Abstract

Localized laser-induced electrostrictive distortion to liquid droplets is shown to increase the input coupling of mode-locked laser pulses to optical microcavity resonances. The increase in input coupling for a given pulse is dependent on the number of preceding laser pulses, as well as on their intensities. The electrostrictive distortion locally increases the leakage rate of light from the droplet-cavity modes. For lower input intensities, the localized distortion does not significantly degrade the quality factors of those cavity modes that spatially overlap the distortion. The increased input coupling is demonstrated by a decrease in the input intensity required to generate stimulated Raman scattering in the double-resonance condition with a train of mode-locked laser pulses. The cumulative effect of too many input pulses of too great an intensity ruins the quality factors of the resonances such that there is not sufficient feedback to support the stimulated Raman scattering.

© 1997 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. W. Barber and R. K. Chang, eds., Optical Effects Associated With Small Particles (World Scientific, Singapore, 1988).
  2. H.-M. Tzeng, K. F. Wall, M. B. Long, and R. K. Chang, “Laser emission from individual droplets at wavelengths corresponding to morphology-dependent resonances,” Opt. Lett. 9, 499 (1984).
    [CrossRef] [PubMed]
  3. H.-B. Lin, A. L. Huston, B. J. Justus, and A. J. Campillo, “Some characteristics of a droplet whispering-gallery-mode laser,” Opt. Lett. 11, 614 (1986).
    [CrossRef] [PubMed]
  4. J. B. Snow, S.-X. Qian, and R. K. Chang, “Stimulated Raman scattering from individual water and ethanol droplets at morphology-dependent resonances,” Opt. Lett. 10, 37 (1985).
    [CrossRef] [PubMed]
  5. A. Biswas, R. L. Armstrong, and R. G. Pinnick, “Stimulated Raman-scattering threshold behavior of binary mixture micrometer-sized droplets,” Opt. Lett. 15, 1191 (1990).
    [CrossRef] [PubMed]
  6. H.-B. Lin, A. L. Huston, J. D. Eversole, and A. J. Campillo, “Double-resonance stimulated Raman scattering in micrometer-sized droplets,” J. Opt. Soc. Am. B 7, 2079 (1990).
    [CrossRef]
  7. J. Z. Zhang and R. K. Chang, “Pumping of stimulated Raman scattering by stimulated Brillouin scattering within a single liquid microdroplet: input laser linewidth effects,” J. Opt. Soc. Am. B 7, 108 (1990).
    [CrossRef]
  8. P. T. Leung and K. Young, “Doubly resonant stimulated Brillouin scattering in a microdroplet,” Phys. Rev. A 44, 593 (1991).
    [CrossRef] [PubMed]
  9. A. Biswas, H. Latifi, R. L. Armstrong, and R. G. Pinnick, “Double resonance stimulated Raman scattering from optically levitated glycerol droplets,” Phys. Rev. A 40, 7413 (1989).
    [CrossRef] [PubMed]
  10. H.-B. Lin, J. D. Eversole, and A. J. Campillo, “Continuous-wave stimulated Raman scattering in microdroplets,” Opt. Lett. 17, 828 (1992).
    [CrossRef] [PubMed]
  11. G. Chen, R. K. Chang, S. C. Hill, and P. W. Barber, “Frequency splitting of degenerate spherical cavity mode: stimulated Raman scattering spectrum of deformed droplets,” Opt. Lett. 16, 1269 (1991).
    [CrossRef] [PubMed]
  12. H. M. Lai, P. T. Leung, K. Young, P. W. Barber, and S. C. Hill, “Time-independent perturbation for leaking electromagnetic modes in open systems with application to resonances in microdroplets,” Phys. Rev. A 41, 5187 (1990).
    [CrossRef] [PubMed]
  13. A. L. Huston, H.-B. Lin, J. D. Eversole, and A. J. Campillo, “Nonlinear Mie scattering: electrostrictive coupling of light to droplet acoustic modes,” Opt. Lett. 15, 1176 (1990).
    [CrossRef] [PubMed]
  14. J. L. Cheung, J. M. Hartings, and R. K. Chang, “Different temporal behavior for the forward- and backward-circulating radiation within a microdroplet,” Opt. Lett. 20, 1089 (1995).
    [CrossRef] [PubMed]
  15. C. K. Ng, “Analysis of nonlinear elastic scattering of light from a microdroplet,” Ph.D. dissertation (Chinese University of Hong Kong, Shatin, Hong Kong, 1994).
  16. A. L. Huston, H.-B. Lin, J. D. Eversole, and A. J. Campillo, “Effect of bubble formation on microdroplet quality factors,” J. Opt. Soc. Am. B 13, 521 (1996).
    [CrossRef]
  17. J.-Z. Zhang, D. H. Leach, and R. K. Chang, “Photon lifetime within a droplet: temporal determination of elastic and stimulated Raman scattering,” Opt. Lett. 13, 270 (1988).
    [CrossRef] [PubMed]
  18. J.-G. Xie, T. Ruekgauer, J. Gu, R. L. Armstrong, and R. G. Pinnick, “Observations of Descartes ring stimulated Raman scattering in micrometer-sized water droplets,” Opt. Lett. 16, 1310 (1991).
    [CrossRef] [PubMed]
  19. J.-Z. Zhang and R. K. Chang, “Shape distortion of a single water droplet by laser-induced electrostriction,” Opt. Lett. 13, 916 (1988).
    [CrossRef] [PubMed]
  20. H. M. Lai, P. T. Leung, K. L. Poon, and K. Young, “Electrostrictive distortion of a micrometer-sized droplet by a laser pulse,” J. Opt. Soc. Am. B 6, 2430 (1989).
    [CrossRef]
  21. J.-Z. Zhang and R. K. Chang, “Pumping of stimulated Raman scattering by stimulated Brillouin scattering within a single liquid microdroplet: input laser line width effects,” J. Opt. Soc. Am. B 7, 108 (1990).
    [CrossRef]
  22. A. Serpengüzel, G. Chen, R. K. Chang, and W.-F. Hsieh, “Heuristic model for the growth and coupling of nonlinear process in droplets,” J. Opt. Soc. Am. B 9, 871 (1992).
    [CrossRef]

