Abstract

We investigate the resonant two-photon (two-step) processes of photorefractive grating formation and identify the regimes in which nonvolatile holography is possible. We develop a charge-transport model to describe this behavior for a photorefractive crystal with a single active impurity species under continuous-wave illumination. For the cases that allow for nondestructive reconstruction of gratings, we evaluate the maximum refractive-index perturbation and the response rate with respect to illumination intensities and impurity characteristics. We evaluate the importance of the impurity intermediate-state occupancy. Holographic data storage system issues are also discussed. The present results are consistent with previously reported photorefractive behavior and predict additional properties that characterize these resonant processes. The analysis may be used further to study other related two-photon phenomena of interest in holographic storage systems.

© 1997 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. F. Heanue, M. C. Bashaw, and L. Hesselink, “Volume holographic storage and retrieval of digital data,” Science 265, 749–752 (1994).
    [CrossRef] [PubMed]
  2. L. Hesselink and M. C. Bashaw, “Optical memories implemented with photorefractive media,” Opt. Quantum Electron. 25, S611–S661 (1993).
    [CrossRef]
  3. K. Buse, L. Holtmann, and E. Krätzig, “Activation of BaTiO3for infrared holographic recording,” Opt. Commun. 85, 183–186 (1991).
    [CrossRef]
  4. F. Jermann and J. Otten, “Light-induced charge transport in LiNbO3:Fe at high light intensities,” J. Opt. Soc. Am. B 10, 2085–2092 (1993).
    [CrossRef]
  5. K. Buse, F. Jermann, and E. Krätzig, “Infrared holographic recording in LiNbO3:Cu,” Appl. Phys. A 58, 191–195 (1994).
    [CrossRef]
  6. A. Y. Liu, L. Paraschis, M. C. Bashaw, and L. Hesselink, “Prolongedreadout using two defect species in SBN,” in Conferenceon Lasers and Electro-Optics, Vol. 9 of 1996 OSA Technical Digest series(Optical Society of America, Washington, D.C., 1996), paper CWF4.
  7. A. Y. Liu, M. C. Bashaw, L. Paraschis, and L. Hesselink, “Theoryof two-species transport in photorefractive crystals using two wavelengthsfor nondestructive readout,” in Joint International Symposiumon Optical Memory and Optical Data Storage, Vol. 12 of 1996 OSA TechnicalDigest Series (Optical Society of America, Washington, D.C., 1996), paperJTuD3.
  8. D. von der Linde, A. M. Glass, and K. F. Rodgers, “High-sensitivity optical recording in KTN by two photon absorption,” Appl. Phys. Lett. 26, 22–24 (1975).
    [CrossRef]
  9. D. von der Linde and A. M. Glass, “Photorefractive effects for reversible holographic storage of information,” Appl. Phys. 8, 85–100 (1975).
    [CrossRef]
  10. D. von der Linde, A. M. Glass, and K. F. Rodgers, “Optical storage using refractive index changes induced by two-stepexcitation,” J. Appl. Phys. 47, 217–220 (1976).
    [CrossRef]
  11. H. Vormann and E. Krätzig, “Two step excitation in LiTaO3:Fe for optical data storage,” Solid State Commun. 49, 843–847 (1984).
    [CrossRef]
  12. Y. Ming, E. Krätzig, and R. Orlowski, “Photorefractive effects in LiNbO3:Cr induced by two-step excitation,” Phys. Status Solidi 92, 221–229 (1985).
    [CrossRef]
  13. K. Buse, L. Holtmann, and E. Krätzig, “Two-step photorefractive hologram recording in LiNbO3:Fe,” Ferroelectrics 141, 197–205 (1993).
    [CrossRef]
  14. R. M. MacFarlane, “Optical spectroscopy of photorefractivematerials for holographic storage applications,” presented at the 1995Annual Meeting of the Optical Society of America.
  15. J. P. Wilde, “Spectroscopic characterization of photorefractive materials for holographicstorage applications,” Fluorescence Detection IV, E. R. Menzel, ed., Proc. SPIE 2705, 82–92 (1996).
    [CrossRef]
  16. Y. S. Bai, R. R. Neurgaonkar, and R. Kachru, “Resonant two-photon photorefractive grating in praeseodymium-dopedstrontium barium niobate with cw lasers,” Opt. Lett. 21, 567–569 (1996).
    [CrossRef] [PubMed]
  17. P. W. France, ed., Optical Fiber and LaserAmplifiers (CRC, Boca Raton, Fla., 1991), Chap. 8.
  18. M. A. Noginov, A. M. Prokhorov, G. K. Smirnov, and I. A. Shcherbakov, “Cross-relaxation deactivation of the ground state of ions of rare-earthelements in crystals,” Kvantovaya Elektron. 8, 1042–1046 (1991)[ Sov. J. Quantum Electron. 21, 945–949 (1991)].
    [CrossRef]
  19. The fact that, in the most rigorous treatment, electron mobilityis a second-rank tensor rather than a scalar has no consequences for gratingsaligned along the crystal principal axes. This is the case in the presentone-dimensional analysis. The anisotropy of the mobility tensor, however, may become important for spatial multiplexing. For measurements of mobilityanisotropy see D. Mahgerefteh, D. Kilrillov, R. S. Cudney, G. D. Bacher, R. M. Pierce, and J. Feinberg, Phys. Rev. B 53, 7094–7098 (1996). Similar analysis applies for the relative permittivity of the electricfield (used in Poisson's equation).
    [CrossRef]
  20. V. L. Vinetskii and N. V. Kukhtarev, “Theory of the conductivity induced by recording holographic gratingsin nonmetalic crystals,” Sov. Phys. Solid State 16, 2414–2415 (1975).
  21. N. V. Kukhtarev, “Kinetics of hologram recording and erasure in electrooptic crystals,” Pis'ma Zh. Tekh. Fiz. 2, 1114–1116 (1976)[ Sov. Tech. Phys. Lett. 2, 438–440 (1976)].
  22. H. W. Kogelnik, “Coupled wave theory for thick hologram gratings,” Bell Syst. Tech. J. 48, 2909–2947 (1969).
    [CrossRef]
  23. G. C. Valley, “Short-pulse grating formation in photorefractive materials,” IEEE J. Quantum Electron. 19, 1637–1645 (1983).
    [CrossRef]
  24. L. Hesselink, S. Orlov, and A. Akella, “Two-color recordingin lithium niobate,” submitted to Optics Letters.
  25. M. C. Bashaw, M. Jenanathan, and L. Hesselink, “Theory of two-center transport in photorefractive media for low-intensity, continuous-wave illumination in the quasi-steady-state limit,” J. Opt. Soc. Am. B 11, 1743–1757 (1994).
    [CrossRef]
  26. W. Koechner, Solid State Laser Engineering (Springer-Verlag, New York, 1976).
  27. L. Paraschis, M. C. Bashaw, A. Y. Liu, and L. Hesselink, “Propertiesof resonant two-photon processes in photorefractive media,” in Joint International Symposium on Optical Memory and Optical DataStorage, Vol. 12 of 1996 OSA Technical Digest Series (Optical Societyof America, Washington, D.C., 1996), paper JTuD4.
  28. S. Orlov, A. Akella, L. Hesselink, and R. R. Neurgaonkar, “Highsensitivity two-color non-volatile recording in lithium niobate,” in Conference on Lasers and Electro-Optics, Vol. 11 of 1997 OSATechnical Digest Series (Optical Society of America, Washington, D.C., 1997), paper CPD29.
  29. J. W. Goodman, Introduction to Fourier Optics, 2nd ed. (McGraw-Hill, New York, 1996).

