Abstract

Typically, the intensity noise of solid-state lasers is dominated by a resonant relaxation oscillation, RRO, at intermediate frequencies (kilohertz to megahertz) and by pump-source noise at frequencies below the RRO. The RRO is driven by vacuum fluctuations as well as by pump-source fluctuations and is therefore present irrespective of the pump-source noise level. However, the intensity noise at frequencies below the RRO can be substantially lowered by use of a low-noise pump source. This behavior is experimentally studied for diode-pumped Nd:YAG ring lasers. An experimental comparison is made between pumping with a single-element diode laser (SEDL) or with a diode-laser array (DLA). We find good agreement with theory for the SEDL but not for the DLA because the DLA's output intensity noise is spatially variant. We also show that pump-source frequency noise has only a minor effect on the intensity noise of the Nd:YAG laser. The requirements for low-noise operation of solid-state lasers are discussed.

© 1997 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. W. H. Louisell, Quantum Statistical Properties of Radiation (Wiley-International, New York, 1973).
  2. H. Haken, “Laser theory,” in Encyclopedia of Physics, S. Flugge, ed. (Springer-Verlag, Berlin, 1970), Sec. 2c.
  3. T. C. Ralph, C. C. Harb, and H.-A. Bachor, “Intensity noise of injection locked lasers: quantum theory using a linearized input/output method,” Phys. Rev. A 54, 4359 (1996).
    [CrossRef] [PubMed]
  4. T. J. Kane and R. L. Byer, “Monolithic, unidirectional single-mode Nd:YAG ring laser,” Opt. Lett. 10, 65 (1985).
    [CrossRef] [PubMed]
  5. I. Freitag, A. Tünnermann, and H. Welling, “Power scaling of diode-pumped monolithic Nd:YAG lasers to output powers of several watts,” Opt. Commun. 115, 511 (1995).
    [CrossRef]
  6. I. Freitag, A. Tünnermann, H. Welling, C. C. Harb, D. E. McClelland, H.-A. Bachor, and T. C. Ralph, “Experimental and theoretical investigation on the intensity noise properties of injection locked lasers,” in Advanced Solid-State Lasers, S. A. Payne and C. R. Pollock, eds., Vol. 1 of Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C.1996), p. 401.
  7. T. J. Kane, “Intensity noise in a diode-pumped single frequency Nd:YAG laser and its control by electronic feedback,” IEEE Photon. Technol. Lett. 2, 244 (1990).
    [CrossRef]
  8. S. Rowan, A. M. Campbell, K. Skeldon, and J. Hough, “Broadband intensity stabilization of a diode-pumped monolithic miniature Nd:YAG ring laser,” J. Mod. Opt. 41, 1263 (1994).
    [CrossRef]
  9. C. C. Harb, M. B. Gray, H.-A. Bachor, R. Schilling, P. Rottengatter, I. Freitag, and H. Welling, “Suppression of the intensity noise in a diode-pumped neodymium:YAG nonplanar ring laser,” IEEE J. Quantum Electron. 30, 2907 (1994).
    [CrossRef]
  10. C. C. Harb, T. C. Ralph, E. H. Huntington, I. Freitag, D. E. McClelland, and H.-A. Bachor, “Intensity noise properties of injection locked lasers,” Phys. Rev. A 54, 4370 (1996).
    [CrossRef] [PubMed]
  11. I. Freitag and H. Welling, “Investigation on amplitude and frequency noise of injection-locked diode-pumped Nd:YAG lasers,” Appl. Phys. B 58, 537 (1994).
    [CrossRef]
  12. M. S. Taubman, H. Wiseman, D. E. McClelland, and H. A. Bachor, “Intensity feedback effects on quantum-limited noise,” J. Opt. Soc. Am. B 12, 1792 (1995).
    [CrossRef]
  13. Y. Yamamoto, S. Machida, and O. Nilsson, “Amplitude squeezing in a pump-noise suppressed laser oscillator,” Phys. Rev. A 34, 4025 (1986).
    [CrossRef] [PubMed]
  14. C. W. Gardiner and M. J. Collet, “Input and output in a damped quantum system: quantum stochastic differential equations and the master equation,” Phys. Rev. A 31, 3761 (1985).
    [CrossRef] [PubMed]
  15. B. Yurke, “Use of cavities in squeezed-state generation,” Phys. Rev. A 29, 408 (1984).
    [CrossRef]
  16. S. Reynaud, C. Fabre, E. Giacobino, and A. Heidmann, “Photon noise reduction by passive optical bistability,” Phys. Rev. A 40, 1440 (1989).
    [CrossRef] [PubMed]
  17. A. Yariv, Quantum Electronics (Wiley, New York, 1989).
  18. Y. Yamamoto and S. Machida, “High-impendance suppression of pump fluctuation and amplitude squeezing in semiconductor lasers,” Phys. Rev. A 35, 5114 (1987).
    [CrossRef] [PubMed]
  19. J. Martin-Regalado, M. S. Miguel, N. B. Abraham, and F. Prati, “Polarization switching in quantum-well vertical-cavity surface-emitting lasers,” Opt. Lett. 21, 351 (1996).
    [CrossRef]
  20. I. Freitag and A. Tünnermann, “946-nm, 1064-nm, and 1319-nm operation of miniature Nd:YAG lasers with high single-frequency output power,” in Conference on Lasers and Electro-Optics, Vol. 9 of 1996 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1996), paper CWN6.
  21. A. C. Nilsson, E. K. Gustafson, and R. L. Byer, “Eigenpolarization theory of a monolithic nonplanar ring oscillator,” IEEE J. Quantum Electron. 25, 767 (1989).
    [CrossRef]
  22. W. Koechner, Solid-State Laser Engineering (Springer-Verlag, Berlin, 1996).
  23. H. Nagai, M. Kume, I. Otha, H. Shimizu, and M. Kazumura, “Noise generation in laser diode-pumped solid-state lasers due to mode hopping of pumping laser diodes,” in Conference on Lasers and Electro-Optics, Vol. 12 of 1992 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1992), paper CWG 32.
  24. F. Marin, A. Bramati, E. Giacobino, T.-C. Zhang, J.-P. Poizat, J.-F. Roch, and P. Grangier, “Properties and applications of high power diode laser oscillator-amplifier systems,” Phys. Rev. Lett. 75, 4606 (1995).
    [CrossRef] [PubMed]

