Abstract

Rubidium hydrogen selenate (RbHSeO4) was recently reported as exhibiting one of the largest electro-optic coefficients ever measured in any material. We report on the dependence of the electro-optic properties on the dc electric field. This behavior can be interpreted by the change in the birefringence that is due to the domain reversal. This particular electro-optic effect also explains the large sensitivity of the electro-optical properties to the orientation of the laser beam-propagation direction with respect to the domain walls.

© 1997 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Waskowska, S. Olejnik, K. Lukaszewiz, and T. Glowiak, “Rubidium hydrogenselenate,” Acta Crystallogr., Sect. B  34, 3344 (1978).
    [Crossref]
  2. J. P. Salvestrini, M. D. Fontana, M. Aillerie, and Z. Czapla, “New material with strong electro-optic effect: rubidium hydrogen selenate (RbHSeO4),” Appl. Phys. Lett. 64, 1920 (1994).
    [Crossref]
  3. M. Aillerie, M. D. Fontana, F. Abdi, C. Carabatos-Nedelec, and N. Theofanous, “Accurate measurement of the electrooptic coefficients: applications to LiNbO3,” J. Soc. Photo-Opt. Instrum. Eng. 94, 1018 (1988).
  4. F. Abdi, M. Aillerie, and M. D. Fontana, “Accurate measurements of the electrooptical properties of iron doped and pure BaTiO3 single crystals,” Nonlinear Opt. 16, 65 (1996).
  5. S. Suzuki, T. Osaka, and Y. Makita, “Successive phase transitions in ferroelectric RbHSeO4,” J. Phys. Soc. Jpn. 47, 1741 (1979).
    [Crossref]
  6. T. Tsukamoto, M. Komukae, S. Suzuki, H. Futama, and Y. Makita, “Domain structure and deflection of light at domain walls in RbHSeO4,” J. Phys. Soc. Jpn. 52, 3966 (1983).
    [Crossref]

1996 (1)

F. Abdi, M. Aillerie, and M. D. Fontana, “Accurate measurements of the electrooptical properties of iron doped and pure BaTiO3 single crystals,” Nonlinear Opt. 16, 65 (1996).

1994 (1)

J. P. Salvestrini, M. D. Fontana, M. Aillerie, and Z. Czapla, “New material with strong electro-optic effect: rubidium hydrogen selenate (RbHSeO4),” Appl. Phys. Lett. 64, 1920 (1994).
[Crossref]

1988 (1)

M. Aillerie, M. D. Fontana, F. Abdi, C. Carabatos-Nedelec, and N. Theofanous, “Accurate measurement of the electrooptic coefficients: applications to LiNbO3,” J. Soc. Photo-Opt. Instrum. Eng. 94, 1018 (1988).

1983 (1)

T. Tsukamoto, M. Komukae, S. Suzuki, H. Futama, and Y. Makita, “Domain structure and deflection of light at domain walls in RbHSeO4,” J. Phys. Soc. Jpn. 52, 3966 (1983).
[Crossref]

1979 (1)

S. Suzuki, T. Osaka, and Y. Makita, “Successive phase transitions in ferroelectric RbHSeO4,” J. Phys. Soc. Jpn. 47, 1741 (1979).
[Crossref]

1978 (1)

A. Waskowska, S. Olejnik, K. Lukaszewiz, and T. Glowiak, “Rubidium hydrogenselenate,” Acta Crystallogr., Sect. B  34, 3344 (1978).
[Crossref]

Abdi, F.

F. Abdi, M. Aillerie, and M. D. Fontana, “Accurate measurements of the electrooptical properties of iron doped and pure BaTiO3 single crystals,” Nonlinear Opt. 16, 65 (1996).

M. Aillerie, M. D. Fontana, F. Abdi, C. Carabatos-Nedelec, and N. Theofanous, “Accurate measurement of the electrooptic coefficients: applications to LiNbO3,” J. Soc. Photo-Opt. Instrum. Eng. 94, 1018 (1988).

Aillerie, M.

F. Abdi, M. Aillerie, and M. D. Fontana, “Accurate measurements of the electrooptical properties of iron doped and pure BaTiO3 single crystals,” Nonlinear Opt. 16, 65 (1996).

J. P. Salvestrini, M. D. Fontana, M. Aillerie, and Z. Czapla, “New material with strong electro-optic effect: rubidium hydrogen selenate (RbHSeO4),” Appl. Phys. Lett. 64, 1920 (1994).
[Crossref]

M. Aillerie, M. D. Fontana, F. Abdi, C. Carabatos-Nedelec, and N. Theofanous, “Accurate measurement of the electrooptic coefficients: applications to LiNbO3,” J. Soc. Photo-Opt. Instrum. Eng. 94, 1018 (1988).

Carabatos-Nedelec, C.

M. Aillerie, M. D. Fontana, F. Abdi, C. Carabatos-Nedelec, and N. Theofanous, “Accurate measurement of the electrooptic coefficients: applications to LiNbO3,” J. Soc. Photo-Opt. Instrum. Eng. 94, 1018 (1988).