1996 (3)

J. P. Wilde, “Spectroscopic characterization of photorefractive materials for holographicstorage applications,” Fluorescence Detection IV, E. R. Menzel, ed., Proc. SPIE 2705, 82–92 (1996).
[CrossRef]

Y. S. Bai, R. R. Neurgaonkar, and R. Kachru, “Resonant two-photon photorefractive grating in praeseodymium-dopedstrontium barium niobate with cw lasers,” Opt. Lett. 21, 567–569 (1996).
[CrossRef] [PubMed]

The fact that, in the most rigorous treatment, electron mobilityis a second-rank tensor rather than a scalar has no consequences for gratingsaligned along the crystal principal axes. This is the case in the presentone-dimensional analysis. The anisotropy of the mobility tensor, however, may become important for spatial multiplexing. For measurements of mobilityanisotropy see D. Mahgerefteh, D. Kilrillov, R. S. Cudney, G. D. Bacher, R. M. Pierce, and J. Feinberg, Phys. Rev. B 53, 7094–7098 (1996). Similar analysis applies for the relative permittivity of the electricfield (used in Poisson's equation).
[CrossRef]

1994 (3)

J. F. Heanue, M. C. Bashaw, and L. Hesselink, “Volume holographic storage and retrieval of digital data,” Science 265, 749–752 (1994).
[CrossRef] [PubMed]

K. Buse, F. Jermann, and E. Krätzig, “Infrared holographic recording in LiNbO3:Cu,” Appl. Phys. A 58, 191–195 (1994).
[CrossRef]

