Abstract

We show experimentally that under certain conditions the chaotic intensity dynamics of an optically pumped NH3 bidirectional ring laser could be well described in terms of Shil'nikov homoclinic orbits and chaos. We found that the mechanism that resulted in this kind of dynamics of the laser is the competition between effects caused by the mode interaction between the forward and the backward modes of the laser and by the intrinsic single-mode dynamics of the interacting modes.

© 1997 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. F. Argoul, A. Arneodo, and P. Richetti, “Experimental evidence for homoclinic chaos in the Belousov-Zhabotinskii reaction,” Phys. Lett. A 120, 269–275 (1987).
    [CrossRef]
  2. F. T. Arecchi, R. Meucci, and W. Gadomski, “Laser dynamics with competing instabilities,” Phys. Rev. Lett. 58, 2205–2208 (1987).
    [CrossRef] [PubMed]
  3. F. T. Arecchi, W. Gadomski, A. Lapucci, H. Mancini, R. Meucci, and J. A. Roversi, “Laser with feedback: an optical implementation of compating instabilities, Shil’nikov chaos, and transient fluctuation enhancement,” J. Opt. Soc. Am. B 5, 1153–1159 (1988).
    [CrossRef]
  4. D. Hennequin, F. de. Tomasi, B. Zambon, and E. Arimondo, “Homoclinic orbits and cycles in the instabilities of a laser with a saturable absorber,” Phys. Rev. A 37, 2243–2246 (1988).
    [CrossRef] [PubMed]
  5. M. Lefranc, D. Hennequin, and D. Dangoisse, “Homoclinic chaos in a laser containing a saturable absorber,” J. Opt. Soc. Am. B 8, 239–249 (1991).
    [CrossRef]
  6. T. Braun, J. A. Lisboa, and J. A. C. Gallas, “Evidence of homoclinic chaos in the plasma of a glow discharge,” Phys. Rev. Lett. 68, 2770–2773 (1992).
    [CrossRef] [PubMed]
  7. R. Herrero, R. Pons, J. Farjas, F. Pi, and G. Orriols, “Homoclinic dynamics in experimental Shil’nikov attractors,” Phys. Rev. E 53, 5627–5636 (1996).
    [CrossRef]
  8. R. Herrero, F. Boixader, J. Farjas, F. Pi, G. Orriols, and J. F. Rosell, “Rössler chaos in opto-thermal bistable devices,” Opt. Commun. 113, 324–334 (1994).
    [CrossRef]
  9. F. Argoul, J. Huth, P. Merzeau, A. Arne’odo, and H. L. Swinney, “Experimental evidence for homoclinic chaos in an electrochemical growth process,” Physica D 62, 170–185 (1993).
    [CrossRef]
  10. M. R. Bassett and J. L. Hudson, “Shil’nikov chaos during copper electrodissolution,” J. Phys. Chem. 92, 6963–6966 (1988).
    [CrossRef]
  11. L. P. Shil’nikov, “A case of the existence of a countable number of periodic motions,” Sov. Math. Dokl. 6, 163–166 (1965).
  12. L. P. Shil’nikov, “A contribution to the problem of the structure of an extended neighbourhood of a rough equilibrium state of saddle focus type,” Math. USSR Sbornik, 10, 91–102 (1970).
  13. A. Arneodo, P. H. Coullet, E. A. Spiegel, and C. Tresser, “Asymptotic chaos,” Physica D 14, 327–347 (1985).
    [CrossRef]
  14. A. Arneodo, F. Argoul, J. Elezgaray, and P. Richetti, “Homoclinic chaos in chemical systems,” Physica D 62, 134–169 (1993).
    [CrossRef]
  15. P. Grassberger and I. Procaccia, “Characterization of strang attractors,” Phys. Rev. Lett. 50, 346–349 (1983).
    [CrossRef]
  16. C. O. Weiss and J. Brock, “Evidence for Lorenz-type chaos in a laser,” Phys. Rev. Lett. 57, 2804–2806 (1986).
    [CrossRef] [PubMed]
  17. C. O. Weiss, R. Vilaseca, N. B. Abraham, R. Corbalán, E. Roldán, G. J. de Valcárcel, J. Pujol, U. Hübner, and D. Y. Tang, “Models, predictions, and experimental measurements of far-infrared NH3-laser dynamics and comparisons with the Lorenz-Haken model,” Appl. Phys. B 61, 223–242 (1995).
    [CrossRef]
  18. D. Y. Tang, R. Dykstra, and N. R. Heckenberg, “Antiphase dynamics in an optically pumped NH3 bidirectional ring laser,” Opt. Commun. 126, 318–325 (1996).
    [CrossRef]
  19. H. Zeghlache, P. Mandel, N. B. Abraham, L. M. Hoffer, G. L. Lippi, and T. Mello, “Bidirectional ring laser: Stability analysis and time-dependent solutions,” Phys. Rev. A 37, 470–497 (1988).
    [CrossRef] [PubMed]
  20. L. M. Hoffer and N. B. Abraham, “Analysis of a coherent model for a homogeneously broadened bidirectional ring laser,” Opt. Commun. 74, 261–268 (1989).
    [CrossRef]

