Abstract

We study theoretically the dependence of the photorefractive response of a periodically poled ferroelectric on the spatial frequency of light fringes, on the period of the domain inversion, and on its mark-to-space ratio. The photovoltaic effect, the drift of photoelectrons under an applied field, and their diffusion are considered as charge-transport mechanisms. Strong suppression of the photorefractive properties at low spatial frequencies (reduction of optical damage) together with retention of these properties in a region of short-fringe spacing are shown. We also found that the periodicity of the domain structure can produce a new kind of photorefractive parametric wave coupling. This coupling is characterized by a large gain factor for the waves propagating at angles that depend on the domain-inversion period. Finally, we discuss promising photorefractive experiments in periodically poled lithium niobate.

© 1997 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Yamada, N. Nada, M. Saitoh, and K. Watanabe, “First-order quasi-phase matched LiNbO3 waveguide periodically poled by applying an externalfield for efficient blue second-harmonic generation,” Appl. Phys. Lett. 62, 435–436 (1993).
    [CrossRef]
  2. W. K. Burns, W. McElhanon, and L. Goldberg, “Second harmonic generation in field poled, quasi-phase-matched, bulk LiNbO3,” IEEE Photonics Technol. Lett. 6, 252–254 (1994).
    [CrossRef]
  3. J. Webjörn, V. Pruneri, P. St. Russell, J. R. M. Barr, and D. C. Hanna, “Quasi-phase-matched blue light generation in bulk lithium niobate, electrically poled via periodic liquid electrods,” Electron. Lett. 30, 894–895 (1994).
    [CrossRef]
  4. L. E. Myers, R. C. Eckardt, M. M. Fejer, R. L. Byer, W. R. Bosenberg, and J. R. Pierce, “Quasi-phase-matched optical parametric oscillators in bulk periodicallypoled LiNbO3,” J. Opt. Soc. Am. B 12, 2102–2116 (1995).
    [CrossRef]
  5. S. N. Zhu, Y. Y. Zhu, Z. Y. Zhang, H. Shu, H. F. Wang, J. F. Hong, C. Z. Ge, and N. B. Ming, “LiTaO3crystal periodically poled by applying an external pulsed field,” J. Appl. Phys. 77, 5481–5483 (1995).
    [CrossRef]
  6. Q. Chen and W. P. Risk, “Periodic poling of KTiOPO4using an applied electric field,” Electron. Lett. 30, 1516–1517 (1994).
    [CrossRef]
  7. H. Karlsson, F. Laurell, P. Henriksson, and G. Ardvisson, “Frequency doubling in periodically poled RbTiOAsO4,” Electron. Lett. 32, 556–557 (1996).
    [CrossRef]
  8. V. Pruneri, R. Koch, P. G. Kazansky, W. A. Clarkson, P. St. J. Russell, and D. C. Hanna, “49 mW of cw blue light generated by first-order quasi-phase-matchedfrequency doubling of a diode-pumped 946 nm Nd:YAG laser,” Opt. Lett. 20, 2375–2377 (1995).
    [CrossRef]
  9. V. Pruneri, J. Webjörn, P. St. J. Russell, and D. C. Hanna, “532 nm pumped optical parametric oscillator in bulk periodically poledlithium niobate,” Appl. Phys. Lett. 67, 2126–2128 (1995).
    [CrossRef]
  10. V. Pruneri, P. G. Kazansky, J. Webjörn, P. St. Russell, and D. C. Hanna, “Self-organized light-induced scattering in periodically poled lithiumniobate,” Appl. Phys. Lett. 67, 1957–1959 (1995).
    [CrossRef]
  11. M. Taya, M. C. Bashaw, and M. M. Fejer, “Photorefractive effect in periodically poled ferroelectrics,” Opt. Lett. 21, 857–859 (1996).
    [CrossRef] [PubMed]
  12. A. M. Glass, D. von der Linde, and T. J. Negran, “High-voltage bulk photovoltaic effect and the photorefractive processin LiNbO3,” Appl. Phys. Lett. 25, 233–235 (1974).
    [CrossRef]
  13. B. I. Sturman and V. M. Fridkin, The Photovoltaicand Photorefractive Effects in Noncentrosymmetric Materials (Gordon& Breach, Philadelphia, 1992).
  14. B. I. Sturman, Maria Aguilar, F. Agullo-Lopez, V. Pruneri, P. G. Kazansky, and D. C. Hanna, “Mechanism of self-organized light-induced scattering in periodicallypoled lithium niobate,” Appl. Phys. Lett. 69, 1349–1351 (1996).
    [CrossRef]
  15. P. Günter and J.-P. Huignard, eds., PhotorefractiveMaterials and Their Applications I, Vol. 61 of Topics in Applied Physics(Springer-Verlag, Berlin, 1988).
  16. B. I. Sturman, S. G. Odoulov, and M. Yu. Goul'kov, “Parametric four-wave processes in photorefractive crystals,” Phys. Rep. 275, 197–254 (1996).
    [CrossRef]
  17. N. N. Kukhtarev, V. B. Markov, S. G. Odoulov, and M. S. Soskin, “Holographic storage in electrooptic crystals,” Ferroelectrics 22, 949–960 (1979).
    [CrossRef]
  18. T. J. Volk, V. V. Volkov, V. V. Krasnikov, V. I. Pryalkin, and N. M. Rubinina, “Optical and nonlinear-optical investigations in Mg- and Zn-doped LiNbO3,” Ferroelectrics 109, 345–350 (1990).
    [CrossRef]
  19. T. R. Volk, M. Wöhlecke, and N. M. Rubinina, “Optical damage resistant impurities in LiNbO3,” J. Opt. Soc. Am. B 11, 1681–1687 (1994).
    [CrossRef]

1996 (4)

H. Karlsson, F. Laurell, P. Henriksson, and G. Ardvisson, “Frequency doubling in periodically poled RbTiOAsO4,” Electron. Lett. 32, 556–557 (1996).
[CrossRef]

M. Taya, M. C. Bashaw, and M. M. Fejer, “Photorefractive effect in periodically poled ferroelectrics,” Opt. Lett. 21, 857–859 (1996).
[CrossRef] [PubMed]

B. I. Sturman, Maria Aguilar, F. Agullo-Lopez, V. Pruneri, P. G. Kazansky, and D. C. Hanna, “Mechanism of self-organized light-induced scattering in periodicallypoled lithium niobate,” Appl. Phys. Lett. 69, 1349–1351 (1996).
[CrossRef]

B. I. Sturman, S. G. Odoulov, and M. Yu. Goul'kov, “Parametric four-wave processes in photorefractive crystals,” Phys. Rep. 275, 197–254 (1996).
[CrossRef]

1995 (5)

V. Pruneri, R. Koch, P. G. Kazansky, W. A. Clarkson, P. St. J. Russell, and D. C. Hanna, “49 mW of cw blue light generated by first-order quasi-phase-matchedfrequency doubling of a diode-pumped 946 nm Nd:YAG laser,” Opt. Lett. 20, 2375–2377 (1995).
[CrossRef]

V. Pruneri, J. Webjörn, P. St. J. Russell, and D. C. Hanna, “532 nm pumped optical parametric oscillator in bulk periodically poledlithium niobate,” Appl. Phys. Lett. 67, 2126–2128 (1995).
[CrossRef]

V. Pruneri, P. G. Kazansky, J. Webjörn, P. St. Russell, and D. C. Hanna, “Self-organized light-induced scattering in periodically poled lithiumniobate,” Appl. Phys. Lett. 67, 1957–1959 (1995).
[CrossRef]

L. E. Myers, R. C. Eckardt, M. M. Fejer, R. L. Byer, W. R. Bosenberg, and J. R. Pierce, “Quasi-phase-matched optical parametric oscillators in bulk periodicallypoled LiNbO3,” J. Opt. Soc. Am. B 12, 2102–2116 (1995).
[CrossRef]

S. N. Zhu, Y. Y. Zhu, Z. Y. Zhang, H. Shu, H. F. Wang, J. F. Hong, C. Z. Ge, and N. B. Ming, “LiTaO3crystal periodically poled by applying an external pulsed field,” J. Appl. Phys. 77, 5481–5483 (1995).
[CrossRef]

1994 (4)

Q. Chen and W. P. Risk, “Periodic poling of KTiOPO4using an applied electric field,” Electron. Lett. 30, 1516–1517 (1994).
[CrossRef]

W. K. Burns, W. McElhanon, and L. Goldberg, “Second harmonic generation in field poled, quasi-phase-matched, bulk LiNbO3,” IEEE Photonics Technol. Lett. 6, 252–254 (1994).
[CrossRef]

J. Webjörn, V. Pruneri, P. St. Russell, J. R. M. Barr, and D. C. Hanna, “Quasi-phase-matched blue light generation in bulk lithium niobate, electrically poled via periodic liquid electrods,” Electron. Lett. 30, 894–895 (1994).
[CrossRef]

T. R. Volk, M. Wöhlecke, and N. M. Rubinina, “Optical damage resistant impurities in LiNbO3,” J. Opt. Soc. Am. B 11, 1681–1687 (1994).
[CrossRef]

1993 (1)