M. C. Bashaw, M. Jenanathan, and L. Hesselink, “Theory of two-center transport in photorefractive media for low-intensity, continuous-wave illumination in the quasi-steady-state limit,” J. Opt. Soc. Am. B 11, 1743–1757 (1994).
[CrossRef]

1993 (3)

L. Hesselink and M. C. Bashaw, “Optical memories implemented with photorefractive media,” Opt. Quantum Electron. 25, S611–S661 (1993).
[CrossRef]

F. Jermann and J. Otten, “Light-induced charge transport in LiNbO3:Fe at high light intensities,” J. Opt. Soc. Am. B 10, 2085–2092 (1993).
[CrossRef]

K. Buse, L. Holtmann, and E. Krätzig, “Two-step photorefractive hologram recording in LiNbO3:Fe,” Ferroelectrics 141, 197–205 (1993).
[CrossRef]

1991 (2)

M. A. Noginov, A. M. Prokhorov, G. K. Smirnov, and I. A. Shcherbakov, “Cross-relaxation deactivation of the ground state of ions of rare-earthelements in crystals,” Kvantovaya Elektron. 8, 1042–1046 (1991)[ Sov. J. Quantum Electron. 21, 945–949 (1991)].
[CrossRef]

K. Buse, L. Holtmann, and E. Krätzig, “Activation of BaTiO3for infrared holographic recording,” Opt. Commun. 85, 183–186 (1991).
[CrossRef]

1985 (1)

Y. Ming, E. Krätzig, and R. Orlowski, “Photorefractive effects in LiNbO3:Cr induced by two-step excitation,” Phys. Status Solidi 92, 221–229 (1985).
[CrossRef]

1984 (1)

H. Vormann and E. Krätzig, “Two step excitation in LiTaO3:Fe for optical data storage,” Solid State Commun. 49, 843–847 (1984).
[CrossRef]

1983 (1)

G. C. Valley, “Short-pulse grating formation in photorefractive materials,” IEEE J. Quantum Electron. 19, 1637–1645 (1983).
[CrossRef]

1976 (2)

N. V. Kukhtarev, “Kinetics of hologram recording and erasure in electrooptic crystals,” Pis'ma Zh. Tekh. Fiz. 2, 1114–1116 (1976)[ Sov. Tech. Phys. Lett. 2, 438–440 (1976)].

D. von der Linde, A. M. Glass, and K. F. Rodgers, “Optical storage using refractive index changes induced by two-stepexcitation,” J. Appl. Phys. 47, 217–220 (1976).
[CrossRef]

1975 (3)

D. von der Linde, A. M. Glass, and K. F. Rodgers, “High-sensitivity optical recording in KTN by two photon absorption,” Appl. Phys. Lett. 26, 22–24 (1975).
[CrossRef]

D. von der Linde and A. M. Glass, “Photorefractive effects for reversible holographic storage of information,” Appl. Phys. 8, 85–100 (1975).
[CrossRef]

V. L. Vinetskii and N. V. Kukhtarev, “Theory of the conductivity induced by recording holographic gratingsin nonmetalic crystals,” Sov. Phys. Solid State 16, 2414–2415 (1975).

1969 (1)

H. W. Kogelnik, “Coupled wave theory for thick hologram gratings,” Bell Syst. Tech. J. 48, 2909–2947 (1969).
[CrossRef]

Bacher, G. D.

The fact that, in the most rigorous treatment, electron mobilityis a second-rank tensor rather than a scalar has no consequences for gratingsaligned along the crystal principal axes. This is the case in the presentone-dimensional analysis. The anisotropy of the mobility tensor, however, may become important for spatial multiplexing. For measurements of mobilityanisotropy see D. Mahgerefteh, D. Kilrillov, R. S. Cudney, G. D. Bacher, R. M. Pierce, and J. Feinberg, Phys. Rev. B 53, 7094–7098 (1996). Similar analysis applies for the relative permittivity of the electricfield (used in Poisson's equation).
[CrossRef]

Bai, Y. S.

Bashaw, M. C.

J. F. Heanue, M. C. Bashaw, and L. Hesselink, “Volume holographic storage and retrieval of digital data,” Science 265, 749–752 (1994).
[CrossRef] [PubMed]

M. C. Bashaw, M. Jenanathan, and L. Hesselink, “Theory of two-center transport in photorefractive media for low-intensity, continuous-wave illumination in the quasi-steady-state limit,” J. Opt. Soc. Am. B 11, 1743–1757 (1994).
[CrossRef]

L. Hesselink and M. C. Bashaw, “Optical memories implemented with photorefractive media,” Opt. Quantum Electron. 25, S611–S661 (1993).
[CrossRef]

Buse, K.