1996 (3)

C. C. Harb, T. C. Ralph, E. H. Huntington, I. Freitag, D. E. McClelland, and H.-A. Bachor, “Intensity noise properties of injection locked lasers,” Phys. Rev. A 54, 4370 (1996).
[CrossRef] [PubMed]

T. C. Ralph, C. C. Harb, and H.-A. Bachor, “Intensity noise of injection locked lasers: quantum theory using a linearized input/output method,” Phys. Rev. A 54, 4359 (1996).
[CrossRef] [PubMed]

J. Martin-Regalado, M. S. Miguel, N. B. Abraham, and F. Prati, “Polarization switching in quantum-well vertical-cavity surface-emitting lasers,” Opt. Lett. 21, 351 (1996).
[CrossRef]

1995 (3)

M. S. Taubman, H. Wiseman, D. E. McClelland, and H. A. Bachor, “Intensity feedback effects on quantum-limited noise,” J. Opt. Soc. Am. B 12, 1792 (1995).
[CrossRef]

F. Marin, A. Bramati, E. Giacobino, T.-C. Zhang, J.-P. Poizat, J.-F. Roch, and P. Grangier, “Properties and applications of high power diode laser oscillator-amplifier systems,” Phys. Rev. Lett. 75, 4606 (1995).
[CrossRef] [PubMed]

I. Freitag, A. Tünnermann, and H. Welling, “Power scaling of diode-pumped monolithic Nd:YAG lasers to output powers of several watts,” Opt. Commun. 115, 511 (1995).
[CrossRef]

1994 (3)

S. Rowan, A. M. Campbell, K. Skeldon, and J. Hough, “Broadband intensity stabilization of a diode-pumped monolithic miniature Nd:YAG ring laser,” J. Mod. Opt. 41, 1263 (1994).
[CrossRef]

C. C. Harb, M. B. Gray, H.-A. Bachor, R. Schilling, P. Rottengatter, I. Freitag, and H. Welling, “Suppression of the intensity noise in a diode-pumped neodymium:YAG nonplanar ring laser,” IEEE J. Quantum Electron. 30, 2907 (1994).
[CrossRef]

I. Freitag and H. Welling, “Investigation on amplitude and frequency noise of injection-locked diode-pumped Nd:YAG lasers,” Appl. Phys. B 58, 537 (1994).
[CrossRef]

1990 (1)

T. J. Kane, “Intensity noise in a diode-pumped single frequency Nd:YAG laser and its control by electronic feedback,” IEEE Photon. Technol. Lett. 2, 244 (1990).
[CrossRef]

1989 (2)

A. C. Nilsson, E. K. Gustafson, and R. L. Byer, “Eigenpolarization theory of a monolithic nonplanar ring oscillator,” IEEE J. Quantum Electron. 25, 767 (1989).
[CrossRef]

S. Reynaud, C. Fabre, E. Giacobino, and A. Heidmann, “Photon noise reduction by passive optical bistability,” Phys. Rev. A 40, 1440 (1989).
[CrossRef] [PubMed]

1987 (1)

Y. Yamamoto and S. Machida, “High-impendance suppression of pump fluctuation and amplitude squeezing in semiconductor lasers,” Phys. Rev. A 35, 5114 (1987).
[CrossRef] [PubMed]

1986 (1)