M. Yamada, N. Nada, M. Saitoh, and K. Watanabe, “First-order quasi-phase matched LiNbO3 waveguide periodically poled by applying an externalfield for efficient blue second-harmonic generation,” Appl. Phys. Lett. 62, 435–436 (1993).
[CrossRef]

1990 (1)

T. J. Volk, V. V. Volkov, V. V. Krasnikov, V. I. Pryalkin, and N. M. Rubinina, “Optical and nonlinear-optical investigations in Mg- and Zn-doped LiNbO3,” Ferroelectrics 109, 345–350 (1990).
[CrossRef]

1979 (1)

N. N. Kukhtarev, V. B. Markov, S. G. Odoulov, and M. S. Soskin, “Holographic storage in electrooptic crystals,” Ferroelectrics 22, 949–960 (1979).
[CrossRef]

1974 (1)

A. M. Glass, D. von der Linde, and T. J. Negran, “High-voltage bulk photovoltaic effect and the photorefractive processin LiNbO3,” Appl. Phys. Lett. 25, 233–235 (1974).
[CrossRef]

Aguilar, Maria

B. I. Sturman, Maria Aguilar, F. Agullo-Lopez, V. Pruneri, P. G. Kazansky, and D. C. Hanna, “Mechanism of self-organized light-induced scattering in periodicallypoled lithium niobate,” Appl. Phys. Lett. 69, 1349–1351 (1996).
[CrossRef]

Agullo-Lopez, F.

B. I. Sturman, Maria Aguilar, F. Agullo-Lopez, V. Pruneri, P. G. Kazansky, and D. C. Hanna, “Mechanism of self-organized light-induced scattering in periodicallypoled lithium niobate,” Appl. Phys. Lett. 69, 1349–1351 (1996).
[CrossRef]

Ardvisson, G.

H. Karlsson, F. Laurell, P. Henriksson, and G. Ardvisson, “Frequency doubling in periodically poled RbTiOAsO4,” Electron. Lett. 32, 556–557 (1996).
[CrossRef]

Barr, J. R. M.

J. Webjörn, V. Pruneri, P. St. Russell, J. R. M. Barr, and D. C. Hanna, “Quasi-phase-matched blue light generation in bulk lithium niobate, electrically poled via periodic liquid electrods,” Electron. Lett. 30, 894–895 (1994).
[CrossRef]

Bashaw, M. C.

Bosenberg, W. R.

Burns, W. K.

W. K. Burns, W. McElhanon, and L. Goldberg, “Second harmonic generation in field poled, quasi-phase-matched, bulk LiNbO3,” IEEE Photonics Technol. Lett. 6, 252–254 (1994).
[CrossRef]

Byer, R. L.

Chen, Q.

Q. Chen and W. P. Risk, “Periodic poling of KTiOPO4using an applied electric field,” Electron. Lett. 30, 1516–1517 (1994).
[CrossRef]

Clarkson, W. A.

Eckardt, R. C.

Fejer, M. M.

Ge, C. Z.

S. N. Zhu, Y. Y. Zhu, Z. Y. Zhang, H. Shu, H. F. Wang, J. F. Hong, C. Z. Ge, and N. B. Ming, “LiTaO3crystal periodically poled by applying an external pulsed field,” J. Appl. Phys. 77, 5481–5483 (1995).
[CrossRef]

Glass, A. M.

A. M. Glass, D. von der Linde, and T. J. Negran, “High-voltage bulk photovoltaic effect and the photorefractive processin LiNbO3,” Appl. Phys. Lett. 25, 233–235 (1974).
[CrossRef]

Goldberg, L.

W. K. Burns, W. McElhanon, and L. Goldberg, “Second harmonic generation in field poled, quasi-phase-matched, bulk LiNbO3,” IEEE Photonics Technol. Lett. 6, 252–254 (1994).
[CrossRef]

Goul'kov, M. Yu.

B. I. Sturman, S. G. Odoulov, and M. Yu. Goul'kov, “Parametric four-wave processes in photorefractive crystals,” Phys. Rep. 275, 197–254 (1996).
[CrossRef]

Hanna, D. C.

B. I. Sturman, Maria Aguilar, F. Agullo-Lopez, V. Pruneri, P. G. Kazansky, and D. C. Hanna, “Mechanism of self-organized light-induced scattering in periodicallypoled lithium niobate,” Appl. Phys. Lett. 69, 1349–1351 (1996).
[CrossRef]

V. Pruneri, P. G. Kazansky, J. Webjörn, P. St. Russell, and D. C. Hanna, “Self-organized light-induced scattering in periodically poled lithiumniobate,” Appl. Phys. Lett. 67, 1957–1959 (1995).
[CrossRef]

V. Pruneri, R. Koch, P. G. Kazansky, W. A. Clarkson, P. St. J. Russell, and D. C. Hanna, “49 mW of cw blue light generated by first-order quasi-phase-matchedfrequency doubling of a diode-pumped 946 nm Nd:YAG laser,” Opt. Lett. 20, 2375–2377 (1995).
[CrossRef]

V. Pruneri, J. Webjörn, P. St. J. Russell, and D. C. Hanna, “532 nm pumped optical parametric oscillator in bulk periodically poledlithium niobate,” Appl. Phys. Lett. 67, 2126–2128 (1995).
[CrossRef]

J. Webjörn, V. Pruneri, P. St. Russell, J. R. M. Barr, and D. C. Hanna, “Quasi-phase-matched blue light generation in bulk lithium niobate, electrically poled via periodic liquid electrods,” Electron. Lett. 30, 894–895 (1994).
[CrossRef]

Henriksson, P.

H. Karlsson, F. Laurell, P. Henriksson, and G. Ardvisson, “Frequency doubling in periodically poled RbTiOAsO4,” Electron. Lett. 32, 556–557 (1996).
[CrossRef]

Hong, J. F.

S. N. Zhu, Y. Y. Zhu, Z. Y. Zhang, H. Shu, H. F. Wang, J. F. Hong, C. Z. Ge, and N. B. Ming, “LiTaO3crystal periodically poled by applying an external pulsed field,” J. Appl. Phys. 77, 5481–5483 (1995).
[CrossRef]

Karlsson, H.

H. Karlsson, F. Laurell, P. Henriksson, and G. Ardvisson, “Frequency doubling in periodically poled RbTiOAsO4,” Electron. Lett. 32, 556–557 (1996).
[CrossRef]

Kazansky, P. G.

B. I. Sturman, Maria Aguilar, F. Agullo-Lopez, V. Pruneri, P. G. Kazansky, and D. C. Hanna, “Mechanism of self-organized light-induced scattering in periodicallypoled lithium niobate,” Appl. Phys. Lett. 69, 1349–1351 (1996).
[CrossRef]

V. Pruneri, R. Koch, P. G. Kazansky, W. A. Clarkson, P. St. J. Russell, and D. C. Hanna, “49 mW of cw blue light generated by first-order quasi-phase-matchedfrequency doubling of a diode-pumped 946 nm Nd:YAG laser,” Opt. Lett. 20, 2375–2377 (1995).
[CrossRef]

V. Pruneri, P. G. Kazansky, J. Webjörn, P. St. Russell, and D. C. Hanna, “Self-organized light-induced scattering in periodically poled lithiumniobate,” Appl. Phys. Lett. 67, 1957–1959 (1995).
[CrossRef]

Koch, R.

Krasnikov, V. V.

T. J. Volk, V. V. Volkov, V. V. Krasnikov, V. I. Pryalkin, and N. M. Rubinina, “Optical and nonlinear-optical investigations in Mg- and Zn-doped LiNbO3,” Ferroelectrics 109, 345–350 (1990).
[CrossRef]

Kukhtarev, N. N.

N. N. Kukhtarev, V. B. Markov, S. G. Odoulov, and M. S. Soskin, “Holographic storage in electrooptic crystals,” Ferroelectrics 22, 949–960 (1979).
[CrossRef]

Laurell, F.

H. Karlsson, F. Laurell, P. Henriksson, and G. Ardvisson, “Frequency doubling in periodically poled RbTiOAsO4,” Electron. Lett. 32, 556–557 (1996).
[CrossRef]

Markov, V. B.

N. N. Kukhtarev, V. B. Markov, S. G. Odoulov, and M. S. Soskin, “Holographic storage in electrooptic crystals,” Ferroelectrics 22, 949–960 (1979).
[CrossRef]

McElhanon, W.

W. K. Burns, W. McElhanon, and L. Goldberg, “Second harmonic generation in field poled, quasi-phase-matched, bulk LiNbO3,” IEEE Photonics Technol. Lett. 6, 252–254 (1994).
[CrossRef]

Ming, N. B.

S. N. Zhu, Y. Y. Zhu, Z. Y. Zhang, H. Shu, H. F. Wang, J. F. Hong, C. Z. Ge, and N. B. Ming, “LiTaO3crystal periodically poled by applying an external pulsed field,” J. Appl. Phys. 77, 5481–5483 (1995).
[CrossRef]

Myers, L. E.

Nada, N.

M. Yamada, N. Nada, M. Saitoh, and K. Watanabe, “First-order quasi-phase matched LiNbO3 waveguide periodically poled by applying an externalfield for efficient blue second-harmonic generation,” Appl. Phys. Lett. 62, 435–436 (1993).
[CrossRef]

Negran, T. J.

