Abstract

Two computational methods are common for simulating the evolution of three beams propagating in a birefringent medium and interacting through a second-order nonlinearity: the split-step method and solution of the coupled equations for the amplitudes of the spatial frequency components of the beams (Fourier-space method). I (i) compare the accuracy and computational cost of both methods, (ii) investigate the effect of using a first-order expansion for the refractive index as a function of propagation direction, and (iii) generalize both methods to handle arbitrary propagation directions in biaxial crystals. It turns out that the Fourier-space method with a Runge–Kutta solver gives best accuracy, but a symmetrized split-step method may be faster when low accuracy is sufficient. The first-order expansion for the refractive index gives a very small error for well-collimated beams, but the approximation is not important for computational efficiency. Modeling of parametric amplification outside the principal planes of a biaxial crystal is demonstrated, and to the author's knowledge this process has not been modeled in such detail before.

© 1997 Optical Society of America

Full Article  |  PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (4)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Tables (1)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (17)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription