Abstract

Spatial and spectral studies of stimulated Rayleigh scattering in a Kerr medium carried out near threshold reveal that propagation behavior of the incident laser beam drastically influences the scattering process. The filamentation increases the local field intensity, allowing stimulated scattering to start. The time-dependent feature of the filaments broadens the spectrum of scattering through cross-phase modulation. Understanding the roles of Kerr effects in all the generation processes of the large-bandwidth stimulated scattering requires taking into account the forward and backward competition.

© 1997 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. Etchepare, G. Grillon, J. P. Chambaret, G. Hamoniaux, and A. Orszag, Opt. Commun. 63, 329 (1987).
    [CrossRef]
  2. G. Rivoire, in Modern Nonlinear Optics, Part 1, M. Evans and S.Kielich, eds., Vol. 35 of Advances in Chemical Physics Series (Wiley, NewYork, 1993), p. 217; J. P. Bourdin, P. X. Nguyen, G. Rivoire, and J. M. Nunzi, Nonlinear Opt. 7, 16 (1994).
  3. A. Barthelemy, S. Maneuf, and C. Froehly, Opt. Commun. 55, 201 (1985); S. Maneuf, R. Desailly, and C. Froehly, Opt. Commun. 65, 193 (1988).
    [CrossRef]
  4. G. Rivoire and D. Wang, J. Chem. Phys. 98, 9279 (1993); 99, 9460 (1993).
    [CrossRef]
  5. G. S. He and P. N. Prasad, Phys. Rev. A 41, 2687 (1990).
    [CrossRef] [PubMed]
  6. H. Z. Wang, X. G. Zheng, W. D. Mao, Z. X. Yu, and Z. L. Gao, Phys. Rev. A 52, 1740 (1995); J. Y. Zhou, H. Z. Wang, Y. C. Li, and Z. X. Yu, J. Mod. Opt. 38, 1015 (1991).
    [CrossRef] [PubMed]
  7. H. B. Lin and A. J. Campillo, Phys. Rev. Lett. 73, 2440 (1994).
    [CrossRef] [PubMed]
  8. J. L. Cheung, A. S. Kwok, K. A. Juvan, D. H. Leach, and R. K. Chang, Chem. Phys. Lett. 213, 309 (1993).
    [CrossRef]
  9. R. W. Boyd, Nonlinear Optics (Academic, New York, 1992), p. 260.
  10. Ref. 9, p. 395.
  11. P. L. Baldeck, P. P. Ho, and R. R. Alfano, Rev. Phys. Appl. 22, 1677 (1987).
    [CrossRef]
  12. Y. R. Shen, Prog. Quantum Electron. 4, 1 (1975).
    [CrossRef]
  13. M. Vampouille, B. Colombeau, and C. Froehly, Opt. Quantum Electron. 14, 253 (1982).
    [CrossRef]
  14. M. Maier and W. Kaiser, in Laser Handbook, F. T. Arecchi and E. O. Schultz-Dubois, eds. (North-Holland, Amsterdam, 1972), Vol. II, p. 1136.
  15. M. Maier and W. Kaiser, Ref. 14, p. 1143.
  16. E. J. Miller, M. S. Malcuit, and R. W. Boyd, Opt. Lett. 15, 1188 (1990).
    [CrossRef] [PubMed]

1994

H. B. Lin and A. J. Campillo, Phys. Rev. Lett. 73, 2440 (1994).
[CrossRef] [PubMed]

1993

J. L. Cheung, A. S. Kwok, K. A. Juvan, D. H. Leach, and R. K. Chang, Chem. Phys. Lett. 213, 309 (1993).
[CrossRef]

1990

1987

J. Etchepare, G. Grillon, J. P. Chambaret, G. Hamoniaux, and A. Orszag, Opt. Commun. 63, 329 (1987).
[CrossRef]

P. L. Baldeck, P. P. Ho, and R. R. Alfano, Rev. Phys. Appl. 22, 1677 (1987).
[CrossRef]

1982

M. Vampouille, B. Colombeau, and C. Froehly, Opt. Quantum Electron. 14, 253 (1982).
[CrossRef]

1975

Y. R. Shen, Prog. Quantum Electron. 4, 1 (1975).
[CrossRef]

Alfano, R. R.