A. M. Glass, D. von der Linde, and T. J. Negran, “High-voltage bulk photovoltaic effect and the photorefractive processin LiNbO3,” Appl. Phys. Lett. 25, 233–235 (1974).
[CrossRef]

Odoulov, S. G.

B. I. Sturman, S. G. Odoulov, and M. Yu. Goul'kov, “Parametric four-wave processes in photorefractive crystals,” Phys. Rep. 275, 197–254 (1996).
[CrossRef]

N. N. Kukhtarev, V. B. Markov, S. G. Odoulov, and M. S. Soskin, “Holographic storage in electrooptic crystals,” Ferroelectrics 22, 949–960 (1979).
[CrossRef]

Pierce, J. R.

Pruneri, V.

B. I. Sturman, Maria Aguilar, F. Agullo-Lopez, V. Pruneri, P. G. Kazansky, and D. C. Hanna, “Mechanism of self-organized light-induced scattering in periodicallypoled lithium niobate,” Appl. Phys. Lett. 69, 1349–1351 (1996).
[CrossRef]

V. Pruneri, P. G. Kazansky, J. Webjörn, P. St. Russell, and D. C. Hanna, “Self-organized light-induced scattering in periodically poled lithiumniobate,” Appl. Phys. Lett. 67, 1957–1959 (1995).
[CrossRef]

V. Pruneri, J. Webjörn, P. St. J. Russell, and D. C. Hanna, “532 nm pumped optical parametric oscillator in bulk periodically poledlithium niobate,” Appl. Phys. Lett. 67, 2126–2128 (1995).
[CrossRef]

V. Pruneri, R. Koch, P. G. Kazansky, W. A. Clarkson, P. St. J. Russell, and D. C. Hanna, “49 mW of cw blue light generated by first-order quasi-phase-matchedfrequency doubling of a diode-pumped 946 nm Nd:YAG laser,” Opt. Lett. 20, 2375–2377 (1995).
[CrossRef]

J. Webjörn, V. Pruneri, P. St. Russell, J. R. M. Barr, and D. C. Hanna, “Quasi-phase-matched blue light generation in bulk lithium niobate, electrically poled via periodic liquid electrods,” Electron. Lett. 30, 894–895 (1994).
[CrossRef]

Pryalkin, V. I.

T. J. Volk, V. V. Volkov, V. V. Krasnikov, V. I. Pryalkin, and N. M. Rubinina, “Optical and nonlinear-optical investigations in Mg- and Zn-doped LiNbO3,” Ferroelectrics 109, 345–350 (1990).
[CrossRef]

Risk, W. P.

Q. Chen and W. P. Risk, “Periodic poling of KTiOPO4using an applied electric field,” Electron. Lett. 30, 1516–1517 (1994).
[CrossRef]

Rubinina, N. M.

T. R. Volk, M. Wöhlecke, and N. M. Rubinina, “Optical damage resistant impurities in LiNbO3,” J. Opt. Soc. Am. B 11, 1681–1687 (1994).
[CrossRef]

T. J. Volk, V. V. Volkov, V. V. Krasnikov, V. I. Pryalkin, and N. M. Rubinina, “Optical and nonlinear-optical investigations in Mg- and Zn-doped LiNbO3,” Ferroelectrics 109, 345–350 (1990).
[CrossRef]

Russell, P. St.

V. Pruneri, P. G. Kazansky, J. Webjörn, P. St. Russell, and D. C. Hanna, “Self-organized light-induced scattering in periodically poled lithiumniobate,” Appl. Phys. Lett. 67, 1957–1959 (1995).
[CrossRef]

J. Webjörn, V. Pruneri, P. St. Russell, J. R. M. Barr, and D. C. Hanna, “Quasi-phase-matched blue light generation in bulk lithium niobate, electrically poled via periodic liquid electrods,” Electron. Lett. 30, 894–895 (1994).
[CrossRef]

Russell, P. St. J.

V. Pruneri, R. Koch, P. G. Kazansky, W. A. Clarkson, P. St. J. Russell, and D. C. Hanna, “49 mW of cw blue light generated by first-order quasi-phase-matchedfrequency doubling of a diode-pumped 946 nm Nd:YAG laser,” Opt. Lett. 20, 2375–2377 (1995).
[CrossRef]

V. Pruneri, J. Webjörn, P. St. J. Russell, and D. C. Hanna, “532 nm pumped optical parametric oscillator in bulk periodically poledlithium niobate,” Appl. Phys. Lett. 67, 2126–2128 (1995).
[CrossRef]

Saitoh, M.

