Abstract

We show that the far fields generated by a source inside or near a microparticle can be obtained readily by using the reciprocity theorem along with the internal or near fields generated by plane-wave illumination. This method is useful for solving problems for which the scattered fields generated with plane-wave illumination have already been obtained. We illustrate the method for the case of a homogeneous sphere and then apply it to the problem of emission from a dipole inside a sphere that is near a plane interface.

© 1997 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. E. Benner, P. W. Barber, J. F. Owen, and R. K. Chang, “Observations of structure resonances in the fluorescence emission from microspheres,” Phys. Rev. Lett. 44, 475–478 (1980).
    [Crossref]
  2. M. D. Barnes, C.-Y. Kung, W. B. Whitten, J. M. Ramsey, S. Arnold, and S. Holler, “Fluorescence of oriented molecules in a microcavity,” Phys. Rev. Lett. 76, 3931–3934 (1996).
    [Crossref] [PubMed]
  3. S. C. Hill, H. I. Saleheen, M. D. Barnes, W. B. Whitten, and J. M. Ramsey, “Collection of fluorescence from single molecules inside of droplets:effects of position, orientation and frequency,” Appl. Opt. 35, 6278–6288 (1996).
    [Crossref] [PubMed]
  4. M. D. Barnes, C.-Y. Kung, W. B. Whitten, J. M. Ramsey, and S. Arnold, “Molecular fluorescence in a microcavity: solvation dynamics and single molecule detection,” in Optical Processes in Microcavities, R. K. Chang and A. J. Campillo, eds. (World Scientific, Singapore, 1996), pp. 135–165.
  5. R. Thurn and W. Kiefer, “Structural resonances observed in the Raman spectra of optically levitated liquid droplets,” Appl. Opt. 24, 1515–1519 (1985).
    [Crossref]
  6. M. F. Buehler, T. M. Allen, and E. J. Davis, “Microparticle Raman spectroscopy of multicomponent aerosols,” J. Colloid Interface Sci. 146, 79–89 (1991).
    [Crossref]
  7. H.-M. Tzeng, K. F. Wall, M. B. Long, and R. K. Chang, “Laser emission from individual droplets at wavelengths corresponding to morphology-dependent resonances,” Opt. Lett. 9, 499–501 (1984).
    [Crossref] [PubMed]
  8. S. L. McCall, A. F. J. Levi, R. E. Slusher, S. J. Pearton, and R. A. Logan, “Whispering-gallery mode microdisk lasers,” Appl. Phys. Lett. 60, 289–291 (1992).
    [Crossref]
  9. H.-B. Lin, J. D. Eversole, and A. J. Campillo, “Spectral properties of lasing microdroplets,” J. Opt. Soc. Am. B 9, 43–50 (1992).
    [Crossref]
  10. J. L. Cheung, J. M. Hartings, and R. K. Chang, “Nonlinear optics of microdroplets illuminated by picosecond laser pulses,” in Handbook of Optical Properties, Vol. 2 of Optics of Small Particles, Interfaces, and Surfaces, R. E. Hummel and P. Wissman, eds. (CRC Press, Boca Raton, Fla, 1997), pp. 233–260.
  11. A. J. Campillo, J. D. Eversole, and H. B. Lin, “Cavity QED modified stimulated and spontaneous processes in microdroplets,” in Optical Processes in Microcavities, R. K. Chang and A. J. Campillo, eds. (World Scientific, Singapore, 1996), pp. 167–207.
  12. H. Chew, P. J. McNulty, and M. Kerker, “Model for Raman and fluorescent scattering by molecules embedded in small particles,” Phys. Rev. A 13, 396–404 (1976).
    [Crossref]
  13. Y. S. Kim, P. T. Leung, and T. F. George, “Classical decay rates for molecules in the presence of a spherical surface: a complete treatment,” Surf. Sci. 195, 1–14 (1988).
    [Crossref]