1996 (1)

1995 (1)

1992 (2)

1991 (3)

1990 (6)

1989 (2)

H. M. Lai, P. T. Leung, K. L. Poon, and K. Young, “Electrostrictive distortion of a micrometer-sized droplet by a laser pulse,” J. Opt. Soc. Am. B 6, 2430 (1989).
[CrossRef]

A. Biswas, H. Latifi, R. L. Armstrong, and R. G. Pinnick, “Double resonance stimulated Raman scattering from optically levitated glycerol droplets,” Phys. Rev. A 40, 7413 (1989).
[CrossRef] [PubMed]

1988 (2)

1986 (1)

1985 (1)

1984 (1)

Armstrong, R. L.

Barber, P. W.

G. Chen, R. K. Chang, S. C. Hill, and P. W. Barber, “Frequency splitting of degenerate spherical cavity mode: stimulated Raman scattering spectrum of deformed droplets,” Opt. Lett. 16, 1269 (1991).
[CrossRef] [PubMed]

H. M. Lai, P. T. Leung, K. Young, P. W. Barber, and S. C. Hill, “Time-independent perturbation for leaking electromagnetic modes in open systems with application to resonances in microdroplets,” Phys. Rev. A 41, 5187 (1990).
[CrossRef] [PubMed]

Biswas, A.

A. Biswas, R. L. Armstrong, and R. G. Pinnick, “Stimulated Raman-scattering threshold behavior of binary mixture micrometer-sized droplets,” Opt. Lett. 15, 1191 (1990).
[CrossRef] [PubMed]

A. Biswas, H. Latifi, R. L. Armstrong, and R. G. Pinnick, “Double resonance stimulated Raman scattering from optically levitated glycerol droplets,” Phys. Rev. A 40, 7413 (1989).
[CrossRef] [PubMed]

Campillo, A. J.

Chang, R. K.