M. Yamada, N. Nada, M. Saitoh, and K. Watanabe, “First-order quasi-phase matched LiNbO3 waveguide periodically poled by applying an externalfield for efficient blue second-harmonic generation,” Appl. Phys. Lett. 62, 435–436 (1993).
[CrossRef]

Shu, H.

S. N. Zhu, Y. Y. Zhu, Z. Y. Zhang, H. Shu, H. F. Wang, J. F. Hong, C. Z. Ge, and N. B. Ming, “LiTaO3crystal periodically poled by applying an external pulsed field,” J. Appl. Phys. 77, 5481–5483 (1995).
[CrossRef]

Soskin, M. S.

N. N. Kukhtarev, V. B. Markov, S. G. Odoulov, and M. S. Soskin, “Holographic storage in electrooptic crystals,” Ferroelectrics 22, 949–960 (1979).
[CrossRef]

Sturman, B. I.

B. I. Sturman, S. G. Odoulov, and M. Yu. Goul'kov, “Parametric four-wave processes in photorefractive crystals,” Phys. Rep. 275, 197–254 (1996).
[CrossRef]

B. I. Sturman, Maria Aguilar, F. Agullo-Lopez, V. Pruneri, P. G. Kazansky, and D. C. Hanna, “Mechanism of self-organized light-induced scattering in periodicallypoled lithium niobate,” Appl. Phys. Lett. 69, 1349–1351 (1996).
[CrossRef]

Taya, M.

Volk, T. J.

T. J. Volk, V. V. Volkov, V. V. Krasnikov, V. I. Pryalkin, and N. M. Rubinina, “Optical and nonlinear-optical investigations in Mg- and Zn-doped LiNbO3,” Ferroelectrics 109, 345–350 (1990).
[CrossRef]

Volk, T. R.

Volkov, V. V.

T. J. Volk, V. V. Volkov, V. V. Krasnikov, V. I. Pryalkin, and N. M. Rubinina, “Optical and nonlinear-optical investigations in Mg- and Zn-doped LiNbO3,” Ferroelectrics 109, 345–350 (1990).
[CrossRef]

von der Linde, D.

A. M. Glass, D. von der Linde, and T. J. Negran, “High-voltage bulk photovoltaic effect and the photorefractive processin LiNbO3,” Appl. Phys. Lett. 25, 233–235 (1974).
[CrossRef]

Wang, H. F.

S. N. Zhu, Y. Y. Zhu, Z. Y. Zhang, H. Shu, H. F. Wang, J. F. Hong, C. Z. Ge, and N. B. Ming, “LiTaO3crystal periodically poled by applying an external pulsed field,” J. Appl. Phys. 77, 5481–5483 (1995).
[CrossRef]

Watanabe, K.

M. Yamada, N. Nada, M. Saitoh, and K. Watanabe, “First-order quasi-phase matched LiNbO3 waveguide periodically poled by applying an externalfield for efficient blue second-harmonic generation,” Appl. Phys. Lett. 62, 435–436 (1993).
[CrossRef]

Webjörn, J.

V. Pruneri, P. G. Kazansky, J. Webjörn, P. St. Russell, and D. C. Hanna, “Self-organized light-induced scattering in periodically poled lithiumniobate,” Appl. Phys. Lett. 67, 1957–1959 (1995).
[CrossRef]

V. Pruneri, J. Webjörn, P. St. J. Russell, and D. C. Hanna, “532 nm pumped optical parametric oscillator in bulk periodically poledlithium niobate,” Appl. Phys. Lett. 67, 2126–2128 (1995).
[CrossRef]

J. Webjörn, V. Pruneri, P. St. Russell, J. R. M. Barr, and D. C. Hanna, “Quasi-phase-matched blue light generation in bulk lithium niobate, electrically poled via periodic liquid electrods,” Electron. Lett. 30, 894–895 (1994).
[CrossRef]

Wöhlecke, M.

Yamada, M.

M. Yamada, N. Nada, M. Saitoh, and K. Watanabe, “First-order quasi-phase matched LiNbO3 waveguide periodically poled by applying an externalfield for efficient blue second-harmonic generation,” Appl. Phys. Lett. 62, 435–436 (1993).
[CrossRef]

Zhang, Z. Y.

S. N. Zhu, Y. Y. Zhu, Z. Y. Zhang, H. Shu, H. F. Wang, J. F. Hong, C. Z. Ge, and N. B. Ming, “LiTaO3crystal periodically poled by applying an external pulsed field,” J. Appl. Phys. 77, 5481–5483 (1995).
[CrossRef]

Zhu, S. N.