P. L. Baldeck, P. P. Ho, and R. R. Alfano, Rev. Phys. Appl. 22, 1677 (1987).
[CrossRef]

Baldeck, P. L.

P. L. Baldeck, P. P. Ho, and R. R. Alfano, Rev. Phys. Appl. 22, 1677 (1987).
[CrossRef]

Boyd, R. W.

Campillo, A. J.

H. B. Lin and A. J. Campillo, Phys. Rev. Lett. 73, 2440 (1994).
[CrossRef] [PubMed]

Chambaret, J. P.

J. Etchepare, G. Grillon, J. P. Chambaret, G. Hamoniaux, and A. Orszag, Opt. Commun. 63, 329 (1987).
[CrossRef]

Chang, R. K.

J. L. Cheung, A. S. Kwok, K. A. Juvan, D. H. Leach, and R. K. Chang, Chem. Phys. Lett. 213, 309 (1993).
[CrossRef]

Cheung, J. L.

J. L. Cheung, A. S. Kwok, K. A. Juvan, D. H. Leach, and R. K. Chang, Chem. Phys. Lett. 213, 309 (1993).
[CrossRef]

Colombeau, B.

M. Vampouille, B. Colombeau, and C. Froehly, Opt. Quantum Electron. 14, 253 (1982).
[CrossRef]

Etchepare, J.

J. Etchepare, G. Grillon, J. P. Chambaret, G. Hamoniaux, and A. Orszag, Opt. Commun. 63, 329 (1987).
[CrossRef]

Froehly, C.

M. Vampouille, B. Colombeau, and C. Froehly, Opt. Quantum Electron. 14, 253 (1982).
[CrossRef]

Grillon, G.

J. Etchepare, G. Grillon, J. P. Chambaret, G. Hamoniaux, and A. Orszag, Opt. Commun. 63, 329 (1987).
[CrossRef]

Hamoniaux, G.

J. Etchepare, G. Grillon, J. P. Chambaret, G. Hamoniaux, and A. Orszag, Opt. Commun. 63, 329 (1987).
[CrossRef]

He, G. S.

G. S. He and P. N. Prasad, Phys. Rev. A 41, 2687 (1990).
[CrossRef] [PubMed]

Ho, P. P.

P. L. Baldeck, P. P. Ho, and R. R. Alfano, Rev. Phys. Appl. 22, 1677 (1987).
[CrossRef]

Juvan, K. A.

J. L. Cheung, A. S. Kwok, K. A. Juvan, D. H. Leach, and R. K. Chang, Chem. Phys. Lett. 213, 309 (1993).
[CrossRef]

Kwok, A. S.

J. L. Cheung, A. S. Kwok, K. A. Juvan, D. H. Leach, and R. K. Chang, Chem. Phys. Lett. 213, 309 (1993).
[CrossRef]

Leach, D. H.

J. L. Cheung, A. S. Kwok, K. A. Juvan, D. H. Leach, and R. K. Chang, Chem. Phys. Lett. 213, 309 (1993).
[CrossRef]

Lin, H. B.

H. B. Lin and A. J. Campillo, Phys. Rev. Lett. 73, 2440 (1994).
[CrossRef] [PubMed]

Malcuit, M. S.

Miller, E. J.

Orszag, A.

J. Etchepare, G. Grillon, J. P. Chambaret, G. Hamoniaux, and A. Orszag, Opt. Commun. 63, 329 (1987).
[CrossRef]

Prasad, P. N.

G. S. He and P. N. Prasad, Phys. Rev. A 41, 2687 (1990).
[CrossRef] [PubMed]

Shen, Y. R.

Y. R. Shen, Prog. Quantum Electron. 4, 1 (1975).
[CrossRef]

Vampouille, M.

M. Vampouille, B. Colombeau, and C. Froehly, Opt. Quantum Electron. 14, 253 (1982).
[CrossRef]

Chem. Phys. Lett.

J. L. Cheung, A. S. Kwok, K. A. Juvan, D. H. Leach, and R. K. Chang, Chem. Phys. Lett. 213, 309 (1993).
[CrossRef]

Opt. Commun.

J. Etchepare, G. Grillon, J. P. Chambaret, G. Hamoniaux, and A. Orszag, Opt. Commun. 63, 329 (1987).
[CrossRef]

Opt. Lett.