K. Buse, F. Jermann, and E. Krätzig, “Infrared holographic recording in LiNbO3:Cu,” Appl. Phys. A 58, 191–195 (1994).
[CrossRef]

K. Buse, L. Holtmann, and E. Krätzig, “Two-step photorefractive hologram recording in LiNbO3:Fe,” Ferroelectrics 141, 197–205 (1993).
[CrossRef]

K. Buse, L. Holtmann, and E. Krätzig, “Activation of BaTiO3for infrared holographic recording,” Opt. Commun. 85, 183–186 (1991).
[CrossRef]

Cudney, R. S.

The fact that, in the most rigorous treatment, electron mobilityis a second-rank tensor rather than a scalar has no consequences for gratingsaligned along the crystal principal axes. This is the case in the presentone-dimensional analysis. The anisotropy of the mobility tensor, however, may become important for spatial multiplexing. For measurements of mobilityanisotropy see D. Mahgerefteh, D. Kilrillov, R. S. Cudney, G. D. Bacher, R. M. Pierce, and J. Feinberg, Phys. Rev. B 53, 7094–7098 (1996). Similar analysis applies for the relative permittivity of the electricfield (used in Poisson's equation).
[CrossRef]

Feinberg, J.

The fact that, in the most rigorous treatment, electron mobilityis a second-rank tensor rather than a scalar has no consequences for gratingsaligned along the crystal principal axes. This is the case in the presentone-dimensional analysis. The anisotropy of the mobility tensor, however, may become important for spatial multiplexing. For measurements of mobilityanisotropy see D. Mahgerefteh, D. Kilrillov, R. S. Cudney, G. D. Bacher, R. M. Pierce, and J. Feinberg, Phys. Rev. B 53, 7094–7098 (1996). Similar analysis applies for the relative permittivity of the electricfield (used in Poisson's equation).
[CrossRef]

Glass, A. M.

D. von der Linde, A. M. Glass, and K. F. Rodgers, “Optical storage using refractive index changes induced by two-stepexcitation,” J. Appl. Phys. 47, 217–220 (1976).
[CrossRef]

D. von der Linde, A. M. Glass, and K. F. Rodgers, “High-sensitivity optical recording in KTN by two photon absorption,” Appl. Phys. Lett. 26, 22–24 (1975).
[CrossRef]

D. von der Linde and A. M. Glass, “Photorefractive effects for reversible holographic storage of information,” Appl. Phys. 8, 85–100 (1975).
[CrossRef]

Heanue, J. F.

J. F. Heanue, M. C. Bashaw, and L. Hesselink, “Volume holographic storage and retrieval of digital data,” Science 265, 749–752 (1994).
[CrossRef] [PubMed]

Hesselink, L.

M. C. Bashaw, M. Jenanathan, and L. Hesselink, “Theory of two-center transport in photorefractive media for low-intensity, continuous-wave illumination in the quasi-steady-state limit,” J. Opt. Soc. Am. B 11, 1743–1757 (1994).
[CrossRef]

J. F. Heanue, M. C. Bashaw, and L. Hesselink, “Volume holographic storage and retrieval of digital data,” Science 265, 749–752 (1994).
[CrossRef] [PubMed]

L. Hesselink and M. C. Bashaw, “Optical memories implemented with photorefractive media,” Opt. Quantum Electron. 25, S611–S661 (1993).
[CrossRef]

Holtmann, L.

K. Buse, L. Holtmann, and E. Krätzig, “Two-step photorefractive hologram recording in LiNbO3:Fe,” Ferroelectrics 141, 197–205 (1993).
[CrossRef]

K. Buse, L. Holtmann, and E. Krätzig, “Activation of BaTiO3for infrared holographic recording,” Opt. Commun. 85, 183–186 (1991).
[CrossRef]

Jenanathan, M.

Jermann, F.

K. Buse, F. Jermann, and E. Krätzig, “Infrared holographic recording in LiNbO3:Cu,” Appl. Phys. A 58, 191–195 (1994).
[CrossRef]

F. Jermann and J. Otten, “Light-induced charge transport in LiNbO3:Fe at high light intensities,” J. Opt. Soc. Am. B 10, 2085–2092 (1993).
[CrossRef]

Kachru, R.

Kilrillov, D.