Czapla, Z.

J. P. Salvestrini, M. D. Fontana, M. Aillerie, and Z. Czapla, “New material with strong electro-optic effect: rubidium hydrogen selenate (RbHSeO4),” Appl. Phys. Lett. 64, 1920 (1994).
[Crossref]

Fontana, M. D.

F. Abdi, M. Aillerie, and M. D. Fontana, “Accurate measurements of the electrooptical properties of iron doped and pure BaTiO3 single crystals,” Nonlinear Opt. 16, 65 (1996).

J. P. Salvestrini, M. D. Fontana, M. Aillerie, and Z. Czapla, “New material with strong electro-optic effect: rubidium hydrogen selenate (RbHSeO4),” Appl. Phys. Lett. 64, 1920 (1994).
[Crossref]

M. Aillerie, M. D. Fontana, F. Abdi, C. Carabatos-Nedelec, and N. Theofanous, “Accurate measurement of the electrooptic coefficients: applications to LiNbO3,” J. Soc. Photo-Opt. Instrum. Eng. 94, 1018 (1988).

Futama, H.

T. Tsukamoto, M. Komukae, S. Suzuki, H. Futama, and Y. Makita, “Domain structure and deflection of light at domain walls in RbHSeO4,” J. Phys. Soc. Jpn. 52, 3966 (1983).
[Crossref]

Glowiak, T.

A. Waskowska, S. Olejnik, K. Lukaszewiz, and T. Glowiak, “Rubidium hydrogenselenate,” Acta Crystallogr., Sect. B  34, 3344 (1978).
[Crossref]

Komukae, M.

T. Tsukamoto, M. Komukae, S. Suzuki, H. Futama, and Y. Makita, “Domain structure and deflection of light at domain walls in RbHSeO4,” J. Phys. Soc. Jpn. 52, 3966 (1983).
[Crossref]

Lukaszewiz, K.

A. Waskowska, S. Olejnik, K. Lukaszewiz, and T. Glowiak, “Rubidium hydrogenselenate,” Acta Crystallogr., Sect. B  34, 3344 (1978).
[Crossref]

Makita, Y.

T. Tsukamoto, M. Komukae, S. Suzuki, H. Futama, and Y. Makita, “Domain structure and deflection of light at domain walls in RbHSeO4,” J. Phys. Soc. Jpn. 52, 3966 (1983).
[Crossref]

S. Suzuki, T. Osaka, and Y. Makita, “Successive phase transitions in ferroelectric RbHSeO4,” J. Phys. Soc. Jpn. 47, 1741 (1979).
[Crossref]

Olejnik, S.

A. Waskowska, S. Olejnik, K. Lukaszewiz, and T. Glowiak, “Rubidium hydrogenselenate,” Acta Crystallogr., Sect. B  34, 3344 (1978).
[Crossref]

Osaka, T.

S. Suzuki, T. Osaka, and Y. Makita, “Successive phase transitions in ferroelectric RbHSeO4,” J. Phys. Soc. Jpn. 47, 1741 (1979).
[Crossref]

Salvestrini, J. P.

J. P. Salvestrini, M. D. Fontana, M. Aillerie, and Z. Czapla, “New material with strong electro-optic effect: rubidium hydrogen selenate (RbHSeO4),” Appl. Phys. Lett. 64, 1920 (1994).
[Crossref]

Suzuki, S.

T. Tsukamoto, M. Komukae, S. Suzuki, H. Futama, and Y. Makita, “Domain structure and deflection of light at domain walls in RbHSeO4,” J. Phys. Soc. Jpn. 52, 3966 (1983).
[Crossref]

S. Suzuki, T. Osaka, and Y. Makita, “Successive phase transitions in ferroelectric RbHSeO4,” J. Phys. Soc. Jpn. 47, 1741 (1979).
[Crossref]

Theofanous, N.

M. Aillerie, M. D. Fontana, F. Abdi, C. Carabatos-Nedelec, and N. Theofanous, “Accurate measurement of the electrooptic coefficients: applications to LiNbO3,” J. Soc. Photo-Opt. Instrum. Eng. 94, 1018 (1988).

Tsukamoto, T.

T. Tsukamoto, M. Komukae, S. Suzuki, H. Futama, and Y. Makita, “Domain structure and deflection of light at domain walls in RbHSeO4,” J. Phys. Soc. Jpn. 52, 3966 (1983).
[Crossref]

Waskowska, A.