Y. Yamamoto, S. Machida, and O. Nilsson, “Amplitude squeezing in a pump-noise suppressed laser oscillator,” Phys. Rev. A 34, 4025 (1986).
[CrossRef] [PubMed]

1985 (2)

C. W. Gardiner and M. J. Collet, “Input and output in a damped quantum system: quantum stochastic differential equations and the master equation,” Phys. Rev. A 31, 3761 (1985).
[CrossRef] [PubMed]

T. J. Kane and R. L. Byer, “Monolithic, unidirectional single-mode Nd:YAG ring laser,” Opt. Lett. 10, 65 (1985).
[CrossRef] [PubMed]

1984 (1)

B. Yurke, “Use of cavities in squeezed-state generation,” Phys. Rev. A 29, 408 (1984).
[CrossRef]

Abraham, N. B.

Bachor, H. A.

Bachor, H.-A.

C. C. Harb, T. C. Ralph, E. H. Huntington, I. Freitag, D. E. McClelland, and H.-A. Bachor, “Intensity noise properties of injection locked lasers,” Phys. Rev. A 54, 4370 (1996).
[CrossRef] [PubMed]

T. C. Ralph, C. C. Harb, and H.-A. Bachor, “Intensity noise of injection locked lasers: quantum theory using a linearized input/output method,” Phys. Rev. A 54, 4359 (1996).
[CrossRef] [PubMed]

C. C. Harb, M. B. Gray, H.-A. Bachor, R. Schilling, P. Rottengatter, I. Freitag, and H. Welling, “Suppression of the intensity noise in a diode-pumped neodymium:YAG nonplanar ring laser,” IEEE J. Quantum Electron. 30, 2907 (1994).
[CrossRef]

I. Freitag, A. Tünnermann, H. Welling, C. C. Harb, D. E. McClelland, H.-A. Bachor, and T. C. Ralph, “Experimental and theoretical investigation on the intensity noise properties of injection locked lasers,” in Advanced Solid-State Lasers, S. A. Payne and C. R. Pollock, eds., Vol. 1 of Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C.1996), p. 401.

Bramati, A.

F. Marin, A. Bramati, E. Giacobino, T.-C. Zhang, J.-P. Poizat, J.-F. Roch, and P. Grangier, “Properties and applications of high power diode laser oscillator-amplifier systems,” Phys. Rev. Lett. 75, 4606 (1995).
[CrossRef] [PubMed]

Byer, R. L.

A. C. Nilsson, E. K. Gustafson, and R. L. Byer, “Eigenpolarization theory of a monolithic nonplanar ring oscillator,” IEEE J. Quantum Electron. 25, 767 (1989).
[CrossRef]

T. J. Kane and R. L. Byer, “Monolithic, unidirectional single-mode Nd:YAG ring laser,” Opt. Lett. 10, 65 (1985).
[CrossRef] [PubMed]

Campbell, A. M.

S. Rowan, A. M. Campbell, K. Skeldon, and J. Hough, “Broadband intensity stabilization of a diode-pumped monolithic miniature Nd:YAG ring laser,” J. Mod. Opt. 41, 1263 (1994).
[CrossRef]

Collet, M. J.

C. W. Gardiner and M. J. Collet, “Input and output in a damped quantum system: quantum stochastic differential equations and the master equation,” Phys. Rev. A 31, 3761 (1985).
[CrossRef] [PubMed]

Fabre, C.

S. Reynaud, C. Fabre, E. Giacobino, and A. Heidmann, “Photon noise reduction by passive optical bistability,” Phys. Rev. A 40, 1440 (1989).
[CrossRef] [PubMed]

Freitag, I.

C. C. Harb, T. C. Ralph, E. H. Huntington, I. Freitag, D. E. McClelland, and H.-A. Bachor, “Intensity noise properties of injection locked lasers,” Phys. Rev. A 54, 4370 (1996).
[CrossRef] [PubMed]

I. Freitag, A. Tünnermann, and H. Welling, “Power scaling of diode-pumped monolithic Nd:YAG lasers to output powers of several watts,” Opt. Commun. 115, 511 (1995).
[CrossRef]

C. C. Harb, M. B. Gray, H.-A. Bachor, R. Schilling, P. Rottengatter, I. Freitag, and H. Welling, “Suppression of the intensity noise in a diode-pumped neodymium:YAG nonplanar ring laser,” IEEE J. Quantum Electron. 30, 2907 (1994).
[CrossRef]

I. Freitag and H. Welling, “Investigation on amplitude and frequency noise of injection-locked diode-pumped Nd:YAG lasers,” Appl. Phys. B 58, 537 (1994).
[CrossRef]

I. Freitag, A. Tünnermann, H. Welling, C. C. Harb, D. E. McClelland, H.-A. Bachor, and T. C. Ralph, “Experimental and theoretical investigation on the intensity noise properties of injection locked lasers,” in Advanced Solid-State Lasers, S. A. Payne and C. R. Pollock, eds., Vol. 1 of Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C.1996), p. 401.