  14. W. C. Chew, Waves and Fields in Inhomogeneous Media (Van Nostrand Reinhold, New York, 1995), Chap. 7.
  15. P. W. Barber and S. C. Hill, Light Scattering by Particles: Computational Methods (World Scientific, Singapore, 1990).
  16. T. E. Ruekgauer, P. Nachman, R. L. Armstrong, and J.-G. Xie, “A nonlinear outcoupling mechanism in a cylindrical dielectric microcavity supporting stimulated Raman scattering,” Opt. Lett. 20, 2090–2092 (1995).
    [Crossref] [PubMed]
  17. M. Schneider, E. D. Hirleman, H. I. Saleheen, D. Q. Chowdhury, and S. C. Hill, “Light scattering by radially inhomogeneous fuel droplets in a high temperature environment,” in Proceedings of the Conference on Laser Applications in Combustion and Combustion Diagnostics, SPIE1862, 269–286 (1993).
    [Crossref]
  18. G. Chen, P. Nachman, R. G. Pinnick, S. C. Hill, and R. K. Chang, “Conditional-firing aerosol-fluorescence spectrum analyzer for individual airborne particles with pulsed 266-nm laser excitation,” Opt. Lett. 21, 1307–1309 (1996). Some of the particles studied were composed of several-to-many rod-shaped bacterial cells.
    [Crossref] [PubMed]
  19. S. C. Hill, R. E. Benner, P. R. Conwell, and C. K. Rushforth, “Structural resonances observed in the fluorescence emission from small particles on substrates,” Appl. Opt. 23, 1680–1683 (1984).
    [Crossref]
  20. S. C. Hill, C. K. Rushforth, R. E. Benner, and P. R. Conwell, “Sizing dielectric spheres and cylinders by aligning structural resonance locations: algorithm for multiple orders,” Appl. Opt. 24, 2380–2390 (1985).
    [Crossref] [PubMed]
  21. P. A. Bobbert and J. Vlieger, “Light scattering by a sphere on a substrate,” Physica A 137, 209–241 (1986).
    [Crossref]
  22. B. R. Johnson, “Light-scattering from a spherical particle on a conducting plane: 1. Normal incidence,” J. Opt. Soc. Am. A 9, 1341–1351 (1992); erratum,  10, 766 (1993).
    [Crossref]
  23. G. Videen, “Light scattering from a sphere on or near a surface,” J. Opt. Soc. Am. A 8, 483–489 (1991); erratum,  9, 844–845 (1992).
    [Crossref]
  24. B. R. Johnson, “Morphology-dependent resonances of a dielectric sphere on a conducting plane,” J. Opt. Soc. Am. A 11, 2055–2064 (1994).
    [Crossref]
  25. B. R. Johnson, “Calculation of light scattering from a spherical particle on a surface by the multipole expansion method,” J. Opt. Soc. Am. A 13, 326–337 (1996).
    [Crossref]
  26. G. Videen, “Light scattering from a particle on or near a perfectly conducting surface,” Opt. Commun. 115, 1–7 (1995).
    [Crossref]
  27. T. C. Rao and R. Barakat, “Plane-wave scattering by a conducting cylinder partially buried in a ground plane. I. TM case,” J. Opt. Soc. Am. A 6, 1270–1280 (1989).
    [Crossref]
  28. T. C. Rao and R. Barakat, “Plane-wave scattering by a conducting cylinder partially buried in a ground plane. II. TE case,” J. Opt. Soc. Am. A 8, 1986–1990 (1991).
    [Crossref]
  29. J. C. Bertrand and J. W. Young, “Multiple scattering between a cylinder and a plane,” J. Acoust. Soc. Am. 60, 1265–1269 (1975).
    [Crossref]
  30. P. J. Valle, F. González, and F. Moreno, “Electromagnetic wave scattering from conducting cylindrical structures on flat substrates: study by means of the extinction theorem,” Appl. Opt. 33, 512–523 (1994).
    [Crossref] [PubMed]