J. L. Cheung, J. M. Hartings, and R. K. Chang, “Different temporal behavior for the forward- and backward-circulating radiation within a microdroplet,” Opt. Lett. 20, 1089 (1995).
[CrossRef] [PubMed]

A. Serpengüzel, G. Chen, R. K. Chang, and W.-F. Hsieh, “Heuristic model for the growth and coupling of nonlinear process in droplets,” J. Opt. Soc. Am. B 9, 871 (1992).
[CrossRef]

G. Chen, R. K. Chang, S. C. Hill, and P. W. Barber, “Frequency splitting of degenerate spherical cavity mode: stimulated Raman scattering spectrum of deformed droplets,” Opt. Lett. 16, 1269 (1991).
[CrossRef] [PubMed]

J.-Z. Zhang and R. K. Chang, “Pumping of stimulated Raman scattering by stimulated Brillouin scattering within a single liquid microdroplet: input laser line width effects,” J. Opt. Soc. Am. B 7, 108 (1990).
[CrossRef]

J. Z. Zhang and R. K. Chang, “Pumping of stimulated Raman scattering by stimulated Brillouin scattering within a single liquid microdroplet: input laser linewidth effects,” J. Opt. Soc. Am. B 7, 108 (1990).
[CrossRef]

J.-Z. Zhang and R. K. Chang, “Shape distortion of a single water droplet by laser-induced electrostriction,” Opt. Lett. 13, 916 (1988).
[CrossRef] [PubMed]

J.-Z. Zhang, D. H. Leach, and R. K. Chang, “Photon lifetime within a droplet: temporal determination of elastic and stimulated Raman scattering,” Opt. Lett. 13, 270 (1988).
[CrossRef] [PubMed]

J. B. Snow, S.-X. Qian, and R. K. Chang, “Stimulated Raman scattering from individual water and ethanol droplets at morphology-dependent resonances,” Opt. Lett. 10, 37 (1985).
[CrossRef] [PubMed]

H.-M. Tzeng, K. F. Wall, M. B. Long, and R. K. Chang, “Laser emission from individual droplets at wavelengths corresponding to morphology-dependent resonances,” Opt. Lett. 9, 499 (1984).
[CrossRef] [PubMed]

Chen, G.

Cheung, J. L.

Eversole, J. D.

Gu, J.

Hartings, J. M.

Hill, S. C.

G. Chen, R. K. Chang, S. C. Hill, and P. W. Barber, “Frequency splitting of degenerate spherical cavity mode: stimulated Raman scattering spectrum of deformed droplets,” Opt. Lett. 16, 1269 (1991).
[CrossRef] [PubMed]

H. M. Lai, P. T. Leung, K. Young, P. W. Barber, and S. C. Hill, “Time-independent perturbation for leaking electromagnetic modes in open systems with application to resonances in microdroplets,” Phys. Rev. A 41, 5187 (1990).
[CrossRef] [PubMed]

Hsieh, W.-F.

Huston, A. L.

Justus, B. J.

Lai, H. M.

H. M. Lai, P. T. Leung, K. Young, P. W. Barber, and S. C. Hill, “Time-independent perturbation for leaking electromagnetic modes in open systems with application to resonances in microdroplets,” Phys. Rev. A 41, 5187 (1990).
[CrossRef] [PubMed]

H. M. Lai, P. T. Leung, K. L. Poon, and K. Young, “Electrostrictive distortion of a micrometer-sized droplet by a laser pulse,” J. Opt. Soc. Am. B 6, 2430 (1989).
[CrossRef]

Latifi, H.

A. Biswas, H. Latifi, R. L. Armstrong, and R. G. Pinnick, “Double resonance stimulated Raman scattering from optically levitated glycerol droplets,” Phys. Rev. A 40, 7413 (1989).
[CrossRef] [PubMed]

Leach, D. H.

Leung, P. T.

P. T. Leung and K. Young, “Doubly resonant stimulated Brillouin scattering in a microdroplet,” Phys. Rev. A 44, 593 (1991).
[CrossRef] [PubMed]

H. M. Lai, P. T. Leung, K. Young, P. W. Barber, and S. C. Hill, “Time-independent perturbation for leaking electromagnetic modes in open systems with application to resonances in microdroplets,” Phys. Rev. A 41, 5187 (1990).
[CrossRef] [PubMed]

H. M. Lai, P. T. Leung, K. L. Poon, and K. Young, “Electrostrictive distortion of a micrometer-sized droplet by a laser pulse,” J. Opt. Soc. Am. B 6, 2430 (1989).
[CrossRef]

Lin, H.-B.

