T. Nishikawa and N. Uesugi, “Transverse beam profile characteristics of traveling-wave parametricgeneration in KTiOPO_{4}crystals,” Opt. Commun. 124, 512–518 (1996).

[CrossRef]

T. Nishikawa and N. Uesugi, “Effects of walk-off and group velocity difference on the optical parametricgeneration in KTiOPO_{4}crystals,” J. Appl. Phys. 77, 4941–4947 (1995).

[CrossRef]

A. V. Smith and M. S. Bowers, “Phase distortions in sum- and difference-frequency mixing in crystals,” J. Opt. Soc. Am. B 12, 49–57 (1995).

[CrossRef]

A. V. Smith, W. J. Alford, T. D. Raymond, and M. S. Bowers, “Comparison of a numerical model with measured performance of a seeded, nanosecond KTP optical parametric oscillator,” J. Opt. Soc. Am. B 12, 2253–2260 (1995).

[CrossRef]

P. Pliszka and P. P. Banerjee, “Nonlinear transverse effects in second-harmonic generation,” J. Opt. Soc. Am. B 10, 1810–1819 (1993).

[CrossRef]

W. R. Bosenberg and R. H. Jarman, “Type-II phase matched KNbO_{3}optical parametric oscillator,” Opt. Lett. 18, 1323–1325 (1993).

[CrossRef]

S. S. Ma, D. M. Guthals, B. F. Campbell, and P. H. Hu, “Three-dimensional anisotropic physical optics modeling of three wavemixing,” in Laser Resonators and Coherent Optics: Modeling, Technology, and Applications, A. Bhowmik, ed., Proc. SPIE 1868, 135–142 (1993).

[CrossRef]

M. Nieto-Vesperinas and G. Lera, “Solution to non-linear optical frequency mixing equations with depletionand diffraction: difference frequency generation,” Opt. Commun. 69, 329–333 (1989).

[CrossRef]

J. Q. Yao and T. S. Fahlen, “Calculations of optimum phase match parameters for the biaxial crystal KTiOPO_{4},” J. Appl. Phys. 55, 65–68 (1984).

[CrossRef]

S. C. Sheng and A. E. Siegman, “Nonlinear-optical calculations using fast-transform methods: second-harmonicgeneration with depletion and diffraction,” Phys. Rev. A 21, 599–606 (1980).

[CrossRef]

E. Lalor, “The angular spectrum representation of electromagnetic fields in crystals.II. Biaxial crystals,” J. Math. Phys. 13, 443–449 (1972).

[CrossRef]

E. Lalor, “An analytical approach to the theory of internal conical refraction,” J. Math. Phys. 13, 449–454 (1972).

[CrossRef]

A. V. Smith and M. S. Bowers, “Phase distortions in sum- and difference-frequency mixing in crystals,” J. Opt. Soc. Am. B 12, 49–57 (1995).

[CrossRef]

A. V. Smith, W. J. Alford, T. D. Raymond, and M. S. Bowers, “Comparison of a numerical model with measured performance of a seeded, nanosecond KTP optical parametric oscillator,” J. Opt. Soc. Am. B 12, 2253–2260 (1995).

[CrossRef]

S. S. Ma, D. M. Guthals, B. F. Campbell, and P. H. Hu, “Three-dimensional anisotropic physical optics modeling of three wavemixing,” in Laser Resonators and Coherent Optics: Modeling, Technology, and Applications, A. Bhowmik, ed., Proc. SPIE 1868, 135–142 (1993).

[CrossRef]

J. Q. Yao and T. S. Fahlen, “Calculations of optimum phase match parameters for the biaxial crystal KTiOPO_{4},” J. Appl. Phys. 55, 65–68 (1984).

[CrossRef]

S. S. Ma, D. M. Guthals, B. F. Campbell, and P. H. Hu, “Three-dimensional anisotropic physical optics modeling of three wavemixing,” in Laser Resonators and Coherent Optics: Modeling, Technology, and Applications, A. Bhowmik, ed., Proc. SPIE 1868, 135–142 (1993).

[CrossRef]

S. S. Ma, D. M. Guthals, B. F. Campbell, and P. H. Hu, “Three-dimensional anisotropic physical optics modeling of three wavemixing,” in Laser Resonators and Coherent Optics: Modeling, Technology, and Applications, A. Bhowmik, ed., Proc. SPIE 1868, 135–142 (1993).

[CrossRef]

E. Lalor, “The angular spectrum representation of electromagnetic fields in crystals.II. Biaxial crystals,” J. Math. Phys. 13, 443–449 (1972).

[CrossRef]

E. Lalor, “An analytical approach to the theory of internal conical refraction,” J. Math. Phys. 13, 449–454 (1972).

[CrossRef]

M. Nieto-Vesperinas and G. Lera, “Solution to non-linear optical frequency mixing equations with depletionand diffraction: difference frequency generation,” Opt. Commun. 69, 329–333 (1989).

[CrossRef]

S. S. Ma, D. M. Guthals, B. F. Campbell, and P. H. Hu, “Three-dimensional anisotropic physical optics modeling of three wavemixing,” in Laser Resonators and Coherent Optics: Modeling, Technology, and Applications, A. Bhowmik, ed., Proc. SPIE 1868, 135–142 (1993).

[CrossRef]

M. Nieto-Vesperinas and G. Lera, “Solution to non-linear optical frequency mixing equations with depletionand diffraction: difference frequency generation,” Opt. Commun. 69, 329–333 (1989).

