Abstract

We recently introduced a new compact pulse stretcher [Opt. Lett. 22, 811 (1997)] that uses standard curved gratings and has several advantages over other systems. It provides positive group-delay dispersion and adequately matches the standard grating pair compressor, which makes it useful in chirped-pulse amplification systems. We analyze the conditions that the different parameters of the stretcher must satisfy to be afocal as well as the problem of chromatic aberrations.

© 1997 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. G. Fujimoto, A. M. Weiner, and E. P. Ippen, Appl. Phys. Lett. 44, 832 (1984).
    [CrossRef]
  2. D. Strickland and G. Mourou, “Compression of amplified chirped optical pulses,” Opt. Commun. 56, 219 (1985).
    [CrossRef]
  3. E. B. Treacy, “Optical pulse compression with diffraction gratings,” IEEE J. Quantum Electron. QE-5, 454 (1969).
    [CrossRef]
  4. O. E. Martínez, “3000 times grating compressor with positive group velocity dispersion:application to fiber compensation in the 1.3–1.6-μm region,” IEEE J. Quantum Electron. QE-23, 59 (1987).
    [CrossRef]
  5. O. E. Martínez, J. P. Gordon, and R. L. Fork, “Negative group velocity dispersion using refraction,” J. Opt. Soc. Am. A 1, 1003 (1984).
    [CrossRef]
  6. J. P. Zhou, C. P. Huang, M. M. Murname, and H. C. Kapteyn, “Amplification of 26-fs, 2-TW pulses near the gain-narrowing limit inTi:sapphire,” Opt. Lett. 20, 64 (1995).
    [CrossRef] [PubMed]
  7. B. E. Lemoff and C. P. J. Barty, “Quintic phase-limited, spatially uniform expansion and recompressionof ultrashort optical pulses,” Opt. Lett. 18, 1651 (1993).
    [CrossRef] [PubMed]
  8. A. Sulivan and W. E. White, “Phase control for production of high-fidelity optical pulses for chirped-pulseamplification,” Opt. Lett. 20, 192 (1995).
    [CrossRef]
  9. P. Tournois, “New diffraction grating pair with very linear dispersion for laserpulse compression,” Electron. Lett. 29, 1414 (1993).
    [CrossRef]
  10. S. Kane and J. Squier, “Prism-pair stretcher–compressor system for simultaneous second-and third-order dispersion compensation in chirped-pulse amplification,” J. Opt. Soc. Am. B 14, 661 (1997).
    [CrossRef]
  11. S. Kane and J. Squier, “Grating compensation of third order material dispersion in the normaldispersion regime: sub-100fs chirped pulse amplification using a fiber-stretcherand grating pair compressor,” IEEE J. Quantum Electron. 31, 2052 (1995).
    [CrossRef]
  12. P. Tournois, “Nonuniform optical diffraction gratings for laser pulse compression,” Opt. Commun. 106, 253 (1994).
    [CrossRef]
  13. O. E. Martínez and C. González Inchauspe, “Compact curved grating stretcher for laser pulse amplification,” Opt. Lett. 22, 811 (1997).
    [CrossRef]
  14. S. D. Brorson and H. A. Haus, “Diffraction gratings and geometrical optics,” J. Opt. Soc. Am. B 5, 247 (1988).
    [CrossRef]
  15. O. E. Martínez, “Matrix formalism for pulse compressors,” IEEE J. Quantum Electron. 24, 2530 (1988).
    [CrossRef]

1997 (2)

1995 (3)

J. P. Zhou, C. P. Huang, M. M. Murname, and H. C. Kapteyn, “Amplification of 26-fs, 2-TW pulses near the gain-narrowing limit inTi:sapphire,” Opt. Lett. 20, 64 (1995).
[CrossRef] [PubMed]

A. Sulivan and W. E. White, “Phase control for production of high-fidelity optical pulses for chirped-pulseamplification,” Opt. Lett. 20, 192 (1995).
[CrossRef]

S. Kane and J. Squier, “Grating compensation of third order material dispersion in the normaldispersion regime: sub-100fs chirped pulse amplification using a fiber-stretcherand grating pair compressor,” IEEE J. Quantum Electron. 31, 2052 (1995).
[CrossRef]

1994 (1)

P. Tournois, “Nonuniform optical diffraction gratings for laser pulse compression,” Opt. Commun. 106, 253 (1994).
[CrossRef]

1993 (2)

P. Tournois, “New diffraction grating pair with very linear dispersion for laserpulse compression,” Electron. Lett. 29, 1414 (1993).
[CrossRef]

B. E. Lemoff and C. P. J. Barty, “Quintic phase-limited, spatially uniform expansion and recompressionof ultrashort optical pulses,” Opt. Lett. 18, 1651 (1993).
[CrossRef] [PubMed]