1996 (2)

R. Herrero, R. Pons, J. Farjas, F. Pi, and G. Orriols, “Homoclinic dynamics in experimental Shil’nikov attractors,” Phys. Rev. E 53, 5627–5636 (1996).
[CrossRef]

D. Y. Tang, R. Dykstra, and N. R. Heckenberg, “Antiphase dynamics in an optically pumped NH3 bidirectional ring laser,” Opt. Commun. 126, 318–325 (1996).
[CrossRef]

1995 (1)

C. O. Weiss, R. Vilaseca, N. B. Abraham, R. Corbalán, E. Roldán, G. J. de Valcárcel, J. Pujol, U. Hübner, and D. Y. Tang, “Models, predictions, and experimental measurements of far-infrared NH3-laser dynamics and comparisons with the Lorenz-Haken model,” Appl. Phys. B 61, 223–242 (1995).
[CrossRef]

1994 (1)

R. Herrero, F. Boixader, J. Farjas, F. Pi, G. Orriols, and J. F. Rosell, “Rössler chaos in opto-thermal bistable devices,” Opt. Commun. 113, 324–334 (1994).
[CrossRef]

1993 (2)

F. Argoul, J. Huth, P. Merzeau, A. Arne’odo, and H. L. Swinney, “Experimental evidence for homoclinic chaos in an electrochemical growth process,” Physica D 62, 170–185 (1993).
[CrossRef]

A. Arneodo, F. Argoul, J. Elezgaray, and P. Richetti, “Homoclinic chaos in chemical systems,” Physica D 62, 134–169 (1993).
[CrossRef]

1992 (1)

T. Braun, J. A. Lisboa, and J. A. C. Gallas, “Evidence of homoclinic chaos in the plasma of a glow discharge,” Phys. Rev. Lett. 68, 2770–2773 (1992).
[CrossRef] [PubMed]

1991 (1)

1989 (1)

L. M. Hoffer and N. B. Abraham, “Analysis of a coherent model for a homogeneously broadened bidirectional ring laser,” Opt. Commun. 74, 261–268 (1989).
[CrossRef]

1988 (4)

H. Zeghlache, P. Mandel, N. B. Abraham, L. M. Hoffer, G. L. Lippi, and T. Mello, “Bidirectional ring laser: Stability analysis and time-dependent solutions,” Phys. Rev. A 37, 470–497 (1988).
[CrossRef] [PubMed]

M. R. Bassett and J. L. Hudson, “Shil’nikov chaos during copper electrodissolution,” J. Phys. Chem. 92, 6963–6966 (1988).
[CrossRef]

F. T. Arecchi, W. Gadomski, A. Lapucci, H. Mancini, R. Meucci, and J. A. Roversi, “Laser with feedback: an optical implementation of compating instabilities, Shil’nikov chaos, and transient fluctuation enhancement,” J. Opt. Soc. Am. B 5, 1153–1159 (1988).
[CrossRef]