S. N. Zhu, Y. Y. Zhu, Z. Y. Zhang, H. Shu, H. F. Wang, J. F. Hong, C. Z. Ge, and N. B. Ming, “LiTaO3crystal periodically poled by applying an external pulsed field,” J. Appl. Phys. 77, 5481–5483 (1995).
[CrossRef]

Zhu, Y. Y.

S. N. Zhu, Y. Y. Zhu, Z. Y. Zhang, H. Shu, H. F. Wang, J. F. Hong, C. Z. Ge, and N. B. Ming, “LiTaO3crystal periodically poled by applying an external pulsed field,” J. Appl. Phys. 77, 5481–5483 (1995).
[CrossRef]

Appl. Phys. Lett. (5)

M. Yamada, N. Nada, M. Saitoh, and K. Watanabe, “First-order quasi-phase matched LiNbO3 waveguide periodically poled by applying an externalfield for efficient blue second-harmonic generation,” Appl. Phys. Lett. 62, 435–436 (1993).
[CrossRef]

V. Pruneri, J. Webjörn, P. St. J. Russell, and D. C. Hanna, “532 nm pumped optical parametric oscillator in bulk periodically poledlithium niobate,” Appl. Phys. Lett. 67, 2126–2128 (1995).
[CrossRef]

V. Pruneri, P. G. Kazansky, J. Webjörn, P. St. Russell, and D. C. Hanna, “Self-organized light-induced scattering in periodically poled lithiumniobate,” Appl. Phys. Lett. 67, 1957–1959 (1995).
[CrossRef]

A. M. Glass, D. von der Linde, and T. J. Negran, “High-voltage bulk photovoltaic effect and the photorefractive processin LiNbO3,” Appl. Phys. Lett. 25, 233–235 (1974).
[CrossRef]

B. I. Sturman, Maria Aguilar, F. Agullo-Lopez, V. Pruneri, P. G. Kazansky, and D. C. Hanna, “Mechanism of self-organized light-induced scattering in periodicallypoled lithium niobate,” Appl. Phys. Lett. 69, 1349–1351 (1996).
[CrossRef]

Electron. Lett. (3)

Q. Chen and W. P. Risk, “Periodic poling of KTiOPO4using an applied electric field,” Electron. Lett. 30, 1516–1517 (1994).
[CrossRef]

H. Karlsson, F. Laurell, P. Henriksson, and G. Ardvisson, “Frequency doubling in periodically poled RbTiOAsO4,” Electron. Lett. 32, 556–557 (1996).
[CrossRef]

J. Webjörn, V. Pruneri, P. St. Russell, J. R. M. Barr, and D. C. Hanna, “Quasi-phase-matched blue light generation in bulk lithium niobate, electrically poled via periodic liquid electrods,” Electron. Lett. 30, 894–895 (1994).
[CrossRef]

Ferroelectrics (2)

N. N. Kukhtarev, V. B. Markov, S. G. Odoulov, and M. S. Soskin, “Holographic storage in electrooptic crystals,” Ferroelectrics 22, 949–960 (1979).
[CrossRef]

T. J. Volk, V. V. Volkov, V. V. Krasnikov, V. I. Pryalkin, and N. M. Rubinina, “Optical and nonlinear-optical investigations in Mg- and Zn-doped LiNbO3,” Ferroelectrics 109, 345–350 (1990).
[CrossRef]

IEEE Photonics Technol. Lett. (1)

W. K. Burns, W. McElhanon, and L. Goldberg, “Second harmonic generation in field poled, quasi-phase-matched, bulk LiNbO3,” IEEE Photonics Technol. Lett. 6, 252–254 (1994).
[CrossRef]

J. Appl. Phys. (1)

S. N. Zhu, Y. Y. Zhu, Z. Y. Zhang, H. Shu, H. F. Wang, J. F. Hong, C. Z. Ge, and N. B. Ming, “LiTaO3crystal periodically poled by applying an external pulsed field,” J. Appl. Phys. 77, 5481–5483 (1995).
[CrossRef]

J. Opt. Soc. Am. B (2)

Opt. Lett. (2)

Phys. Rep. (1)

B. I. Sturman, S. G. Odoulov, and M. Yu. Goul'kov, “Parametric four-wave processes in photorefractive crystals,” Phys. Rep. 275, 197–254 (1996).
[CrossRef]

Other (2)

P. Günter and J.-P. Huignard, eds., PhotorefractiveMaterials and Their Applications I, Vol. 61 of Topics in Applied Physics(Springer-Verlag, Berlin, 1988).