I. Freitag and A. Tünnermann, “946-nm, 1064-nm, and 1319-nm operation of miniature Nd:YAG lasers with high single-frequency output power,” in Conference on Lasers and Electro-Optics, Vol. 9 of 1996 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1996), paper CWN6.

Gardiner, C. W.

C. W. Gardiner and M. J. Collet, “Input and output in a damped quantum system: quantum stochastic differential equations and the master equation,” Phys. Rev. A 31, 3761 (1985).
[CrossRef] [PubMed]

Giacobino, E.

F. Marin, A. Bramati, E. Giacobino, T.-C. Zhang, J.-P. Poizat, J.-F. Roch, and P. Grangier, “Properties and applications of high power diode laser oscillator-amplifier systems,” Phys. Rev. Lett. 75, 4606 (1995).
[CrossRef] [PubMed]

S. Reynaud, C. Fabre, E. Giacobino, and A. Heidmann, “Photon noise reduction by passive optical bistability,” Phys. Rev. A 40, 1440 (1989).
[CrossRef] [PubMed]

Grangier, P.

F. Marin, A. Bramati, E. Giacobino, T.-C. Zhang, J.-P. Poizat, J.-F. Roch, and P. Grangier, “Properties and applications of high power diode laser oscillator-amplifier systems,” Phys. Rev. Lett. 75, 4606 (1995).
[CrossRef] [PubMed]

Gray, M. B.

C. C. Harb, M. B. Gray, H.-A. Bachor, R. Schilling, P. Rottengatter, I. Freitag, and H. Welling, “Suppression of the intensity noise in a diode-pumped neodymium:YAG nonplanar ring laser,” IEEE J. Quantum Electron. 30, 2907 (1994).
[CrossRef]

Gustafson, E. K.

A. C. Nilsson, E. K. Gustafson, and R. L. Byer, “Eigenpolarization theory of a monolithic nonplanar ring oscillator,” IEEE J. Quantum Electron. 25, 767 (1989).
[CrossRef]

Haken, H.

H. Haken, “Laser theory,” in Encyclopedia of Physics, S. Flugge, ed. (Springer-Verlag, Berlin, 1970), Sec. 2c.

Harb, C. C.

T. C. Ralph, C. C. Harb, and H.-A. Bachor, “Intensity noise of injection locked lasers: quantum theory using a linearized input/output method,” Phys. Rev. A 54, 4359 (1996).
[CrossRef] [PubMed]

C. C. Harb, T. C. Ralph, E. H. Huntington, I. Freitag, D. E. McClelland, and H.-A. Bachor, “Intensity noise properties of injection locked lasers,” Phys. Rev. A 54, 4370 (1996).
[CrossRef] [PubMed]

C. C. Harb, M. B. Gray, H.-A. Bachor, R. Schilling, P. Rottengatter, I. Freitag, and H. Welling, “Suppression of the intensity noise in a diode-pumped neodymium:YAG nonplanar ring laser,” IEEE J. Quantum Electron. 30, 2907 (1994).
[CrossRef]

I. Freitag, A. Tünnermann, H. Welling, C. C. Harb, D. E. McClelland, H.-A. Bachor, and T. C. Ralph, “Experimental and theoretical investigation on the intensity noise properties of injection locked lasers,” in Advanced Solid-State Lasers, S. A. Payne and C. R. Pollock, eds., Vol. 1 of Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C.1996), p. 401.

Heidmann, A.

S. Reynaud, C. Fabre, E. Giacobino, and A. Heidmann, “Photon noise reduction by passive optical bistability,” Phys. Rev. A 40, 1440 (1989).
[CrossRef] [PubMed]

Hough, J.

S. Rowan, A. M. Campbell, K. Skeldon, and J. Hough, “Broadband intensity stabilization of a diode-pumped monolithic miniature Nd:YAG ring laser,” J. Mod. Opt. 41, 1263 (1994).
[CrossRef]

Huntington, E. H.

C. C. Harb, T. C. Ralph, E. H. Huntington, I. Freitag, D. E. McClelland, and H.-A. Bachor, “Intensity noise properties of injection locked lasers,” Phys. Rev. A 54, 4370 (1996).
[CrossRef] [PubMed]

Kane, T. J.

T. J. Kane, “Intensity noise in a diode-pumped single frequency Nd:YAG laser and its control by electronic feedback,” IEEE Photon. Technol. Lett. 2, 244 (1990).
[CrossRef]

T. J. Kane and R. L. Byer, “Monolithic, unidirectional single-mode Nd:YAG ring laser,” Opt. Lett. 10, 65 (1985).
[CrossRef] [PubMed]

Kazumura, M.