D. Hennequin, F. de. Tomasi, B. Zambon, and E. Arimondo, “Homoclinic orbits and cycles in the instabilities of a laser with a saturable absorber,” Phys. Rev. A 37, 2243–2246 (1988).
[CrossRef] [PubMed]

1987 (2)

F. Argoul, A. Arneodo, and P. Richetti, “Experimental evidence for homoclinic chaos in the Belousov-Zhabotinskii reaction,” Phys. Lett. A 120, 269–275 (1987).
[CrossRef]

F. T. Arecchi, R. Meucci, and W. Gadomski, “Laser dynamics with competing instabilities,” Phys. Rev. Lett. 58, 2205–2208 (1987).
[CrossRef] [PubMed]

1986 (1)

C. O. Weiss and J. Brock, “Evidence for Lorenz-type chaos in a laser,” Phys. Rev. Lett. 57, 2804–2806 (1986).
[CrossRef] [PubMed]

1985 (1)

A. Arneodo, P. H. Coullet, E. A. Spiegel, and C. Tresser, “Asymptotic chaos,” Physica D 14, 327–347 (1985).
[CrossRef]

1983 (1)

P. Grassberger and I. Procaccia, “Characterization of strang attractors,” Phys. Rev. Lett. 50, 346–349 (1983).
[CrossRef]

Abraham, N. B.

C. O. Weiss, R. Vilaseca, N. B. Abraham, R. Corbalán, E. Roldán, G. J. de Valcárcel, J. Pujol, U. Hübner, and D. Y. Tang, “Models, predictions, and experimental measurements of far-infrared NH3-laser dynamics and comparisons with the Lorenz-Haken model,” Appl. Phys. B 61, 223–242 (1995).
[CrossRef]

L. M. Hoffer and N. B. Abraham, “Analysis of a coherent model for a homogeneously broadened bidirectional ring laser,” Opt. Commun. 74, 261–268 (1989).
[CrossRef]

H. Zeghlache, P. Mandel, N. B. Abraham, L. M. Hoffer, G. L. Lippi, and T. Mello, “Bidirectional ring laser: Stability analysis and time-dependent solutions,” Phys. Rev. A 37, 470–497 (1988).
[CrossRef] [PubMed]

Arecchi, F. T.

Argoul, F.

A. Arneodo, F. Argoul, J. Elezgaray, and P. Richetti, “Homoclinic chaos in chemical systems,” Physica D 62, 134–169 (1993).
[CrossRef]

F. Argoul, J. Huth, P. Merzeau, A. Arne’odo, and H. L. Swinney, “Experimental evidence for homoclinic chaos in an electrochemical growth process,” Physica D 62, 170–185 (1993).
[CrossRef]

F. Argoul, A. Arneodo, and P. Richetti, “Experimental evidence for homoclinic chaos in the Belousov-Zhabotinskii reaction,” Phys. Lett. A 120, 269–275 (1987).
[CrossRef]

Arimondo, E.

D. Hennequin, F. de. Tomasi, B. Zambon, and E. Arimondo, “Homoclinic orbits and cycles in the instabilities of a laser with a saturable absorber,” Phys. Rev. A 37, 2243–2246 (1988).
[CrossRef] [PubMed]

Arne’odo, A.

F. Argoul, J. Huth, P. Merzeau, A. Arne’odo, and H. L. Swinney, “Experimental evidence for homoclinic chaos in an electrochemical growth process,” Physica D 62, 170–185 (1993).
[CrossRef]

Arneodo, A.

A. Arneodo, F. Argoul, J. Elezgaray, and P. Richetti, “Homoclinic chaos in chemical systems,” Physica D 62, 134–169 (1993).
[CrossRef]

F. Argoul, A. Arneodo, and P. Richetti, “Experimental evidence for homoclinic chaos in the Belousov-Zhabotinskii reaction,” Phys. Lett. A 120, 269–275 (1987).
[CrossRef]

A. Arneodo, P. H. Coullet, E. A. Spiegel, and C. Tresser, “Asymptotic chaos,” Physica D 14, 327–347 (1985).
[CrossRef]

Bassett, M. R.