A. Waskowska, S. Olejnik, K. Lukaszewiz, and T. Glowiak, “Rubidium hydrogenselenate,” Acta Crystallogr., Sect. B  34, 3344 (1978).
[Crossref]

Acta Crystallogr. (1)

A. Waskowska, S. Olejnik, K. Lukaszewiz, and T. Glowiak, “Rubidium hydrogenselenate,” Acta Crystallogr., Sect. B  34, 3344 (1978).
[Crossref]

Appl. Phys. Lett. (1)

J. P. Salvestrini, M. D. Fontana, M. Aillerie, and Z. Czapla, “New material with strong electro-optic effect: rubidium hydrogen selenate (RbHSeO4),” Appl. Phys. Lett. 64, 1920 (1994).
[Crossref]

J. Phys. Soc. Jpn. (2)

S. Suzuki, T. Osaka, and Y. Makita, “Successive phase transitions in ferroelectric RbHSeO4,” J. Phys. Soc. Jpn. 47, 1741 (1979).
[Crossref]

T. Tsukamoto, M. Komukae, S. Suzuki, H. Futama, and Y. Makita, “Domain structure and deflection of light at domain walls in RbHSeO4,” J. Phys. Soc. Jpn. 52, 3966 (1983).
[Crossref]

J. Soc. Photo-Opt. Instrum. Eng. (1)

M. Aillerie, M. D. Fontana, F. Abdi, C. Carabatos-Nedelec, and N. Theofanous, “Accurate measurement of the electrooptic coefficients: applications to LiNbO3,” J. Soc. Photo-Opt. Instrum. Eng. 94, 1018 (1988).

Nonlinear Opt. (1)

F. Abdi, M. Aillerie, and M. D. Fontana, “Accurate measurements of the electrooptical properties of iron doped and pure BaTiO3 single crystals,” Nonlinear Opt. 16, 65 (1996).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Basic arrangement of the optical and the electronic components in the Sénarmont setup employed in this study. The axes of the polarizer and the quarter-wave plate are at 45° of the neutral lines of the crystal. The dc and the ac electric fields are applied to the crystal along the y axis. When β=β0=(Γ*/2) -(π/4)+kπ, k=0, 1, 2, , the frequency of the output signal is twice the frequency of the applied ac electric field.

Fig. 2
Fig. 2

Phase shift Γ induced in a 7.49 mm × 3.02 mm × 1.88 mm sample of RHSe by a dc voltage (filled circles represent increasing voltage; open circles represent decreasing voltage) for the 633-nm wavelength of a He–Ne laser. The propagation of the laser beam was along a direction at approximately 3° with respect to the z axis in the (y, z) plane, and the electric field was applied along the ferroelectric y axis. The axes x, y, and z refer to the pseudo-orthorhombic system.

Fig. 3
Fig. 3

Comparison between the cycles displayed by (a) the birefringence,(b) the polarization, and (c) the dielectric permittivity as a function of dc voltage in a 8.61 mm × 3.1 mm × 1.95 mm RHSe sample (filled circles represent increasing voltage; open circles represent decreasing voltage). The left-hand axes correspond to the measured quantity (i.e., phase shift and capacity), whereas the right-hand axes yield the quantities Δn and , which are independent of the sample dimensions and are more convenient as physical parameters. The total recording time was approximately 3 hours (loop frequency 10-4 Hz). The laser beam (633 nm) was propagated exactly along the z axis of the crystal, and the electric field was applied along the y axis (ferroelectric axis). The plot P(E)/Ps is deduced by integration from the experimental capacity cycle and is normalized to unity.

Fig. 4
Fig. 4

Comparison between the cycles displayed by (a) the birefringence, (b) the polarization, and (c) the dielectric permittivity as a function of dc voltage, in a 6.1 mm × 2.55 mm × 2 mm RHSe sample (filled circles represent increasing voltage; open circles represent decreasing voltage). The left-hand axes correspond to the measured quantity (i.e., phase shift and capacity), whereas the right-hand axes yield the quantities Δn and , which are independent of the sample dimensions and are more convenient as physical parameters. The total recording time was approximately 3 hours (loop frequency 10-4 Hz). The laser beam (633 nm) was propagated along a direction at 21° with respect to the z axis of the crystal, and the electric field was applied along the ferroelectric y axis. The plot P(E)/Ps is deduced by integration from the experimental capacity cycle and is normalized to unity.

Fig. 5
Fig. 5

Indicatrix cross sections in neighboring domains of RHSe in the (y, z) plane (the tilt angle ϕ is voluntarily exaggerated). The tilt gives rise to a difference of birefringence between opposite domains, provided that the propagation direction is not perpendicular to the domain walls.

Equations (13)

Equations on this page are rendered with MathJax. Learn more.

rb=λdπLn13ΓV
II0=12[1-sin(Γ-2β)]
E=Edc+Eac=Edc+Em sin(2πft),
Γ=Γ(0)+Γdc+Γm sin(2πft)=Γ*+Γm sin(2πft).
β=β0=Γ*2-π4+kπ,k=0, 1, 2, ,
J2f=I08Γm21-Γm212.
Γ(E)=2[β0-β0(0)]=2β0(E).
Γ=2πλLΔn,
Δn=L+LΔn++L-LΔn-,
P(E)=PsL+-L-L.
L+L=121+P(E)Ps;L-L=121-P(E)Ps.
Δn(E)=Δn0+12δΔnP(E)Ps,
Δn(E)=Δn0+AP(E)Ps+BP(E)Ps2+.

Metrics