/cm2.

Equations (26)

Equations on this page are rendered with MathJax. Learn more.

n=n¯+Δn cos2πdz,
λB=2n¯d,
Δλ=(Δn/n¯)λB.
n=n0+n2I,
E(z, t)=[E+(z, t)exp(ikBz)+E-(z, t)exp(-ikBz)]exp(-iωBt)+c.c.,
+i E+z+n¯cE+t+κE-+ΓS|E+|2E++2ΓX|E-|2E+
=0,
-i E-z+n¯cE-t+κE++ΓS|E-|2E-+2ΓX|E+|2E-
=0,
κ=πΔnηλB
ΓS=ΓX=4πnLλZ0n2,
E±=C± exp[i(Qz-cδt/n¯)]
δ=(n¯/c)(ω-ωB),Q=k-kB.
δ=±κ2+Q2.
-κ<δ<+κ,
vg=±cn¯1-κδ21/2,
d2ωdk2=±cnκ¯.
D=-2πcλ2d2kdω2
tdelay=d arg(t)dω,
E±=μE˜± exp[iη(θ)],
E˜+=±±κ2Γx1/2 1Δsin δ˜ exp(±iσ)sech(θiδ˜/2),
E˜-=-±κ2Γx1/2Δ sin δ˜ exp(±iσ)sech(θ±iδ˜/2),
θ=κγ(sin δ˜)(z-vt),σ=κγ(cos δ˜)(vz-t),
v=(1-Δ4)/(1+Δ4),γ=11-v2,
v<sin δ˜
LBLNL

Metrics