[CrossRef]

T. Nishikawa and N. Uesugi, “Transverse beam profile characteristics of traveling-wave parametricgeneration in KTiOPO_{4}crystals,” Opt. Commun. 124, 512–518 (1996).

[CrossRef]

T. Nishikawa and N. Uesugi, “Effects of walk-off and group velocity difference on the optical parametricgeneration in KTiOPO_{4}crystals,” J. Appl. Phys. 77, 4941–4947 (1995).

[CrossRef]

S. C. Sheng and A. E. Siegman, “Nonlinear-optical calculations using fast-transform methods: second-harmonicgeneration with depletion and diffraction,” Phys. Rev. A 21, 599–606 (1980).

[CrossRef]

S. C. Sheng and A. E. Siegman, “Nonlinear-optical calculations using fast-transform methods: second-harmonicgeneration with depletion and diffraction,” Phys. Rev. A 21, 599–606 (1980).

[CrossRef]

A. V. Smith and M. S. Bowers, “Phase distortions in sum- and difference-frequency mixing in crystals,” J. Opt. Soc. Am. B 12, 49–57 (1995).

[CrossRef]

A. V. Smith, W. J. Alford, T. D. Raymond, and M. S. Bowers, “Comparison of a numerical model with measured performance of a seeded, nanosecond KTP optical parametric oscillator,” J. Opt. Soc. Am. B 12, 2253–2260 (1995).

[CrossRef]

T. Nishikawa and N. Uesugi, “Transverse beam profile characteristics of traveling-wave parametricgeneration in KTiOPO_{4}crystals,” Opt. Commun. 124, 512–518 (1996).

[CrossRef]

T. Nishikawa and N. Uesugi, “Effects of walk-off and group velocity difference on the optical parametricgeneration in KTiOPO_{4}crystals,” J. Appl. Phys. 77, 4941–4947 (1995).

[CrossRef]

J. Q. Yao and T. S. Fahlen, “Calculations of optimum phase match parameters for the biaxial crystal KTiOPO_{4},” J. Appl. Phys. 55, 65–68 (1984).

[CrossRef]

T. Nishikawa and N. Uesugi, “Effects of walk-off and group velocity difference on the optical parametricgeneration in KTiOPO_{4}crystals,” J. Appl. Phys. 77, 4941–4947 (1995).

[CrossRef]

J. Q. Yao and T. S. Fahlen, “Calculations of optimum phase match parameters for the biaxial crystal KTiOPO_{4},” J. Appl. Phys. 55, 65–68 (1984).

[CrossRef]

E. Lalor, “The angular spectrum representation of electromagnetic fields in crystals.II. Biaxial crystals,” J. Math. Phys. 13, 443–449 (1972).

[CrossRef]

E. Lalor, “An analytical approach to the theory of internal conical refraction,” J. Math. Phys. 13, 449–454 (1972).

[CrossRef]

A. V. Smith and M. S. Bowers, “Phase distortions in sum- and difference-frequency mixing in crystals,” J. Opt. Soc. Am. B 12, 49–57 (1995).

[CrossRef]

A. V. Smith, W. J. Alford, T. D. Raymond, and M. S. Bowers, “Comparison of a numerical model with measured performance of a seeded, nanosecond KTP optical parametric oscillator,” J. Opt. Soc. Am. B 12, 2253–2260 (1995).

[CrossRef]

M. A. Dreger and J. K. McIver, “Second-harmonic generation in a nonlinear, anisotropic medium withdiffraction and depletion,” J. Opt. Soc. Am. B 7, 776–784 (1990).

[CrossRef]

P. Pliszka and P. P. Banerjee, “Nonlinear transverse effects in second-harmonic generation,” J. Opt. Soc. Am. B 10, 1810–1819 (1993).

[CrossRef]

M. Nieto-Vesperinas and G. Lera, “Solution to non-linear optical frequency mixing equations with depletionand diffraction: difference frequency generation,” Opt. Commun. 69, 329–333 (1989).

[CrossRef]

T. Nishikawa and N. Uesugi, “Transverse beam profile characteristics of traveling-wave parametricgeneration in KTiOPO_{4}crystals,” Opt. Commun. 124, 512–518 (1996).

[CrossRef]

S. C. Sheng and A. E. Siegman, “Nonlinear-optical calculations using fast-transform methods: second-harmonicgeneration with depletion and diffraction,” Phys. Rev. A 21, 599–606 (1980).

[CrossRef]

S. S. Ma, D. M. Guthals, B. F. Campbell, and P. H. Hu, “Three-dimensional anisotropic physical optics modeling of three wavemixing,” in Laser Resonators and Coherent Optics: Modeling, Technology, and Applications, A. Bhowmik, ed., Proc. SPIE 1868, 135–142 (1993).

[CrossRef]

M. S. Bowers and A. V. Smith, “Optical parametric oscillatormodeling with diffraction, depletion, and double refraction,” in Advanced Solid-State Lasers, Vol. 20 of 1994 OSA ProceedingsSeries, T. Y. Fan and B. Chai, eds. (Optical Society of America, Washington, D.C., 1994), pp. 471–474.

V. G. Dmitriev, G. G. Gurzadyan, and D. N. Nikogosyan, Handbook of Nonlinear Optical Crystals (Springer-Verlag, Heidelberg, 1991), Chap. 2.8.

R. W. Boyd, Nonlinear Optics(Academic, Boston, 1992), Chap. 4.

W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P.Flannery, Numerical Recipes in C, 2nd ed. (CambridgeU. Press, New York, 1992), Chap. 16.

G. P. Agrawal, Nonlinear Fiber Optics(Academic, Boston, 1989), Chap. 2.4.