H. Nagai, M. Kume, I. Otha, H. Shimizu, and M. Kazumura, “Noise generation in laser diode-pumped solid-state lasers due to mode hopping of pumping laser diodes,” in Conference on Lasers and Electro-Optics, Vol. 12 of 1992 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1992), paper CWG 32.

Koechner, W.

W. Koechner, Solid-State Laser Engineering (Springer-Verlag, Berlin, 1996).

Kume, M.

H. Nagai, M. Kume, I. Otha, H. Shimizu, and M. Kazumura, “Noise generation in laser diode-pumped solid-state lasers due to mode hopping of pumping laser diodes,” in Conference on Lasers and Electro-Optics, Vol. 12 of 1992 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1992), paper CWG 32.

Louisell, W. H.

W. H. Louisell, Quantum Statistical Properties of Radiation (Wiley-International, New York, 1973).

Machida, S.

Y. Yamamoto and S. Machida, “High-impendance suppression of pump fluctuation and amplitude squeezing in semiconductor lasers,” Phys. Rev. A 35, 5114 (1987).
[CrossRef] [PubMed]

Y. Yamamoto, S. Machida, and O. Nilsson, “Amplitude squeezing in a pump-noise suppressed laser oscillator,” Phys. Rev. A 34, 4025 (1986).
[CrossRef] [PubMed]

Marin, F.

F. Marin, A. Bramati, E. Giacobino, T.-C. Zhang, J.-P. Poizat, J.-F. Roch, and P. Grangier, “Properties and applications of high power diode laser oscillator-amplifier systems,” Phys. Rev. Lett. 75, 4606 (1995).
[CrossRef] [PubMed]

Martin-Regalado, J.

McClelland, D. E.

C. C. Harb, T. C. Ralph, E. H. Huntington, I. Freitag, D. E. McClelland, and H.-A. Bachor, “Intensity noise properties of injection locked lasers,” Phys. Rev. A 54, 4370 (1996).
[CrossRef] [PubMed]

M. S. Taubman, H. Wiseman, D. E. McClelland, and H. A. Bachor, “Intensity feedback effects on quantum-limited noise,” J. Opt. Soc. Am. B 12, 1792 (1995).
[CrossRef]

I. Freitag, A. Tünnermann, H. Welling, C. C. Harb, D. E. McClelland, H.-A. Bachor, and T. C. Ralph, “Experimental and theoretical investigation on the intensity noise properties of injection locked lasers,” in Advanced Solid-State Lasers, S. A. Payne and C. R. Pollock, eds., Vol. 1 of Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C.1996), p. 401.

Miguel, M. S.

Nagai, H.

H. Nagai, M. Kume, I. Otha, H. Shimizu, and M. Kazumura, “Noise generation in laser diode-pumped solid-state lasers due to mode hopping of pumping laser diodes,” in Conference on Lasers and Electro-Optics, Vol. 12 of 1992 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1992), paper CWG 32.

Nilsson, A. C.

A. C. Nilsson, E. K. Gustafson, and R. L. Byer, “Eigenpolarization theory of a monolithic nonplanar ring oscillator,” IEEE J. Quantum Electron. 25, 767 (1989).
[CrossRef]

Nilsson, O.

Y. Yamamoto, S. Machida, and O. Nilsson, “Amplitude squeezing in a pump-noise suppressed laser oscillator,” Phys. Rev. A 34, 4025 (1986).
[CrossRef] [PubMed]

Otha, I.

H. Nagai, M. Kume, I. Otha, H. Shimizu, and M. Kazumura, “Noise generation in laser diode-pumped solid-state lasers due to mode hopping of pumping laser diodes,” in Conference on Lasers and Electro-Optics, Vol. 12 of 1992 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1992), paper CWG 32.

Poizat, J.-P.

F. Marin, A. Bramati, E. Giacobino, T.-C. Zhang, J.-P. Poizat, J.-F. Roch, and P. Grangier, “Properties and applications of high power diode laser oscillator-amplifier systems,” Phys. Rev. Lett. 75, 4606 (1995).
[CrossRef] [PubMed]

Prati, F.

Ralph, T. C.

T. C. Ralph, C. C. Harb, and H.-A. Bachor, “Intensity noise of injection locked lasers: quantum theory using a linearized input/output method,” Phys. Rev. A 54, 4359 (1996).
[CrossRef] [PubMed]

C. C. Harb, T. C. Ralph, E. H. Huntington, I. Freitag, D. E. McClelland, and H.-A. Bachor, “Intensity noise properties of injection locked lasers,” Phys. Rev. A 54, 4370 (1996).
[CrossRef] [PubMed]

I. Freitag, A. Tünnermann, H. Welling, C. C. Harb, D. E. McClelland, H.-A. Bachor, and T. C. Ralph, “Experimental and theoretical investigation on the intensity noise properties of injection locked lasers,” in Advanced Solid-State Lasers, S. A. Payne and C. R. Pollock, eds., Vol. 1 of Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C.1996), p. 401.

Reynaud, S.