M. R. Bassett and J. L. Hudson, “Shil’nikov chaos during copper electrodissolution,” J. Phys. Chem. 92, 6963–6966 (1988).
[CrossRef]

Boixader, F.

R. Herrero, F. Boixader, J. Farjas, F. Pi, G. Orriols, and J. F. Rosell, “Rössler chaos in opto-thermal bistable devices,” Opt. Commun. 113, 324–334 (1994).
[CrossRef]

Braun, T.

T. Braun, J. A. Lisboa, and J. A. C. Gallas, “Evidence of homoclinic chaos in the plasma of a glow discharge,” Phys. Rev. Lett. 68, 2770–2773 (1992).
[CrossRef] [PubMed]

Brock, J.

C. O. Weiss and J. Brock, “Evidence for Lorenz-type chaos in a laser,” Phys. Rev. Lett. 57, 2804–2806 (1986).
[CrossRef] [PubMed]

Corbalán, R.

C. O. Weiss, R. Vilaseca, N. B. Abraham, R. Corbalán, E. Roldán, G. J. de Valcárcel, J. Pujol, U. Hübner, and D. Y. Tang, “Models, predictions, and experimental measurements of far-infrared NH3-laser dynamics and comparisons with the Lorenz-Haken model,” Appl. Phys. B 61, 223–242 (1995).
[CrossRef]

Coullet, P. H.

A. Arneodo, P. H. Coullet, E. A. Spiegel, and C. Tresser, “Asymptotic chaos,” Physica D 14, 327–347 (1985).
[CrossRef]

Dangoisse, D.

de Valcárcel, G. J.

C. O. Weiss, R. Vilaseca, N. B. Abraham, R. Corbalán, E. Roldán, G. J. de Valcárcel, J. Pujol, U. Hübner, and D. Y. Tang, “Models, predictions, and experimental measurements of far-infrared NH3-laser dynamics and comparisons with the Lorenz-Haken model,” Appl. Phys. B 61, 223–242 (1995).
[CrossRef]

de. Tomasi, F.

D. Hennequin, F. de. Tomasi, B. Zambon, and E. Arimondo, “Homoclinic orbits and cycles in the instabilities of a laser with a saturable absorber,” Phys. Rev. A 37, 2243–2246 (1988).
[CrossRef] [PubMed]

Dykstra, R.

D. Y. Tang, R. Dykstra, and N. R. Heckenberg, “Antiphase dynamics in an optically pumped NH3 bidirectional ring laser,” Opt. Commun. 126, 318–325 (1996).
[CrossRef]

Elezgaray, J.

A. Arneodo, F. Argoul, J. Elezgaray, and P. Richetti, “Homoclinic chaos in chemical systems,” Physica D 62, 134–169 (1993).
[CrossRef]

Farjas, J.

R. Herrero, R. Pons, J. Farjas, F. Pi, and G. Orriols, “Homoclinic dynamics in experimental Shil’nikov attractors,” Phys. Rev. E 53, 5627–5636 (1996).
[CrossRef]

R. Herrero, F. Boixader, J. Farjas, F. Pi, G. Orriols, and J. F. Rosell, “Rössler chaos in opto-thermal bistable devices,” Opt. Commun. 113, 324–334 (1994).
[CrossRef]

Gadomski, W.

Gallas, J. A. C.

T. Braun, J. A. Lisboa, and J. A. C. Gallas, “Evidence of homoclinic chaos in the plasma of a glow discharge,” Phys. Rev. Lett. 68, 2770–2773 (1992).
[CrossRef] [PubMed]

Grassberger, P.

P. Grassberger and I. Procaccia, “Characterization of strang attractors,” Phys. Rev. Lett. 50, 346–349 (1983).
[CrossRef]

Heckenberg, N. R.

