Abstract

We describe experiments that demonstrate the detrimental effect of a prepulse on the femtosecond-pulse-driven Xe ix laser. The mechanism of this effect is discussed in terms of the results of a hydrodynamic model of the preplasma formed by the prepulse. The benefit of inserting a simple electro-optic switch that allows full transmission of the main driving pulse, but reduces the prepulse to a level at which no preplasma is formed, is demonstrated experimentally.

© 1997 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. B. Corkum and N. H. Burnett, “Multiphoton ionizationfor the production of x-ray laser plasmas,” in ShortWavelength Coherent Radiation, R. W. Falcone and J. Kirtz, eds., Vol.2 of OSA Proceedings Series (Optical Society of America, Washington, D.C., 1988), pp. 225–232.
  2. P. B. Corkum, N. H. Burnett, and F. Brunel, “Above-threshold ionization in the long-wavelength limit,” Phys. Rev. Lett. 62, 1259–1262 (1989).
    [CrossRef] [PubMed]
  3. B. E. Lemoff, C. P. J. Barty, and S. E. Harris, “Femtosecond-pulse-driven, electronexcited XUV lasers in eight-times-ionizednoble gases,” Opt. Lett. 19, 569–571 (1994).
    [CrossRef] [PubMed]
  4. B. E. Lemoff, G. Y. Yin, C. L. Gordon III, C. P. J. Barty, and S. E. Harris, “Demonstration of a 10-Hz femtosecond-pulse-driven XUV laser at 41.8nm in Xe IX,” Phys. Rev. Lett. 74, 1574–1577 (1995).
    [CrossRef] [PubMed]
  5. B. E. Lemoff, G. Y. Yin, C. L. Gordon III, C. P. J. Barty, and S. E. Harris, “Femtosecond-pulse-driven 10-Hz 41.8 nm laser in Xe IX,” J. Opt. Soc. Am. B 13, 180–184 (1996).
    [CrossRef]
  6. C. P. J. Barty, C. L. Gordon III, and B. E. Lemoff, “Multiterawatt 30-fs Ti:sapphire laser system,” Opt. Lett. 19, 1442–1444 (1994).
    [CrossRef] [PubMed]
  7. B. E. Lemoff and C. P. J. Barty, “Generation of high-peak-power 20-fs pulses from a regeneratively initiated, self-mode-locked Ti:sapphire laser,” Opt. Lett. 17, 1367–1369 (1992).
    [CrossRef]
  8. L. Spitzer, Physics of Fully Ionized Gases (Wiley, New York, 1962), Chap. 3.
  9. A. Djaoui, and S. J. Rose, “Calculation of the time-dependent excitation and ionization in a laser-producedplasma,” J. Phys. B 25, 2745–2762 (1992).
    [CrossRef]
  10. J. P. Christiansen, D. E. T. F. Ashby, and K. V. Roberts, “A one-dimensional laser fusion code,” Comput. Phys. Commun. 7, 271–287 (1974).
    [CrossRef]
  11. C. G. Durfee III and H. M. Milchberg, “Light pipe for high intensity laser pulses,” Phys. Rev. Lett. 71, 2409–2412 (1993).
    [CrossRef] [PubMed]
  12. C. S. Liu and V. K. Tripathi, “Laser guiding in axially nonuniform plasma channel,” Phys. Plasmas 1, 3100–3103 (1994).
    [CrossRef]
  13. G. J. Linford, E. R. Peressini, W. R. Sooy, and M. L. Spaeth, “Very long lasers,” Appl. Opt. 13, 379–390 (1974).
    [CrossRef] [PubMed]

1996 (1)

1995 (1)

B. E. Lemoff, G. Y. Yin, C. L. Gordon III, C. P. J. Barty, and S. E. Harris, “Demonstration of a 10-Hz femtosecond-pulse-driven XUV laser at 41.8nm in Xe IX,” Phys. Rev. Lett. 74, 1574–1577 (1995).
[CrossRef] [PubMed]

1994 (3)

1993 (1)

C. G. Durfee III and H. M. Milchberg, “Light pipe for high intensity laser pulses,” Phys. Rev. Lett. 71, 2409–2412 (1993).
[CrossRef] [PubMed]

1992 (2)

A. Djaoui, and S. J. Rose, “Calculation of the time-dependent excitation and ionization in a laser-producedplasma,” J. Phys. B 25, 2745–2762 (1992).
[CrossRef]