1988 (2)

S. D. Brorson and H. A. Haus, “Diffraction gratings and geometrical optics,” J. Opt. Soc. Am. B 5, 247 (1988).
[CrossRef]

O. E. Martínez, “Matrix formalism for pulse compressors,” IEEE J. Quantum Electron. 24, 2530 (1988).
[CrossRef]

1987 (1)

O. E. Martínez, “3000 times grating compressor with positive group velocity dispersion:application to fiber compensation in the 1.3–1.6-μm region,” IEEE J. Quantum Electron. QE-23, 59 (1987).
[CrossRef]

1985 (1)

D. Strickland and G. Mourou, “Compression of amplified chirped optical pulses,” Opt. Commun. 56, 219 (1985).
[CrossRef]

1984 (2)

1969 (1)

E. B. Treacy, “Optical pulse compression with diffraction gratings,” IEEE J. Quantum Electron. QE-5, 454 (1969).
[CrossRef]

Barty, C. P. J.

Brorson, S. D.

Fork, R. L.

Fujimoto, J. G.

J. G. Fujimoto, A. M. Weiner, and E. P. Ippen, Appl. Phys. Lett. 44, 832 (1984).
[CrossRef]

González Inchauspe, C.

Gordon, J. P.

Haus, H. A.

Huang, C. P.

Ippen, E. P.

J. G. Fujimoto, A. M. Weiner, and E. P. Ippen, Appl. Phys. Lett. 44, 832 (1984).
[CrossRef]

Kane, S.

S. Kane and J. Squier, “Prism-pair stretcher–compressor system for simultaneous second-and third-order dispersion compensation in chirped-pulse amplification,” J. Opt. Soc. Am. B 14, 661 (1997).
[CrossRef]

S. Kane and J. Squier, “Grating compensation of third order material dispersion in the normaldispersion regime: sub-100fs chirped pulse amplification using a fiber-stretcherand grating pair compressor,” IEEE J. Quantum Electron. 31, 2052 (1995).
[CrossRef]

Kapteyn, H. C.

Lemoff, B. E.

Martínez, O. E.

O. E. Martínez and C. González Inchauspe, “Compact curved grating stretcher for laser pulse amplification,” Opt. Lett. 22, 811 (1997).
[CrossRef]

O. E. Martínez, “Matrix formalism for pulse compressors,” IEEE J. Quantum Electron. 24, 2530 (1988).
[CrossRef]

O. E. Martínez, “3000 times grating compressor with positive group velocity dispersion:application to fiber compensation in the 1.3–1.6-μm region,” IEEE J. Quantum Electron. QE-23, 59 (1987).
[CrossRef]

O. E. Martínez, J. P. Gordon, and R. L. Fork, “Negative group velocity dispersion using refraction,” J. Opt. Soc. Am. A 1, 1003 (1984).
[CrossRef]

Mourou, G.

D. Strickland and G. Mourou, “Compression of amplified chirped optical pulses,” Opt. Commun. 56, 219 (1985).
[CrossRef]

Murname, M. M.

Squier, J.

S. Kane and J. Squier, “Prism-pair stretcher–compressor system for simultaneous second-and third-order dispersion compensation in chirped-pulse amplification,” J. Opt. Soc. Am. B 14, 661 (1997).
[CrossRef]

S. Kane and J. Squier, “Grating compensation of third order material dispersion in the normaldispersion regime: sub-100fs chirped pulse amplification using a fiber-stretcherand grating pair compressor,” IEEE J. Quantum Electron. 31, 2052 (1995).
[CrossRef]

Strickland, D.

D. Strickland and G. Mourou, “Compression of amplified chirped optical pulses,” Opt. Commun. 56, 219 (1985).
[CrossRef]

Sulivan, A.

Tournois, P.

P. Tournois, “Nonuniform optical diffraction gratings for laser pulse compression,” Opt. Commun. 106, 253 (1994).
[CrossRef]

P. Tournois, “New diffraction grating pair with very linear dispersion for laserpulse compression,” Electron. Lett. 29, 1414 (1993).
[CrossRef]

Treacy, E. B.

E. B. Treacy, “Optical pulse compression with diffraction gratings,” IEEE J. Quantum Electron. QE-5, 454 (1969).
[CrossRef]

Weiner, A. M.

J. G. Fujimoto, A. M. Weiner, and E. P. Ippen, Appl. Phys. Lett. 44, 832 (1984).
[CrossRef]

White, W. E.

Zhou, J. P.