S. Reynaud, C. Fabre, E. Giacobino, and A. Heidmann, “Photon noise reduction by passive optical bistability,” Phys. Rev. A 40, 1440 (1989).
[CrossRef] [PubMed]

Roch, J.-F.

F. Marin, A. Bramati, E. Giacobino, T.-C. Zhang, J.-P. Poizat, J.-F. Roch, and P. Grangier, “Properties and applications of high power diode laser oscillator-amplifier systems,” Phys. Rev. Lett. 75, 4606 (1995).
[CrossRef] [PubMed]

Rottengatter, P.

C. C. Harb, M. B. Gray, H.-A. Bachor, R. Schilling, P. Rottengatter, I. Freitag, and H. Welling, “Suppression of the intensity noise in a diode-pumped neodymium:YAG nonplanar ring laser,” IEEE J. Quantum Electron. 30, 2907 (1994).
[CrossRef]

Rowan, S.

S. Rowan, A. M. Campbell, K. Skeldon, and J. Hough, “Broadband intensity stabilization of a diode-pumped monolithic miniature Nd:YAG ring laser,” J. Mod. Opt. 41, 1263 (1994).
[CrossRef]

Schilling, R.

C. C. Harb, M. B. Gray, H.-A. Bachor, R. Schilling, P. Rottengatter, I. Freitag, and H. Welling, “Suppression of the intensity noise in a diode-pumped neodymium:YAG nonplanar ring laser,” IEEE J. Quantum Electron. 30, 2907 (1994).
[CrossRef]

Shimizu, H.

H. Nagai, M. Kume, I. Otha, H. Shimizu, and M. Kazumura, “Noise generation in laser diode-pumped solid-state lasers due to mode hopping of pumping laser diodes,” in Conference on Lasers and Electro-Optics, Vol. 12 of 1992 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1992), paper CWG 32.

Skeldon, K.

S. Rowan, A. M. Campbell, K. Skeldon, and J. Hough, “Broadband intensity stabilization of a diode-pumped monolithic miniature Nd:YAG ring laser,” J. Mod. Opt. 41, 1263 (1994).
[CrossRef]

Taubman, M. S.

Tünnermann, A.

I. Freitag, A. Tünnermann, and H. Welling, “Power scaling of diode-pumped monolithic Nd:YAG lasers to output powers of several watts,” Opt. Commun. 115, 511 (1995).
[CrossRef]

I. Freitag, A. Tünnermann, H. Welling, C. C. Harb, D. E. McClelland, H.-A. Bachor, and T. C. Ralph, “Experimental and theoretical investigation on the intensity noise properties of injection locked lasers,” in Advanced Solid-State Lasers, S. A. Payne and C. R. Pollock, eds., Vol. 1 of Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C.1996), p. 401.

I. Freitag and A. Tünnermann, “946-nm, 1064-nm, and 1319-nm operation of miniature Nd:YAG lasers with high single-frequency output power,” in Conference on Lasers and Electro-Optics, Vol. 9 of 1996 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1996), paper CWN6.

Welling, H.

I. Freitag, A. Tünnermann, and H. Welling, “Power scaling of diode-pumped monolithic Nd:YAG lasers to output powers of several watts,” Opt. Commun. 115, 511 (1995).
[CrossRef]

C. C. Harb, M. B. Gray, H.-A. Bachor, R. Schilling, P. Rottengatter, I. Freitag, and H. Welling, “Suppression of the intensity noise in a diode-pumped neodymium:YAG nonplanar ring laser,” IEEE J. Quantum Electron. 30, 2907 (1994).
[CrossRef]

I. Freitag and H. Welling, “Investigation on amplitude and frequency noise of injection-locked diode-pumped Nd:YAG lasers,” Appl. Phys. B 58, 537 (1994).
[CrossRef]

I. Freitag, A. Tünnermann, H. Welling, C. C. Harb, D. E. McClelland, H.-A. Bachor, and T. C. Ralph, “Experimental and theoretical investigation on the intensity noise properties of injection locked lasers,” in Advanced Solid-State Lasers, S. A. Payne and C. R. Pollock, eds., Vol. 1 of Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C.1996), p. 401.

Wiseman, H.

Yamamoto, Y.

Y. Yamamoto and S. Machida, “High-impendance suppression of pump fluctuation and amplitude squeezing in semiconductor lasers,” Phys. Rev. A 35, 5114 (1987).
[CrossRef] [PubMed]

Y. Yamamoto, S. Machida, and O. Nilsson, “Amplitude squeezing in a pump-noise suppressed laser oscillator,” Phys. Rev. A 34, 4025 (1986).
[CrossRef] [PubMed]

Yariv, A.

A. Yariv, Quantum Electronics (Wiley, New York, 1989).

Yurke, B.

B. Yurke, “Use of cavities in squeezed-state generation,” Phys. Rev. A 29, 408 (1984).
[CrossRef]

Zhang, T.-C.