The fact that, in the most rigorous treatment, electron mobilityis a second-rank tensor rather than a scalar has no consequences for gratingsaligned along the crystal principal axes. This is the case in the presentone-dimensional analysis. The anisotropy of the mobility tensor, however, may become important for spatial multiplexing. For measurements of mobilityanisotropy see D. Mahgerefteh, D. Kilrillov, R. S. Cudney, G. D. Bacher, R. M. Pierce, and J. Feinberg, Phys. Rev. B 53, 7094–7098 (1996). Similar analysis applies for the relative permittivity of the electricfield (used in Poisson's equation).
[CrossRef]

Kogelnik, H. W.

H. W. Kogelnik, “Coupled wave theory for thick hologram gratings,” Bell Syst. Tech. J. 48, 2909–2947 (1969).
[CrossRef]

Krätzig, E.

K. Buse, F. Jermann, and E. Krätzig, “Infrared holographic recording in LiNbO3:Cu,” Appl. Phys. A 58, 191–195 (1994).
[CrossRef]

K. Buse, L. Holtmann, and E. Krätzig, “Two-step photorefractive hologram recording in LiNbO3:Fe,” Ferroelectrics 141, 197–205 (1993).
[CrossRef]

K. Buse, L. Holtmann, and E. Krätzig, “Activation of BaTiO3for infrared holographic recording,” Opt. Commun. 85, 183–186 (1991).
[CrossRef]

Y. Ming, E. Krätzig, and R. Orlowski, “Photorefractive effects in LiNbO3:Cr induced by two-step excitation,” Phys. Status Solidi 92, 221–229 (1985).
[CrossRef]

H. Vormann and E. Krätzig, “Two step excitation in LiTaO3:Fe for optical data storage,” Solid State Commun. 49, 843–847 (1984).
[CrossRef]

Kukhtarev, N. V.

N. V. Kukhtarev, “Kinetics of hologram recording and erasure in electrooptic crystals,” Pis'ma Zh. Tekh. Fiz. 2, 1114–1116 (1976)[ Sov. Tech. Phys. Lett. 2, 438–440 (1976)].

V. L. Vinetskii and N. V. Kukhtarev, “Theory of the conductivity induced by recording holographic gratingsin nonmetalic crystals,” Sov. Phys. Solid State 16, 2414–2415 (1975).

Mahgerefteh, D.

The fact that, in the most rigorous treatment, electron mobilityis a second-rank tensor rather than a scalar has no consequences for gratingsaligned along the crystal principal axes. This is the case in the presentone-dimensional analysis. The anisotropy of the mobility tensor, however, may become important for spatial multiplexing. For measurements of mobilityanisotropy see D. Mahgerefteh, D. Kilrillov, R. S. Cudney, G. D. Bacher, R. M. Pierce, and J. Feinberg, Phys. Rev. B 53, 7094–7098 (1996). Similar analysis applies for the relative permittivity of the electricfield (used in Poisson's equation).
[CrossRef]

Ming, Y.

Y. Ming, E. Krätzig, and R. Orlowski, “Photorefractive effects in LiNbO3:Cr induced by two-step excitation,” Phys. Status Solidi 92, 221–229 (1985).
[CrossRef]

Neurgaonkar, R. R.

Noginov, M. A.

M. A. Noginov, A. M. Prokhorov, G. K. Smirnov, and I. A. Shcherbakov, “Cross-relaxation deactivation of the ground state of ions of rare-earthelements in crystals,” Kvantovaya Elektron. 8, 1042–1046 (1991)[ Sov. J. Quantum Electron. 21, 945–949 (1991)].
[CrossRef]

Orlowski, R.

Y. Ming, E. Krätzig, and R. Orlowski, “Photorefractive effects in LiNbO3:Cr induced by two-step excitation,” Phys. Status Solidi 92, 221–229 (1985).
[CrossRef]

Otten, J.

Pierce, R. M.

The fact that, in the most rigorous treatment, electron mobilityis a second-rank tensor rather than a scalar has no consequences for gratingsaligned along the crystal principal axes. This is the case in the presentone-dimensional analysis. The anisotropy of the mobility tensor, however, may become important for spatial multiplexing. For measurements of mobilityanisotropy see D. Mahgerefteh, D. Kilrillov, R. S. Cudney, G. D. Bacher, R. M. Pierce, and J. Feinberg, Phys. Rev. B 53, 7094–7098 (1996). Similar analysis applies for the relative permittivity of the electricfield (used in Poisson's equation).
[CrossRef]

Prokhorov, A. M.

M. A. Noginov, A. M. Prokhorov, G. K. Smirnov, and I. A. Shcherbakov, “Cross-relaxation deactivation of the ground state of ions of rare-earthelements in crystals,” Kvantovaya Elektron. 8, 1042–1046 (1991)[ Sov. J. Quantum Electron. 21, 945–949 (1991)].
[CrossRef]

Rodgers, K. F.