D. Y. Tang, R. Dykstra, and N. R. Heckenberg, “Antiphase dynamics in an optically pumped NH3 bidirectional ring laser,” Opt. Commun. 126, 318–325 (1996).
[CrossRef]

Hennequin, D.

M. Lefranc, D. Hennequin, and D. Dangoisse, “Homoclinic chaos in a laser containing a saturable absorber,” J. Opt. Soc. Am. B 8, 239–249 (1991).
[CrossRef]

D. Hennequin, F. de. Tomasi, B. Zambon, and E. Arimondo, “Homoclinic orbits and cycles in the instabilities of a laser with a saturable absorber,” Phys. Rev. A 37, 2243–2246 (1988).
[CrossRef] [PubMed]

Herrero, R.

R. Herrero, R. Pons, J. Farjas, F. Pi, and G. Orriols, “Homoclinic dynamics in experimental Shil’nikov attractors,” Phys. Rev. E 53, 5627–5636 (1996).
[CrossRef]

R. Herrero, F. Boixader, J. Farjas, F. Pi, G. Orriols, and J. F. Rosell, “Rössler chaos in opto-thermal bistable devices,” Opt. Commun. 113, 324–334 (1994).
[CrossRef]

Hoffer, L. M.

L. M. Hoffer and N. B. Abraham, “Analysis of a coherent model for a homogeneously broadened bidirectional ring laser,” Opt. Commun. 74, 261–268 (1989).
[CrossRef]

H. Zeghlache, P. Mandel, N. B. Abraham, L. M. Hoffer, G. L. Lippi, and T. Mello, “Bidirectional ring laser: Stability analysis and time-dependent solutions,” Phys. Rev. A 37, 470–497 (1988).
[CrossRef] [PubMed]

Hübner, U.

C. O. Weiss, R. Vilaseca, N. B. Abraham, R. Corbalán, E. Roldán, G. J. de Valcárcel, J. Pujol, U. Hübner, and D. Y. Tang, “Models, predictions, and experimental measurements of far-infrared NH3-laser dynamics and comparisons with the Lorenz-Haken model,” Appl. Phys. B 61, 223–242 (1995).
[CrossRef]

Hudson, J. L.

M. R. Bassett and J. L. Hudson, “Shil’nikov chaos during copper electrodissolution,” J. Phys. Chem. 92, 6963–6966 (1988).
[CrossRef]

Huth, J.

F. Argoul, J. Huth, P. Merzeau, A. Arne’odo, and H. L. Swinney, “Experimental evidence for homoclinic chaos in an electrochemical growth process,” Physica D 62, 170–185 (1993).
[CrossRef]

Lapucci, A.

Lefranc, M.

Lippi, G. L.

H. Zeghlache, P. Mandel, N. B. Abraham, L. M. Hoffer, G. L. Lippi, and T. Mello, “Bidirectional ring laser: Stability analysis and time-dependent solutions,” Phys. Rev. A 37, 470–497 (1988).
[CrossRef] [PubMed]

Lisboa, J. A.

T. Braun, J. A. Lisboa, and J. A. C. Gallas, “Evidence of homoclinic chaos in the plasma of a glow discharge,” Phys. Rev. Lett. 68, 2770–2773 (1992).
[CrossRef] [PubMed]

Mancini, H.

Mandel, P.

H. Zeghlache, P. Mandel, N. B. Abraham, L. M. Hoffer, G. L. Lippi, and T. Mello, “Bidirectional ring laser: Stability analysis and time-dependent solutions,” Phys. Rev. A 37, 470–497 (1988).
[CrossRef] [PubMed]

Mello, T.

H. Zeghlache, P. Mandel, N. B. Abraham, L. M. Hoffer, G. L. Lippi, and T. Mello, “Bidirectional ring laser: Stability analysis and time-dependent solutions,” Phys. Rev. A 37, 470–497 (1988).
[CrossRef] [PubMed]

Merzeau, P.

F. Argoul, J. Huth, P. Merzeau, A. Arne’odo, and H. L. Swinney, “Experimental evidence for homoclinic chaos in an electrochemical growth process,” Physica D 62, 170–185 (1993).
[CrossRef]

Meucci, R.