F. Marin, A. Bramati, E. Giacobino, T.-C. Zhang, J.-P. Poizat, J.-F. Roch, and P. Grangier, “Properties and applications of high power diode laser oscillator-amplifier systems,” Phys. Rev. Lett. 75, 4606 (1995).
[CrossRef] [PubMed]

Appl. Phys. B (1)

I. Freitag and H. Welling, “Investigation on amplitude and frequency noise of injection-locked diode-pumped Nd:YAG lasers,” Appl. Phys. B 58, 537 (1994).
[CrossRef]

IEEE J. Quantum Electron. (2)

C. C. Harb, M. B. Gray, H.-A. Bachor, R. Schilling, P. Rottengatter, I. Freitag, and H. Welling, “Suppression of the intensity noise in a diode-pumped neodymium:YAG nonplanar ring laser,” IEEE J. Quantum Electron. 30, 2907 (1994).
[CrossRef]

A. C. Nilsson, E. K. Gustafson, and R. L. Byer, “Eigenpolarization theory of a monolithic nonplanar ring oscillator,” IEEE J. Quantum Electron. 25, 767 (1989).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

T. J. Kane, “Intensity noise in a diode-pumped single frequency Nd:YAG laser and its control by electronic feedback,” IEEE Photon. Technol. Lett. 2, 244 (1990).
[CrossRef]

J. Mod. Opt. (1)

S. Rowan, A. M. Campbell, K. Skeldon, and J. Hough, “Broadband intensity stabilization of a diode-pumped monolithic miniature Nd:YAG ring laser,” J. Mod. Opt. 41, 1263 (1994).
[CrossRef]

J. Opt. Soc. Am. B (1)

Opt. Commun. (1)

I. Freitag, A. Tünnermann, and H. Welling, “Power scaling of diode-pumped monolithic Nd:YAG lasers to output powers of several watts,” Opt. Commun. 115, 511 (1995).
[CrossRef]

Opt. Lett. (2)

Phys. Rev. A (7)

C. C. Harb, T. C. Ralph, E. H. Huntington, I. Freitag, D. E. McClelland, and H.-A. Bachor, “Intensity noise properties of injection locked lasers,” Phys. Rev. A 54, 4370 (1996).
[CrossRef] [PubMed]

Y. Yamamoto, S. Machida, and O. Nilsson, “Amplitude squeezing in a pump-noise suppressed laser oscillator,” Phys. Rev. A 34, 4025 (1986).
[CrossRef] [PubMed]

C. W. Gardiner and M. J. Collet, “Input and output in a damped quantum system: quantum stochastic differential equations and the master equation,” Phys. Rev. A 31, 3761 (1985).
[CrossRef] [PubMed]

B. Yurke, “Use of cavities in squeezed-state generation,” Phys. Rev. A 29, 408 (1984).
[CrossRef]

S. Reynaud, C. Fabre, E. Giacobino, and A. Heidmann, “Photon noise reduction by passive optical bistability,” Phys. Rev. A 40, 1440 (1989).
[CrossRef] [PubMed]

T. C. Ralph, C. C. Harb, and H.-A. Bachor, “Intensity noise of injection locked lasers: quantum theory using a linearized input/output method,” Phys. Rev. A 54, 4359 (1996).
[CrossRef] [PubMed]

Y. Yamamoto and S. Machida, “High-impendance suppression of pump fluctuation and amplitude squeezing in semiconductor lasers,” Phys. Rev. A 35, 5114 (1987).
[CrossRef] [PubMed]

Phys. Rev. Lett. (1)

F. Marin, A. Bramati, E. Giacobino, T.-C. Zhang, J.-P. Poizat, J.-F. Roch, and P. Grangier, “Properties and applications of high power diode laser oscillator-amplifier systems,” Phys. Rev. Lett. 75, 4606 (1995).
[CrossRef] [PubMed]

Other (7)

W. Koechner, Solid-State Laser Engineering (Springer-Verlag, Berlin, 1996).

H. Nagai, M. Kume, I. Otha, H. Shimizu, and M. Kazumura, “Noise generation in laser diode-pumped solid-state lasers due to mode hopping of pumping laser diodes,” in Conference on Lasers and Electro-Optics, Vol. 12 of 1992 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1992), paper CWG 32.

W. H. Louisell, Quantum Statistical Properties of Radiation (Wiley-International, New York, 1973).

H. Haken, “Laser theory,” in Encyclopedia of Physics, S. Flugge, ed. (Springer-Verlag, Berlin, 1970), Sec. 2c.

I. Freitag, A. Tünnermann, H. Welling, C. C. Harb, D. E. McClelland, H.-A. Bachor, and T. C. Ralph, “Experimental and theoretical investigation on the intensity noise properties of injection locked lasers,” in Advanced Solid-State Lasers, S. A. Payne and C. R. Pollock, eds., Vol. 1 of Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C.1996), p. 401.