D. von der Linde, A. M. Glass, and K. F. Rodgers, “Optical storage using refractive index changes induced by two-stepexcitation,” J. Appl. Phys. 47, 217–220 (1976).
[CrossRef]

D. von der Linde, A. M. Glass, and K. F. Rodgers, “High-sensitivity optical recording in KTN by two photon absorption,” Appl. Phys. Lett. 26, 22–24 (1975).
[CrossRef]

Shcherbakov, I. A.

M. A. Noginov, A. M. Prokhorov, G. K. Smirnov, and I. A. Shcherbakov, “Cross-relaxation deactivation of the ground state of ions of rare-earthelements in crystals,” Kvantovaya Elektron. 8, 1042–1046 (1991)[ Sov. J. Quantum Electron. 21, 945–949 (1991)].
[CrossRef]

Smirnov, G. K.

M. A. Noginov, A. M. Prokhorov, G. K. Smirnov, and I. A. Shcherbakov, “Cross-relaxation deactivation of the ground state of ions of rare-earthelements in crystals,” Kvantovaya Elektron. 8, 1042–1046 (1991)[ Sov. J. Quantum Electron. 21, 945–949 (1991)].
[CrossRef]

Valley, G. C.

G. C. Valley, “Short-pulse grating formation in photorefractive materials,” IEEE J. Quantum Electron. 19, 1637–1645 (1983).
[CrossRef]

Vinetskii, V. L.

V. L. Vinetskii and N. V. Kukhtarev, “Theory of the conductivity induced by recording holographic gratingsin nonmetalic crystals,” Sov. Phys. Solid State 16, 2414–2415 (1975).

von der Linde, D.

D. von der Linde, A. M. Glass, and K. F. Rodgers, “Optical storage using refractive index changes induced by two-stepexcitation,” J. Appl. Phys. 47, 217–220 (1976).
[CrossRef]

D. von der Linde and A. M. Glass, “Photorefractive effects for reversible holographic storage of information,” Appl. Phys. 8, 85–100 (1975).
[CrossRef]

D. von der Linde, A. M. Glass, and K. F. Rodgers, “High-sensitivity optical recording in KTN by two photon absorption,” Appl. Phys. Lett. 26, 22–24 (1975).
[CrossRef]

Vormann, H.

H. Vormann and E. Krätzig, “Two step excitation in LiTaO3:Fe for optical data storage,” Solid State Commun. 49, 843–847 (1984).
[CrossRef]

Wilde, J. P.

J. P. Wilde, “Spectroscopic characterization of photorefractive materials for holographicstorage applications,” Fluorescence Detection IV, E. R. Menzel, ed., Proc. SPIE 2705, 82–92 (1996).
[CrossRef]

Appl. Phys. (1)

D. von der Linde and A. M. Glass, “Photorefractive effects for reversible holographic storage of information,” Appl. Phys. 8, 85–100 (1975).
[CrossRef]

Appl. Phys. A (1)

K. Buse, F. Jermann, and E. Krätzig, “Infrared holographic recording in LiNbO3:Cu,” Appl. Phys. A 58, 191–195 (1994).
[CrossRef]

Appl. Phys. Lett. (1)

D. von der Linde, A. M. Glass, and K. F. Rodgers, “High-sensitivity optical recording in KTN by two photon absorption,” Appl. Phys. Lett. 26, 22–24 (1975).
[CrossRef]

Bell Syst. Tech. J. (1)

H. W. Kogelnik, “Coupled wave theory for thick hologram gratings,” Bell Syst. Tech. J. 48, 2909–2947 (1969).
[CrossRef]

Ferroelectrics (1)

K. Buse, L. Holtmann, and E. Krätzig, “Two-step photorefractive hologram recording in LiNbO3:Fe,” Ferroelectrics 141, 197–205 (1993).
[CrossRef]

IEEE J. Quantum Electron. (1)

G. C. Valley, “Short-pulse grating formation in photorefractive materials,” IEEE J. Quantum Electron. 19, 1637–1645 (1983).
[CrossRef]

J. Appl. Phys. (1)

D. von der Linde, A. M. Glass, and K. F. Rodgers, “Optical storage using refractive index changes induced by two-stepexcitation,” J. Appl. Phys. 47, 217–220 (1976).
[CrossRef]

J. Opt. Soc. Am. B (2)

Opt. Commun. (1)

K. Buse, L. Holtmann, and E. Krätzig, “Activation of BaTiO3for infrared holographic recording,” Opt. Commun. 85, 183–186 (1991).
[CrossRef]