Orriols, G.

R. Herrero, R. Pons, J. Farjas, F. Pi, and G. Orriols, “Homoclinic dynamics in experimental Shil’nikov attractors,” Phys. Rev. E 53, 5627–5636 (1996).
[CrossRef]

R. Herrero, F. Boixader, J. Farjas, F. Pi, G. Orriols, and J. F. Rosell, “Rössler chaos in opto-thermal bistable devices,” Opt. Commun. 113, 324–334 (1994).
[CrossRef]

Pi, F.

R. Herrero, R. Pons, J. Farjas, F. Pi, and G. Orriols, “Homoclinic dynamics in experimental Shil’nikov attractors,” Phys. Rev. E 53, 5627–5636 (1996).
[CrossRef]

R. Herrero, F. Boixader, J. Farjas, F. Pi, G. Orriols, and J. F. Rosell, “Rössler chaos in opto-thermal bistable devices,” Opt. Commun. 113, 324–334 (1994).
[CrossRef]

Pons, R.

R. Herrero, R. Pons, J. Farjas, F. Pi, and G. Orriols, “Homoclinic dynamics in experimental Shil’nikov attractors,” Phys. Rev. E 53, 5627–5636 (1996).
[CrossRef]

Procaccia, I.

P. Grassberger and I. Procaccia, “Characterization of strang attractors,” Phys. Rev. Lett. 50, 346–349 (1983).
[CrossRef]

Pujol, J.

C. O. Weiss, R. Vilaseca, N. B. Abraham, R. Corbalán, E. Roldán, G. J. de Valcárcel, J. Pujol, U. Hübner, and D. Y. Tang, “Models, predictions, and experimental measurements of far-infrared NH3-laser dynamics and comparisons with the Lorenz-Haken model,” Appl. Phys. B 61, 223–242 (1995).
[CrossRef]

Richetti, P.

A. Arneodo, F. Argoul, J. Elezgaray, and P. Richetti, “Homoclinic chaos in chemical systems,” Physica D 62, 134–169 (1993).
[CrossRef]

F. Argoul, A. Arneodo, and P. Richetti, “Experimental evidence for homoclinic chaos in the Belousov-Zhabotinskii reaction,” Phys. Lett. A 120, 269–275 (1987).
[CrossRef]

Roldán, E.

C. O. Weiss, R. Vilaseca, N. B. Abraham, R. Corbalán, E. Roldán, G. J. de Valcárcel, J. Pujol, U. Hübner, and D. Y. Tang, “Models, predictions, and experimental measurements of far-infrared NH3-laser dynamics and comparisons with the Lorenz-Haken model,” Appl. Phys. B 61, 223–242 (1995).
[CrossRef]

Rosell, J. F.

R. Herrero, F. Boixader, J. Farjas, F. Pi, G. Orriols, and J. F. Rosell, “Rössler chaos in opto-thermal bistable devices,” Opt. Commun. 113, 324–334 (1994).
[CrossRef]

Roversi, J. A.

Spiegel, E. A.

A. Arneodo, P. H. Coullet, E. A. Spiegel, and C. Tresser, “Asymptotic chaos,” Physica D 14, 327–347 (1985).
[CrossRef]

Swinney, H. L.

F. Argoul, J. Huth, P. Merzeau, A. Arne’odo, and H. L. Swinney, “Experimental evidence for homoclinic chaos in an electrochemical growth process,” Physica D 62, 170–185 (1993).
[CrossRef]

Tang, D. Y.

D. Y. Tang, R. Dykstra, and N. R. Heckenberg, “Antiphase dynamics in an optically pumped NH3 bidirectional ring laser,” Opt. Commun. 126, 318–325 (1996).
[CrossRef]

C. O. Weiss, R. Vilaseca, N. B. Abraham, R. Corbalán, E. Roldán, G. J. de Valcárcel, J. Pujol, U. Hübner, and D. Y. Tang, “Models, predictions, and experimental measurements of far-infrared NH3-laser dynamics and comparisons with the Lorenz-Haken model,” Appl. Phys. B 61, 223–242 (1995).
[CrossRef]

Tresser, C.