B. I. Sturman and V. M. Fridkin, The Photovoltaicand Photorefractive Effects in Noncentrosymmetric Materials (Gordon& Breach, Philadelphia, 1992).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Geometrical scheme of PPF; x± are the domain sizes, x0 is the period, and c is the polar axis. The waves of wave vectors k1 and k2 in PPF form a standing interference pattern.

Fig. 2
Fig. 2

(a) Scheme for the photovoltaic charge separation in a symmetric domain structure exposed to light modulated in the z direction with a period Λ=2π/K. (b), (c) Corresponding dependences for Ez(x) and δn(x).

Fig. 3
Fig. 3

Dependence Ez,K(x/x0) for a symmetric domain structure and a dominating photovoltaic transport. Curves 1, 2, and 3 correspond to x0/Λ=0.5, 2, and 4, respectively.

Fig. 4
Fig. 4

Dependence of the fundamental amplitude EK(0) on the ratio K/G for ξ=0, 0.4, and 0.8 (curves 1, 2, and 3, respectively).

Fig. 5
Fig. 5

Wave-vector diagram with the corresponding grating vectors satisfying the phase-matching condition.

Equations (38)

Equations on this page are rendered with MathJax. Learn more.

δn=-n3rEz/2,
div(δj)=0,
δj=βz+κE0z+kBTeκδI+κI0E.
I0=|A1|2+|A2|2,
δI=A1A2* exp(iK·r)+c.c.,
φ=φK(x)exp(iK·r)+c.c.;
E=EK(x)exp(iK·r)+c.c.
d2dx2-2iKx ddx-K2φK
=i[Kz(Epvsignβ+E0)+iED] A1A2*I0,
φ(-x-)=φ(x+);φ(-x-)=φ(x+).
φK±=iK2{Epv[qc±*(q)exp(q*x)+q*c±(-q)×exp(-qx)Kz]-KzE0-iKED} A1A2*I0.
c+(q)=1-exp(-qx-)exp (qx+)-exp(-qx-),
c-(q)=1-exp(qx+)exp(qx+)-exp(-qx-),
Ez,K=Epvsinh (Kx)-sinh (KxKx0/2)sinh (Kx0/2)1-E0-iED A1A2*I0.
Δn(x, y)=-n3|r|2A1A2*I0exp(iK·r)s=-EK(s)×exp(isG·r)+c.c.,
EK(s)=-iKzx0I0A1A2*0x+φK+ exp(-isGx)dx--x-0φK- exp(-isGx)dx,
EK(0)=-Epv Kz2K21-4Kzx0×Req* cosh (qx0/2)-q* cosh (qx0ξ/2)q sinh (qx0/2),
EK(s)=Epv 4Kz2K2x0exp[-isπ(1+ξ)/2]×Recos [sπ(1+ξ)/2][cosh (qx0/2)-cosh (qx0ξ/2)]-i sinh (qx0ξ/2)sin [sπ(1+ξ)/2]sinh (qx0/2)(q+isG),
EK(s)4Epvx0(K+isG)exp[-is(1+ξ)/2]×cos [sπ(1+ξ)/2].
EK(0)=-ξ KzK2(KzE0+iKED).
EK(s)=-2KzπsK2(KzE0+iKED) sin [sπ(1+ξ)/2]×exp[-isπ(1+ξ)/2].
ks1+ks2+sG=2kp.
sin θ(s)=sλnx0-sλ2nx021/2.
K1+sG=K2.
(K1,2)x(K1,2)z±θ(s)2;1x0(K1,2)znθ(s)2πs.
ddx-iΔAs1=i 2πλ(δn)K1Ap,
ddx-iΔAs2=i 2πλ(δn)K2*Ap,
(δn)K1=-n3|r|(As1Ap*EK1(0)+ApAs2*EK2(-s))/2Ip,
(δn)K2=-n3|r|(As1Ap*EK1(s)+ApAs2*EK2(0))/2Ip,
ddx-iΔAs1=-iπn3|r|λ[EK1(0)As1+EK2(-s)As2* exp(2iϕp)],
ddx+iΔAs2*=iπn3|r|λ[EK1(s)As1 exp(-2iϕp)+EK2(0)As2*],
Γs=±πn3|r|λ[EK1(s)EK2(-s)-(Δ˜-EK1,2(0))2]1/2,
Γs=gpv 2θ(s)πs|cos[sπ(1+ξ)/2]|,
Γs=2g0πs|sin[sπ(1+ξ)/2]|
λ=514nm,x0=7µm,n=ne=2.3,
|r|=r33=3×10-9cm/V,Epv=50kV/cm.
ηsin2 (gpvlEK(0)/2Epv),
|EK(0)|Epv1-θoutcθouttanh(θout/θoutc).

Metrics