Opt. Lett. (1)

Opt. Quantum Electron. (1)

L. Hesselink and M. C. Bashaw, “Optical memories implemented with photorefractive media,” Opt. Quantum Electron. 25, S611–S661 (1993).
[CrossRef]

Phys. Rev. B (1)

The fact that, in the most rigorous treatment, electron mobilityis a second-rank tensor rather than a scalar has no consequences for gratingsaligned along the crystal principal axes. This is the case in the presentone-dimensional analysis. The anisotropy of the mobility tensor, however, may become important for spatial multiplexing. For measurements of mobilityanisotropy see D. Mahgerefteh, D. Kilrillov, R. S. Cudney, G. D. Bacher, R. M. Pierce, and J. Feinberg, Phys. Rev. B 53, 7094–7098 (1996). Similar analysis applies for the relative permittivity of the electricfield (used in Poisson's equation).
[CrossRef]

Phys. Status Solidi (1)

Y. Ming, E. Krätzig, and R. Orlowski, “Photorefractive effects in LiNbO3:Cr induced by two-step excitation,” Phys. Status Solidi 92, 221–229 (1985).
[CrossRef]

Proc. SPIE (1)

J. P. Wilde, “Spectroscopic characterization of photorefractive materials for holographicstorage applications,” Fluorescence Detection IV, E. R. Menzel, ed., Proc. SPIE 2705, 82–92 (1996).
[CrossRef]

Science (1)

J. F. Heanue, M. C. Bashaw, and L. Hesselink, “Volume holographic storage and retrieval of digital data,” Science 265, 749–752 (1994).
[CrossRef] [PubMed]

Solid State Commun. (1)

H. Vormann and E. Krätzig, “Two step excitation in LiTaO3:Fe for optical data storage,” Solid State Commun. 49, 843–847 (1984).
[CrossRef]

Sov. J. Quantum Electron. (1)

M. A. Noginov, A. M. Prokhorov, G. K. Smirnov, and I. A. Shcherbakov, “Cross-relaxation deactivation of the ground state of ions of rare-earthelements in crystals,” Kvantovaya Elektron. 8, 1042–1046 (1991)[ Sov. J. Quantum Electron. 21, 945–949 (1991)].
[CrossRef]

Sov. Phys. Solid State (1)

V. L. Vinetskii and N. V. Kukhtarev, “Theory of the conductivity induced by recording holographic gratingsin nonmetalic crystals,” Sov. Phys. Solid State 16, 2414–2415 (1975).

Sov. Tech. Phys. Lett. (1)

N. V. Kukhtarev, “Kinetics of hologram recording and erasure in electrooptic crystals,” Pis'ma Zh. Tekh. Fiz. 2, 1114–1116 (1976)[ Sov. Tech. Phys. Lett. 2, 438–440 (1976)].

Other (9)

L. Hesselink, S. Orlov, and A. Akella, “Two-color recordingin lithium niobate,” submitted to Optics Letters.

W. Koechner, Solid State Laser Engineering (Springer-Verlag, New York, 1976).

L. Paraschis, M. C. Bashaw, A. Y. Liu, and L. Hesselink, “Propertiesof resonant two-photon processes in photorefractive media,” in Joint International Symposium on Optical Memory and Optical DataStorage, Vol. 12 of 1996 OSA Technical Digest Series (Optical Societyof America, Washington, D.C., 1996), paper JTuD4.

S. Orlov, A. Akella, L. Hesselink, and R. R. Neurgaonkar, “Highsensitivity two-color non-volatile recording in lithium niobate,” in Conference on Lasers and Electro-Optics, Vol. 11 of 1997 OSATechnical Digest Series (Optical Society of America, Washington, D.C., 1997), paper CPD29.

J. W. Goodman, Introduction to Fourier Optics, 2nd ed. (McGraw-Hill, New York, 1996).

P. W. France, ed., Optical Fiber and LaserAmplifiers (CRC, Boca Raton, Fla., 1991), Chap. 8.

R. M. MacFarlane, “Optical spectroscopy of photorefractivematerials for holographic storage applications,” presented at the 1995Annual Meeting of the Optical Society of America.

A. Y. Liu, L. Paraschis, M. C. Bashaw, and L. Hesselink, “Prolongedreadout using two defect species in SBN,” in Conferenceon Lasers and Electro-Optics, Vol. 9 of 1996 OSA Technical Digest series(Optical Society of America, Washington, D.C., 1996), paper CWF4.