Opt. Quantum Electron.

M. Vampouille, B. Colombeau, and C. Froehly, Opt. Quantum Electron. 14, 253 (1982).
[CrossRef]

Phys. Rev. A

G. S. He and P. N. Prasad, Phys. Rev. A 41, 2687 (1990).
[CrossRef] [PubMed]

Phys. Rev. Lett.

H. B. Lin and A. J. Campillo, Phys. Rev. Lett. 73, 2440 (1994).
[CrossRef] [PubMed]

Prog. Quantum Electron.

Y. R. Shen, Prog. Quantum Electron. 4, 1 (1975).
[CrossRef]

Rev. Phys. Appl.

P. L. Baldeck, P. P. Ho, and R. R. Alfano, Rev. Phys. Appl. 22, 1677 (1987).
[CrossRef]

Other

M. Maier and W. Kaiser, in Laser Handbook, F. T. Arecchi and E. O. Schultz-Dubois, eds. (North-Holland, Amsterdam, 1972), Vol. II, p. 1136.

M. Maier and W. Kaiser, Ref. 14, p. 1143.

H. Z. Wang, X. G. Zheng, W. D. Mao, Z. X. Yu, and Z. L. Gao, Phys. Rev. A 52, 1740 (1995); J. Y. Zhou, H. Z. Wang, Y. C. Li, and Z. X. Yu, J. Mod. Opt. 38, 1015 (1991).
[CrossRef] [PubMed]

R. W. Boyd, Nonlinear Optics (Academic, New York, 1992), p. 260.

Ref. 9, p. 395.

G. Rivoire, in Modern Nonlinear Optics, Part 1, M. Evans and S.Kielich, eds., Vol. 35 of Advances in Chemical Physics Series (Wiley, NewYork, 1993), p. 217; J. P. Bourdin, P. X. Nguyen, G. Rivoire, and J. M. Nunzi, Nonlinear Opt. 7, 16 (1994).

A. Barthelemy, S. Maneuf, and C. Froehly, Opt. Commun. 55, 201 (1985); S. Maneuf, R. Desailly, and C. Froehly, Opt. Commun. 65, 193 (1988).
[CrossRef]

G. Rivoire and D. Wang, J. Chem. Phys. 98, 9279 (1993); 99, 9460 (1993).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Experimental setup for spatial and spectral observation of backward and forward SRWS. L0–L2 lenses; PD, photodiode for energy monitoring; CCD-1, CCD-2, CCD cameras.

Fig. 2
Fig. 2

Pump-intensity dependence of the transmitted beam diameter at the end of the cell (crosses) and of backward stimulated scattering intensity (circles).

Fig. 3
Fig. 3

Backscattered beam size tracing. The points represent the experimental values, and the curve is calculated linear Gaussian beam propagation from the source.

Fig. 4
Fig. 4

Polarization dependence of the backward SRWS.

Fig. 5
Fig. 5

(Left) typical beam patterns and (right) spectra of backward scattering: (a) at threshold excitation IIN=ITR=1 GW/cm2, (b) a little above threshold IIN=1.35 GW/cm2, and (c) at far threshold excitation IIN=10 GW/cm2. The wavelength zero refers to the input laser line: λ=532 nm.

Fig. 6
Fig. 6

Spectra of the transmitted beam plus the forward scattering near threshold.

Fig. 7
Fig. 7

Comparison of backward and forward SRWS spectra at various temperatures T.

Tables (1)

Tables Icon

Table 1 Changes in Scattered Intensity with Temperature Increase (from 189 to 279 K) for Near (ΔωΔωR<15 cm-1) and Far (Δω>15 cm-1) Spectral Wings

Equations (10)

Equations on this page are rendered with MathJax. Learn more.

Δωmaxω=ln2cILt.
Δωmaxω=0.8 ln2 I0cτ.
g=A(α-α)2T,
n2=n2e+n2n=n2e+B(α-α)2T,
dIR=-gIRILdz,
dIL=-gIRILdz,
IL=C1-k exp(-Cgz),
IR=Ck exp(-Cgz)1-k exp(-Cgz),
I0 exp(gCl)=(C+)(I0-C).
ΔIRΔT=-ΔCΔT=-ΔIL(z=l)ΔTCgΔgΔT<0.

Metrics