Appl. Phys. Lett. (1)

J. G. Fujimoto, A. M. Weiner, and E. P. Ippen, Appl. Phys. Lett. 44, 832 (1984).
[CrossRef]

Electron. Lett. (1)

P. Tournois, “New diffraction grating pair with very linear dispersion for laserpulse compression,” Electron. Lett. 29, 1414 (1993).
[CrossRef]

IEEE J. Quantum Electron. (4)

E. B. Treacy, “Optical pulse compression with diffraction gratings,” IEEE J. Quantum Electron. QE-5, 454 (1969).
[CrossRef]

O. E. Martínez, “3000 times grating compressor with positive group velocity dispersion:application to fiber compensation in the 1.3–1.6-μm region,” IEEE J. Quantum Electron. QE-23, 59 (1987).
[CrossRef]

S. Kane and J. Squier, “Grating compensation of third order material dispersion in the normaldispersion regime: sub-100fs chirped pulse amplification using a fiber-stretcherand grating pair compressor,” IEEE J. Quantum Electron. 31, 2052 (1995).
[CrossRef]

O. E. Martínez, “Matrix formalism for pulse compressors,” IEEE J. Quantum Electron. 24, 2530 (1988).
[CrossRef]

J. Opt. Soc. Am. A (1)

J. Opt. Soc. Am. B (2)

Opt. Commun. (2)

P. Tournois, “Nonuniform optical diffraction gratings for laser pulse compression,” Opt. Commun. 106, 253 (1994).
[CrossRef]

D. Strickland and G. Mourou, “Compression of amplified chirped optical pulses,” Opt. Commun. 56, 219 (1985).
[CrossRef]

Opt. Lett. (4)

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Two possible configurations of the curved grating stretcher. G2 is a concave grating of radius of curvature R2. Grating G1, with groove spacing d, is positioned tangent to the circle defined by the surface of G2. It can be a plane or a curved grating. (a) G2 and G1 have the same groove spacing d. All wavelengths cross the center of the circle R2 and are reflected back over themselves by curved mirror M3 of radius R3. (b) The groove spacing of G2 is half of the groove spacing d of G1, so all wavelengths are at Littrow incidence upon G2.

Fig. 2
Fig. 2

Curved grating stretcher (configuration 3). G1G4 are curved gratings with the same groove spacing d, placed upon a circumference of radius R2. The radii of curvature of the second and the third gratings must be the same (R2). The first and the fourth gratings have radii R1 and R3, respectively. M is a flat mirror.

Fig. 3
Fig. 3

Stars, numerical simulation of a 40-fs pulse after stretching to 150 ps and recompressing. The parameters of the stretcher and compressor are wg=1.885, R2=100 cm; wg=3.008, γ=62.13°, and Z=101.8 cm. The solid curve is the input pulse.

Fig. 4
Fig. 4

Left: Relation between the radii of curvature of the second grating (R2) and of the mirror (R3) in configuration 1, to avoid focusing of the beam: a, when the first grating is a plane grating (R1=), applicable to both the tangential and the saggital planes; and when the two gratings have the same radius of curvature (R1=R2), applicable to a, the tangential plane and c, to the saggital plane. Right: Relation between the radii of curvature of the two gratings in configuration 2 (Littrow), to achieve an afocal system: d, tangential plane; e, saggital plane.

Fig. 5
Fig. 5

Equivalent arrangement to replace curved mirror R3 in configuration 1. This permits continuous adjustment of radius of curvature R3.

Fig. 6
Fig. 6

Relation between the radii of curvature of the second and the fourth curved gratings in configuration 3, to achieve a null focusing effect: f, when the first and the fourth gratings have the same radius of curvature (R1=R3), tangential plane; g, when the first grating is a plane grating (R1=), tangential plane; h, when R1=R3, saggital plane; and i, when R1=, saggital plane.

Fig. 7
Fig. 7

Estimate of the chromatic aberration as a function of R2, corresponding to the configuration parameters shown in Fig. 4.

Fig. 8
Fig. 8

Same as in Fig. 7 for the configuration parameters shown in Fig. 6.

Equations (19)

Equations on this page are rendered with MathJax. Learn more.

Tc(w)=2L(w)/c,
L(w)=2R2 cos θ.
sin θ=λ/d=wg/w,
Tc(w)=4R2c1-wgw21/2,
wg=2πcd.
dTcdw=4R2cwwg2w211-wg2w21/2.
R3=-αR21+α,
α=cos θ.
R3t=-α2(1+α)R2,
R3s=(1+2α-2α2-2α3)-2+4α2+2α3R2.
1R3=1f1-lf.
R1t=1+1αR2,
R1s=2α(1+α)R2,
R3t=1+1αR2,
R3s=(2α2+2α-1)R2,
R3t=1+32αR2,
R3s=2α2+2α-12α-1R2,
ΔC=CλΔλ
ΔC=CααλΔλ.

Metrics