A. Y. Liu, M. C. Bashaw, L. Paraschis, and L. Hesselink, “Theoryof two-species transport in photorefractive crystals using two wavelengthsfor nondestructive readout,” in Joint International Symposiumon Optical Memory and Optical Data Storage, Vol. 12 of 1996 OSA TechnicalDigest Series (Optical Society of America, Washington, D.C., 1996), paperJTuD3.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Two-photon holography. (a) The signal Is and the reference Ir beams at frequency ωh record phase gratings in a photorefractive crystal in the presence of uniform gating Ig illumination at frequency ωg. (b) Nondestructive readout with only the reference beam Ir at frequency ωh. (c) Optical erasure by simultaneous uniform illumination at both frequencies ωh and ωg with the reference and the gating beams.

Fig. 2
Fig. 2

Resonant two-photon generation of conduction charge carriers in a photorefractive medium with a single impurity species.

Fig. 3
Fig. 3

Resonant two-photon excitation, ionization, migration, and recombination charge-transport band model in a photorefractive crystal with a single impurity species. (The simplest three-energy-level system is presented here.)

Fig. 4
Fig. 4

Dependence of impurity excited-state occupancy on the excitation intensity (I1(0)) for a transition-metal-doped photorefractive crystal. The typical physical parameters used are σ01=10-18 cm2, σ1c=10-17 cm2, and τexc=500 ns. The different curves correspond to the three regimes of illumination for the ionization intensity: for I2(0)=(500)-1I1(0) (solid curve), for I2(0)=I1(0) (dashed curve), and for I2(0)=(500)I1(0) (dotted curve).

Fig. 5
Fig. 5

Dispersion of the space-charge field for resonant two-photon recording. The saturation value of the field is shown as a function of grating spatial frequency (K) for the diffusion case (E0=0) in a typical photorefractive crystal (=32, NR=1016). The curves correspond to excited-state occupancy values, which are evaluated for several illumination intensity regimes. The solid curves correspond to the intensities shown, and the dashed curve corresponds to 100% occupancy (single-photon limit).

Fig. 6
Fig. 6

Four-energy-level resonant two-photon photorefractive charge-transport band model.

Equations (31)

Equations on this page are rendered with MathJax. Learn more.

I(r)=I0{1+Re[m exp(iK·r)]},
m=2AsAr*I0(eˆs·eˆr*).
Net=r01Ng-r10Ne-r1cNe+rc1ne.
N°t=r0cNg+r1cNe-rc0ne-rc1ne.
je=eμeneE+kBTμene,
jph=p1cI2Ne
net=N°t+·jee.
·E=e0[(N°-N0°)-ne],
I(x)=I0{1+Re[m exp(iKx)]}.
E(x)=E0+Re[E(1)(t)exp(iKx)],
δn=-1/2n3reffE(x),
η=πn3reffE(1)L2λ cos θ2,
Ne=r01r10+r1cNg+rc1r10+r1cne,
ne=r0cNg+r1cNerc0+rc1.
NeN0=σ01I1+β01+β0c(γc1/γrec)Γ10+2σ01I1+β01+β1c+σ1cI2(γc0/γrec)+β0c(γc1/γrec).
NeN0=τexcσ01I1(0)1+2τexcσ01I1(0)+τexcσ1cI2(0)(γc0/γrec).
Esc=-mi E0+iED1+ED/Eqeff-iE0/Eqeff;
Eqeff=e0KNReff=e0KNRNeN0,
mLEG=m1+2τexcσ01I1(0)1+2τexcσ01I1(0)+τexcσ1cI2(0),
mHIG=m1+τexcσ1cI2(0)1+2τexcσ01I1(0)+τexcσ1cI2(0),
Γ=ΓHIG=ΓLEG=Γdieeff 1+ΓDΓIeff/ΓRΓdieeff-iΓEΓIeff/ΓRΓdieeff1+ΓD/ΓR-iΓE/ΓR.
ΓIeff=σ1cI2(0)+γrecn0=σ1cI2(0)1+NeN0°,
Γdieeff=eμen00=eμe0σ1cI2(0)γrecN0N0°NeN0.
E(1)=Esc[1-exp(-Γt)].
E(1)=Esc exp(-Γt),
Esc=-mi (E0+iED)Eq NeN0Eq NeN0+ED-iE0,
Eph=p1cγreceμσ1cN0°
Kmax=e2NReff0kBT1/2=e2NR0kBT1/2NeN01/2.
ηHIGηLEGEscHIGEscLEG2mHIGmLEG21+τexcσ1cIg1+2τexcσ01Ig2
SEscΓ=m (E0+iED)1+K2rD2-iKrEΓdie
=f(K)σ1cI2(0)γrecN0N0°NeN0.

Metrics