A. Arneodo, P. H. Coullet, E. A. Spiegel, and C. Tresser, “Asymptotic chaos,” Physica D 14, 327–347 (1985).
[CrossRef]

Vilaseca, R.

C. O. Weiss, R. Vilaseca, N. B. Abraham, R. Corbalán, E. Roldán, G. J. de Valcárcel, J. Pujol, U. Hübner, and D. Y. Tang, “Models, predictions, and experimental measurements of far-infrared NH3-laser dynamics and comparisons with the Lorenz-Haken model,” Appl. Phys. B 61, 223–242 (1995).
[CrossRef]

Weiss, C. O.

C. O. Weiss, R. Vilaseca, N. B. Abraham, R. Corbalán, E. Roldán, G. J. de Valcárcel, J. Pujol, U. Hübner, and D. Y. Tang, “Models, predictions, and experimental measurements of far-infrared NH3-laser dynamics and comparisons with the Lorenz-Haken model,” Appl. Phys. B 61, 223–242 (1995).
[CrossRef]

C. O. Weiss and J. Brock, “Evidence for Lorenz-type chaos in a laser,” Phys. Rev. Lett. 57, 2804–2806 (1986).
[CrossRef] [PubMed]

Zambon, B.

D. Hennequin, F. de. Tomasi, B. Zambon, and E. Arimondo, “Homoclinic orbits and cycles in the instabilities of a laser with a saturable absorber,” Phys. Rev. A 37, 2243–2246 (1988).
[CrossRef] [PubMed]

Zeghlache, H.

H. Zeghlache, P. Mandel, N. B. Abraham, L. M. Hoffer, G. L. Lippi, and T. Mello, “Bidirectional ring laser: Stability analysis and time-dependent solutions,” Phys. Rev. A 37, 470–497 (1988).
[CrossRef] [PubMed]

Appl. Phys. B (1)

C. O. Weiss, R. Vilaseca, N. B. Abraham, R. Corbalán, E. Roldán, G. J. de Valcárcel, J. Pujol, U. Hübner, and D. Y. Tang, “Models, predictions, and experimental measurements of far-infrared NH3-laser dynamics and comparisons with the Lorenz-Haken model,” Appl. Phys. B 61, 223–242 (1995).
[CrossRef]

J. Opt. Soc. Am. B (2)

J. Phys. Chem. (1)

M. R. Bassett and J. L. Hudson, “Shil’nikov chaos during copper electrodissolution,” J. Phys. Chem. 92, 6963–6966 (1988).
[CrossRef]

Opt. Commun. (3)

D. Y. Tang, R. Dykstra, and N. R. Heckenberg, “Antiphase dynamics in an optically pumped NH3 bidirectional ring laser,” Opt. Commun. 126, 318–325 (1996).
[CrossRef]

R. Herrero, F. Boixader, J. Farjas, F. Pi, G. Orriols, and J. F. Rosell, “Rössler chaos in opto-thermal bistable devices,” Opt. Commun. 113, 324–334 (1994).
[CrossRef]

L. M. Hoffer and N. B. Abraham, “Analysis of a coherent model for a homogeneously broadened bidirectional ring laser,” Opt. Commun. 74, 261–268 (1989).
[CrossRef]

Phys. Lett. A (1)

F. Argoul, A. Arneodo, and P. Richetti, “Experimental evidence for homoclinic chaos in the Belousov-Zhabotinskii reaction,” Phys. Lett. A 120, 269–275 (1987).
[CrossRef]

Phys. Rev. A (2)

D. Hennequin, F. de. Tomasi, B. Zambon, and E. Arimondo, “Homoclinic orbits and cycles in the instabilities of a laser with a saturable absorber,” Phys. Rev. A 37, 2243–2246 (1988).
[CrossRef] [PubMed]