Long, M. B.

Ng, C. K.

C. K. Ng, “Analysis of nonlinear elastic scattering of light from a microdroplet,” Ph.D. dissertation (Chinese University of Hong Kong, Shatin, Hong Kong, 1994).

Pinnick, R. G.

Poon, K. L.

Qian, S.-X.

Ruekgauer, T.

Serpengüzel, A.

Snow, J. B.

Tzeng, H.-M.

Wall, K. F.

Xie, J.-G.

Young, K.

P. T. Leung and K. Young, “Doubly resonant stimulated Brillouin scattering in a microdroplet,” Phys. Rev. A 44, 593 (1991).
[CrossRef] [PubMed]

H. M. Lai, P. T. Leung, K. Young, P. W. Barber, and S. C. Hill, “Time-independent perturbation for leaking electromagnetic modes in open systems with application to resonances in microdroplets,” Phys. Rev. A 41, 5187 (1990).
[CrossRef] [PubMed]

H. M. Lai, P. T. Leung, K. L. Poon, and K. Young, “Electrostrictive distortion of a micrometer-sized droplet by a laser pulse,” J. Opt. Soc. Am. B 6, 2430 (1989).
[CrossRef]

Zhang, J. Z.

Zhang, J.-Z.

J. Opt. Soc. Am. B (6)

Opt. Lett. (11)

J.-Z. Zhang, D. H. Leach, and R. K. Chang, “Photon lifetime within a droplet: temporal determination of elastic and stimulated Raman scattering,” Opt. Lett. 13, 270 (1988).
[CrossRef] [PubMed]

J.-G. Xie, T. Ruekgauer, J. Gu, R. L. Armstrong, and R. G. Pinnick, “Observations of Descartes ring stimulated Raman scattering in micrometer-sized water droplets,” Opt. Lett. 16, 1310 (1991).
[CrossRef] [PubMed]

J.-Z. Zhang and R. K. Chang, “Shape distortion of a single water droplet by laser-induced electrostriction,” Opt. Lett. 13, 916 (1988).
[CrossRef] [PubMed]

H.-B. Lin, J. D. Eversole, and A. J. Campillo, “Continuous-wave stimulated Raman scattering in microdroplets,” Opt. Lett. 17, 828 (1992).
[CrossRef] [PubMed]

G. Chen, R. K. Chang, S. C. Hill, and P. W. Barber, “Frequency splitting of degenerate spherical cavity mode: stimulated Raman scattering spectrum of deformed droplets,” Opt. Lett. 16, 1269 (1991).
[CrossRef] [PubMed]

A. L. Huston, H.-B. Lin, J. D. Eversole, and A. J. Campillo, “Nonlinear Mie scattering: electrostrictive coupling of light to droplet acoustic modes,” Opt. Lett. 15, 1176 (1990).
[CrossRef] [PubMed]

J. L. Cheung, J. M. Hartings, and R. K. Chang, “Different temporal behavior for the forward- and backward-circulating radiation within a microdroplet,” Opt. Lett. 20, 1089 (1995).
[CrossRef] [PubMed]

H.-M. Tzeng, K. F. Wall, M. B. Long, and R. K. Chang, “Laser emission from individual droplets at wavelengths corresponding to morphology-dependent resonances,” Opt. Lett. 9, 499 (1984).
[CrossRef] [PubMed]

H.-B. Lin, A. L. Huston, B. J. Justus, and A. J. Campillo, “Some characteristics of a droplet whispering-gallery-mode laser,” Opt. Lett. 11, 614 (1986).
[CrossRef] [PubMed]

J. B. Snow, S.-X. Qian, and R. K. Chang, “Stimulated Raman scattering from individual water and ethanol droplets at morphology-dependent resonances,” Opt. Lett. 10, 37 (1985).
[CrossRef] [PubMed]

A. Biswas, R. L. Armstrong, and R. G. Pinnick, “Stimulated Raman-scattering threshold behavior of binary mixture micrometer-sized droplets,” Opt. Lett. 15, 1191 (1990).
[CrossRef] [PubMed]