A. Yariv, Quantum Electronics (Wiley, New York, 1989).

I. Freitag and A. Tünnermann, “946-nm, 1064-nm, and 1319-nm operation of miniature Nd:YAG lasers with high single-frequency output power,” in Conference on Lasers and Electro-Optics, Vol. 9 of 1996 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1996), paper CWN6.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1
Fig. 1

Laser model that describes the free-running laser system: Γ, pump rate; γt, γ, spontaneous-emission rates; G, stimulated-emission coefficient; Vf, field emitted from the laser; Vvac, noise from vacuum fluctuations entering the laser's output coupler; Vdipole, noise from dipole fluctuations; Vspont, noise from spontaneous emission; Vlosses, noise from intracavity losses; Vp, noise entering the laser from its pump source.

Fig. 2
Fig. 2

Frequency dependence of the various noise sources within the laser. (a) Noise of the laser with all contributions added, (b) contribution from Vvac, (c) contribution from Vp, (d) contribution from Vspont, (e) contribution from Vdipole, (f) contribution from Vlosses.

Fig. 3
Fig. 3

Semi-classical versus quantum predictions: the two predictions (a) when the pump noise is 53 dB above the QNL and (b) when the pump noise is at the QNL.

Fig. 4
Fig. 4

Balanced detection experimental setup. This basic scheme was used for all the intensity-noise measurements. T1–T3, knife-edges used to obscure the laser beam. The optical attenuators have a negligible effect on the polarization or the spatial properties of the laser field. BS, beam splitter; PBS, polarizing beam splitter; λ/2 Plates, half-wave rotators. Optical isolators are also used to prevent reflections back to the lasers but are not shown here.

Fig. 5
Fig. 5

Variation in the spatial profile of the DLA with distance from the focal point. Left, spatial distribution at the focal plane; right, spatial distribution at the far field.

Fig. 6
Fig. 6

(a) Intensity noise spectrum of the SEDL. Shown is the added photodetector signal as measured by the spectrum analyzer. The spectrum analyzer noise floor at frequencies below 40 kHz was larger than the SEDL noise; hence only an upper limit of this noise was possible. (b) Intensity noise spectrum for the DLA. Shown are the added and the subtracted photodetected signals as measured by the spectrum analyzer. Both levels are higher than the QNL.

Fig. 7
Fig. 7

Noise levels of the DLA as determined by the balanced detection experiments when various amounts of spatial modes are detected. The seven different measurements correspond to increased attenuation of the DLA's spatial modes and are recorded at a fixed frequency of 1 MHz.

Fig. 8
Fig. 8

Intensity noise of the Nd:YAG compared with the intensity noise of its pump sources. (a) Nd:YAG versus the DLA, (b) Nd:YAG versus the SEDL. The intensity noise of the diode-laser sources has been adjusted to account for the optical attenuation difference in the two balanced detection measurements.

Fig. 9
Fig. 9

Nd:YAG intensity noise compared with the quantum prediction for the noise profile. (i), (iii) measured noise profiles when the Nd:YAG is pumped with the DLA and the SEDL, respectively; (ii), (iv) the corresponding calculated profiles. The output power of the Nd:YAG was 10.3 mW.

Fig. 10
Fig. 10

Variation of the RRO frequency, fRRO=ωr/(2π), as a function of optical pump power and also of type of pump source. The RRO frequency from the SEDL is consistently higher for a given output power than for the DLA pump source.

Fig. 11
Fig. 11

Intensity noise of the Nd:YAG laser when the laser is pumped by either a single-frequency source or a source that is hopping between lasing frequencies. The intensity noise increases in magnitude and the RRO frequency is altered.

Fig. 12
Fig. 12

Intensity noise of the Nd:YAG laser when its DLA pump source is spatially filtered. The output power of the Nd:YAG was kept constant at 175 mW, but the DLA output power was adjusted to compensate for the spatial filtering. The pump power was reduced by 50% by the spatial filter to yield the results above.

Tables (2)

Tables Icon

Table 1 Specifications for the NPRO Laser Crystal

Tables Icon

Table 2 Parameters Used To Calculate the Noise Spectra of Fig. 9

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

Vf=1+4κm2(ω2+γl2)-8κmκGαf2γl(ωr2-ω2)2+ω2γl2Vvac+2κmG2αf2Γ(ωr2-ω2)2+ω2γl2Vp+2κmG2αf2γtJ3(ωr2-ω2)2+ω2γl2Vspont+2κmGJ3[(γt+Γ)2+ω2](ωr2-ω2)2+ω2γl2Vdipole+4κmκl(γl2+ω2)(ωr2-ω2)2+ω2γl2Vlosses,
2καf2=Γ-γtJ3
J3=2κG.
ωr=2κGαf2,
γl=Gαf2+γt+Γ.

Metrics