B. E. Lemoff and C. P. J. Barty, “Generation of high-peak-power 20-fs pulses from a regeneratively initiated, self-mode-locked Ti:sapphire laser,” Opt. Lett. 17, 1367–1369 (1992).
[CrossRef]

1989 (1)

P. B. Corkum, N. H. Burnett, and F. Brunel, “Above-threshold ionization in the long-wavelength limit,” Phys. Rev. Lett. 62, 1259–1262 (1989).
[CrossRef] [PubMed]

1974 (2)

J. P. Christiansen, D. E. T. F. Ashby, and K. V. Roberts, “A one-dimensional laser fusion code,” Comput. Phys. Commun. 7, 271–287 (1974).
[CrossRef]

G. J. Linford, E. R. Peressini, W. R. Sooy, and M. L. Spaeth, “Very long lasers,” Appl. Opt. 13, 379–390 (1974).
[CrossRef] [PubMed]

Ashby, D. E. T. F.

J. P. Christiansen, D. E. T. F. Ashby, and K. V. Roberts, “A one-dimensional laser fusion code,” Comput. Phys. Commun. 7, 271–287 (1974).
[CrossRef]

Barty, C. P. J.

Brunel, F.

P. B. Corkum, N. H. Burnett, and F. Brunel, “Above-threshold ionization in the long-wavelength limit,” Phys. Rev. Lett. 62, 1259–1262 (1989).
[CrossRef] [PubMed]

Burnett, N. H.

P. B. Corkum, N. H. Burnett, and F. Brunel, “Above-threshold ionization in the long-wavelength limit,” Phys. Rev. Lett. 62, 1259–1262 (1989).
[CrossRef] [PubMed]

Christiansen, J. P.

J. P. Christiansen, D. E. T. F. Ashby, and K. V. Roberts, “A one-dimensional laser fusion code,” Comput. Phys. Commun. 7, 271–287 (1974).
[CrossRef]

Corkum, P. B.

P. B. Corkum, N. H. Burnett, and F. Brunel, “Above-threshold ionization in the long-wavelength limit,” Phys. Rev. Lett. 62, 1259–1262 (1989).
[CrossRef] [PubMed]

Djaoui, A.

A. Djaoui, and S. J. Rose, “Calculation of the time-dependent excitation and ionization in a laser-producedplasma,” J. Phys. B 25, 2745–2762 (1992).
[CrossRef]

Durfee III, C. G.

C. G. Durfee III and H. M. Milchberg, “Light pipe for high intensity laser pulses,” Phys. Rev. Lett. 71, 2409–2412 (1993).
[CrossRef] [PubMed]

Gordon III, C. L.

Harris, S. E.

Lemoff, B. E.

Linford, G. J.

Liu, C. S.

C. S. Liu and V. K. Tripathi, “Laser guiding in axially nonuniform plasma channel,” Phys. Plasmas 1, 3100–3103 (1994).
[CrossRef]

Milchberg, H. M.

C. G. Durfee III and H. M. Milchberg, “Light pipe for high intensity laser pulses,” Phys. Rev. Lett. 71, 2409–2412 (1993).
[CrossRef] [PubMed]

Peressini, E. R.

Roberts, K. V.

J. P. Christiansen, D. E. T. F. Ashby, and K. V. Roberts, “A one-dimensional laser fusion code,” Comput. Phys. Commun. 7, 271–287 (1974).
[CrossRef]

Rose, S. J.

A. Djaoui, and S. J. Rose, “Calculation of the time-dependent excitation and ionization in a laser-producedplasma,” J. Phys. B 25, 2745–2762 (1992).
[CrossRef]

Sooy, W. R.

Spaeth, M. L.

Tripathi, V. K.

C. S. Liu and V. K. Tripathi, “Laser guiding in axially nonuniform plasma channel,” Phys. Plasmas 1, 3100–3103 (1994).
[CrossRef]

Yin, G. Y.

B. E. Lemoff, G. Y. Yin, C. L. Gordon III, C. P. J. Barty, and S. E. Harris, “Femtosecond-pulse-driven 10-Hz 41.8 nm laser in Xe IX,” J. Opt. Soc. Am. B 13, 180–184 (1996).
[CrossRef]

B. E. Lemoff, G. Y. Yin, C. L. Gordon III, C. P. J. Barty, and S. E. Harris, “Demonstration of a 10-Hz femtosecond-pulse-driven XUV laser at 41.8nm in Xe IX,” Phys. Rev. Lett. 74, 1574–1577 (1995).
[CrossRef] [PubMed]

Appl. Opt. (1)

Comput. Phys. Commun. (1)

J. P. Christiansen, D. E. T. F. Ashby, and K. V. Roberts, “A one-dimensional laser fusion code,” Comput. Phys. Commun. 7, 271–287 (1974).
[CrossRef]

J. Opt. Soc. Am. B (1)

J. Phys. B (1)

A. Djaoui, and S. J. Rose, “Calculation of the time-dependent excitation and ionization in a laser-producedplasma,” J. Phys. B 25, 2745–2762 (1992).
[CrossRef]

Opt. Lett. (3)

Phys. Plasmas (1)

C. S. Liu and V. K. Tripathi, “Laser guiding in axially nonuniform plasma channel,” Phys. Plasmas 1, 3100–3103 (1994).
[CrossRef]

Phys. Rev. Lett. (3)

C. G. Durfee III and H. M. Milchberg, “Light pipe for high intensity laser pulses,” Phys. Rev. Lett. 71, 2409–2412 (1993).
[CrossRef] [PubMed]

P. B. Corkum, N. H. Burnett, and F. Brunel, “Above-threshold ionization in the long-wavelength limit,” Phys. Rev. Lett. 62, 1259–1262 (1989).
[CrossRef] [PubMed]

B. E. Lemoff, G. Y. Yin, C. L. Gordon III, C. P. J. Barty, and S. E. Harris, “Demonstration of a 10-Hz femtosecond-pulse-driven XUV laser at 41.8nm in Xe IX,” Phys. Rev. Lett. 74, 1574–1577 (1995).
[CrossRef] [PubMed]

Other (2)

L. Spitzer, Physics of Fully Ionized Gases (Wiley, New York, 1962), Chap. 3.

P. B. Corkum and N. H. Burnett, “Multiphoton ionizationfor the production of x-ray laser plasmas,” in ShortWavelength Coherent Radiation, R. W. Falcone and J. Kirtz, eds., Vol.2 of OSA Proceedings Series (Optical Society of America, Washington, D.C., 1988), pp. 225–232.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Schematic diagram of the regenerative amplifier and Cassegrainian telescope. The polarization of the main driving pulse is indicated. The optical components within the dashed boxes are introduced into the beam path as discussed in the text. TFP's, thin-film polarizers; PC's, Pockels cells; CP's, calcite Glan polarizers; WP, half-wave plate.

Fig. 2
Fig. 2

Measured relative intensities of the three prepulses prior to the main pulse as a function of the angle of the wave plate, together with fits to Eq. (1). Inset, typical (unresolved) temporal variation of the driving Ti:sapphire laser radiation. Three prepulses, separated by 8.5 ns, are visible. The main driving pulse saturates the detector.

Fig. 3
Fig. 3

Measured Xe ix laser signal at 41.81 nm as a function of the angle of the wave plate for a pinhole separation of 5 mm and a Xe pressure of 7 Torr. Each data point is the average of 300 laser shots; the error bars are the standard deviation of the measured values.

Fig. 4
Fig. 4

Measured spectra for wave-plate angles of θ=0° and θ=±1° at a pinhole separation of 5 mm and a Xe pressure of 7 Torr. The spectra have been normalized to take into account different microchannel plate voltages for the three spectra.

Fig. 5
Fig. 5

Combined data of Figs. 2 and 3, showing the measured Xe ix signal at 41.81 nm as a function of the relative energy η-1 of the prepulse immediately prior to the main pulse. Also shown is a fit to the model described in Subsection 4.B.

Fig. 6
Fig. 6

Calculated (a) ion density relative to its initial value and (b) ion temperature at the moment of arrival of the main driving pulse for preplasmas of between one and six p electrons per Xe ion.

Fig. 7
Fig. 7

Measured spectra for a pinhole separation of 4.5 mm and a Xe pressure of 8 Torr (a) with the optical switch in place and (b) with the optical switch in place but with the polarizer CP1 removed.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

η-n=α-n+β-n sin2 2θ,

Metrics