H. Zeghlache, P. Mandel, N. B. Abraham, L. M. Hoffer, G. L. Lippi, and T. Mello, “Bidirectional ring laser: Stability analysis and time-dependent solutions,” Phys. Rev. A 37, 470–497 (1988).
[CrossRef] [PubMed]

Phys. Rev. E (1)

R. Herrero, R. Pons, J. Farjas, F. Pi, and G. Orriols, “Homoclinic dynamics in experimental Shil’nikov attractors,” Phys. Rev. E 53, 5627–5636 (1996).
[CrossRef]

Phys. Rev. Lett. (4)

P. Grassberger and I. Procaccia, “Characterization of strang attractors,” Phys. Rev. Lett. 50, 346–349 (1983).
[CrossRef]

C. O. Weiss and J. Brock, “Evidence for Lorenz-type chaos in a laser,” Phys. Rev. Lett. 57, 2804–2806 (1986).
[CrossRef] [PubMed]

F. T. Arecchi, R. Meucci, and W. Gadomski, “Laser dynamics with competing instabilities,” Phys. Rev. Lett. 58, 2205–2208 (1987).
[CrossRef] [PubMed]

T. Braun, J. A. Lisboa, and J. A. C. Gallas, “Evidence of homoclinic chaos in the plasma of a glow discharge,” Phys. Rev. Lett. 68, 2770–2773 (1992).
[CrossRef] [PubMed]

Physica D (3)

F. Argoul, J. Huth, P. Merzeau, A. Arne’odo, and H. L. Swinney, “Experimental evidence for homoclinic chaos in an electrochemical growth process,” Physica D 62, 170–185 (1993).
[CrossRef]

A. Arneodo, P. H. Coullet, E. A. Spiegel, and C. Tresser, “Asymptotic chaos,” Physica D 14, 327–347 (1985).
[CrossRef]

A. Arneodo, F. Argoul, J. Elezgaray, and P. Richetti, “Homoclinic chaos in chemical systems,” Physica D 62, 134–169 (1993).
[CrossRef]

Other (2)

L. P. Shil’nikov, “A case of the existence of a countable number of periodic motions,” Sov. Math. Dokl. 6, 163–166 (1965).

L. P. Shil’nikov, “A contribution to the problem of the structure of an extended neighbourhood of a rough equilibrium state of saddle focus type,” Math. USSR Sbornik, 10, 91–102 (1970).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Schematic arrangement of the experimental setup. Gr: gold grating, M: mirror (2 m ROC), WM: wire mesh, M: flat mirror, L: polyethylene lens.

Fig. 2
Fig. 2

Periodic homoclinic dynamics of the laser. Pump intensity is 4 W/cm2, NH3 gas pressure is 8 Pa. Cavity detuning is fixed and very close to the resonance. (a) Mode intensity evolution of the laser in the state. (b) Phase portrait reconstructed from Fig. 2a with standard time-delay technique.

Fig. 3
Fig. 3

Period-doubling route to chaos associated with the destabilization of the homoclinic orbit. Pump intensity is 4.8 W/cm2, NH3 gas pressure is 8 Pa. Cavity detuning is fixed and not close to the resonance. From (a) to (c) the pump frequency detuning is slightly reduced. (a) Period-one state, (b) Period-two state, (c) Chaotic state.

Fig. 4
Fig. 4

Dynamics of a homoclinic chaos of the laser. Pump intensity is 4 W/cm2, NH3 gas pressure is 4 Pa. Cavity detuning is fixed and very close to the resonance. (a) Chaotic mode intensity evolution of the laser in the state. (b) Phase portrait reconstructed from Fig. 4a with standard time delay technique.

Fig. 5
Fig. 5

Correlation dimension calculated from the mode intensity evolution shown in Fig. 4a. The average dimension is 2.2.

Fig. 6
Fig. 6

Mode intensity evolution of a period-three homoclinic state. Pump intensity is 4 W/cm2, NH3 gas pressure is 4 Pa. Cavity detuning is fixed and close to the resonance.

Metrics