Phys. Rev. A (3)

P. T. Leung and K. Young, “Doubly resonant stimulated Brillouin scattering in a microdroplet,” Phys. Rev. A 44, 593 (1991).
[CrossRef] [PubMed]

A. Biswas, H. Latifi, R. L. Armstrong, and R. G. Pinnick, “Double resonance stimulated Raman scattering from optically levitated glycerol droplets,” Phys. Rev. A 40, 7413 (1989).
[CrossRef] [PubMed]

H. M. Lai, P. T. Leung, K. Young, P. W. Barber, and S. C. Hill, “Time-independent perturbation for leaking electromagnetic modes in open systems with application to resonances in microdroplets,” Phys. Rev. A 41, 5187 (1990).
[CrossRef] [PubMed]

Other (2)

C. K. Ng, “Analysis of nonlinear elastic scattering of light from a microdroplet,” Ph.D. dissertation (Chinese University of Hong Kong, Shatin, Hong Kong, 1994).

P. W. Barber and R. K. Chang, eds., Optical Effects Associated With Small Particles (World Scientific, Singapore, 1988).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

(a) Time profile of the single 100-ps, green (λ=532 nm) mode-locked input pulse used to illuminate ethanol droplets. (b) Time profiles of the SRS leaking from the droplet for various input intensities. The input intensities used are indicated in the upper-left corner of each oscilloscope trace, and the vertical scale is indicated in the upper-right corner. I0=30 GW/cm2.

Fig. 2
Fig. 2

(a) Time profile of the two 100-ps, green (λ=532 nm) mode-locked input pulses, separated by 13.2 ns. (b) Time profiles of the SRS leaking from the droplet for various input intensities. The input intensity per input pulse is indicated in the upper-left corner of each oscilloscope trace, and the vertical scale is indicated in the upper-right corner.

Fig. 3
Fig. 3

Same as Fig. 2 but for three pulses.

Fig. 4
Fig. 4

Same as Fig. 2 but for four pulses.

Fig. 5
Fig. 5

Schematic of the evolution of the laser-induced electro-strictive distortion to a droplet illuminated by a high-intensity mode-locked pulse. (a) Sharp bulge with a small amplitude and large curvature develops approximately 10-810-7 s after illumination. (b) In 10-6 s, the sharp bulge has evolved into a broad bulge with a larger amplitude and small curvature. (c) Broad bulge then retracts and shape oscillations occur in 10-5 s. (d) After 10-3 s, the droplet is restored to its original spherical shape when the quadrupolar shape oscillations are damped by bulk viscosity. The distortion amplitude is greatly exaggerated for purposes of illustration.

Fig. 6
Fig. 6

Schematic of a localized distortion to a droplet of radius a subtending an angle ϕ, induced by high-intensity mode-locked pulses. The perturbed leakage rate in the region of illumination is increased (Γpert), while the leakage rate along the remainder of the droplet rim remains unperturbed (Γ0). The distortion amplitude is greatly exaggerated for purposes of illustration.

Fig. 7
Fig. 7

(a) Schematic of an ethanol droplet being illuminated on side A by a focused input beam, and a CCD image of the integrated red SRS light leaking at θ=180°. (b) Same as (a) but for illumination on side B of the droplet. (c) Schematic of an ethanol droplet being illuminated on side A by a focused input beam, and a CCD image of the integrated red SRS light leaking at θ=30°. (d) Same as (a) but for illumination on side B of the droplet.

Fig. 8
Fig. 8

Same as Fig. 2 but for ten pulses.

Fig. 9
Fig. 9

(a) Time profile of the entire train of 100-ps, Q-switched, mode-locked pulses, separated by 13.2 ns, used to illuminate ethanol droplets.(b) Time profiles of the SRS leaking from the droplet for two input intensities. The intensity of the most intense pulse in the pulse train is indicated in the upper-left corner of each oscilloscope trace, and the vertical scale is indicated in the upper-right corner.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

1/QαΓ(t)MDR=2π-ϕ(t)2πΓ0+ϕ(t)2πΓ(t)pert.

Metrics