  31. A. Madrazo and M. Nieto-Vesperinas, “Scattering of electromagnetic waves from a cylinder in front of a conducting plane,” J. Opt. Soc. Am. A 12, 1298–1309 (1995).
    [Crossref]
  32. R. Borghi, F. Gori, M. Santarsiero, F. Frezza, and G. Schettini, “Plane-wave scattering by a perfectly conducting circular cylinder near a plane surface: cylindrical-wave approach,” J. Opt. Soc. Am. A 13, 483–493 (1996).
    [Crossref]
  33. G. Videen and D. Ngo, “Light scattering from a cylinder near a plane interface: theory and comparison with experimental data,” J. Opt. Soc. Am. A 14, 70–78 (1997).
    [Crossref]
  34. S. C. Hill, H. I. Saleheen, and K. A. Fuller, “Volume current method for modeling light scattering by inhomogeneously perturbed spheres,” J. Opt. Soc. Am. A 12, 905–915 (1995).
    [Crossref]
  35. B. V. Bronk, M. J. Smith, and S. Arnold, “Photon-correlation spectroscopy for small spherical inclusions in a micrometer-sized electrodynamically levitated droplet,” Opt. Lett. 18, 93–95 (1993).
    [Crossref] [PubMed]
  36. D. Ngo and R. G. Pinnick, “Suppression of scattering resonances in inhomogeneous microdroplets,” J. Opt. Soc. Am. A 11, 1352–1359 (1994).
    [Crossref]
  37. C.-T. Tai, Dyadic Green Functions in Electromagnetic Theory, 2nd ed. (IEEE, Piscataway, N.J., 1994), p. 102.
  38. Another common way to write the Green function relation is E(r)=ω2μ∫V′G¯(r, r′)·P(r′)dV′, where P(r′)=-iωJ(r′). The dipole moment p(r′) of the source is related to the polarization per unit volume P(r′) by p(r′)=∫V′P(r′)dv′. We use the notation of individual dipoles because we have been modeling radiation from individual molecules.
  39. The assumption of a uniform permeability is valid for the problems we want to model, which are at optical frequencies.
  40. Ref. 14, pp. 410–411. The relation for regions with varying μ is G¯(ra, rb)μ(rb)=G¯T(rb, ra)μ(ra).
  41. R. E. Collin, Field Theory of Guided Waves, 2nd ed. (IEEE, Piscataway, N.J., 1991), p. 102.
  42. Time reversal invariance and spatial reciprocity of acoustic waves are discussed in M. Fink, “Time reversed acoustics,” Phys. Today 50(3), 34–40 (1997).
    [Crossref]
  43. J. A. Lock and E. A. Hovenac, “Internal caustic structure of illuminated liquid droplets,” J. Opt. Soc. Am. A 8, 1541–1549 (1991).
    [Crossref]
  44. D. Q. Chowdhury, P. W. Barber, and S. C. Hill, “Energy density distribution inside large nonabsorbing spheres via Mie theory and geometrical optics,” Appl. Opt. 31, 3518–3523 (1992).
    [Crossref] [PubMed]
  45. D. S. Benincasa, P. W. Barber, J. Z. Zhang, W.-F. Hsieh, and R. K. Chang, “Spatial distribution of the internal and near-field intensities of large cylindrical and spherical scatterers,” Appl. Opt. 26, 1348–1356 (1987).
    [Crossref] [PubMed]
  46. E. S. C. Ching, P. T. Leung, and K. Young, “Optical Processes in Microcavities—The Role of Quasinormal Modes,” in Optical Processes in Microcavities, R. K. Chang and A. J. Campillo, eds. (World Scientific, Singapore, 1996), pp. 18–65.

1997 (2)

Time reversal invariance and spatial reciprocity of acoustic waves are discussed in M. Fink, “Time reversed acoustics,” Phys. Today 50(3), 34–40 (1997).
[Crossref]

G. Videen and D. Ngo, “Light scattering from a cylinder near a plane interface: theory and comparison with experimental data,” J. Opt. Soc. Am. A 14, 70–78 (1997).
[Crossref]

1996 (5)

1995 (4)

1994 (3)

1993 (1)

1992 (4)

1991 (4)

1989 (1)

1988 (1)

Y. S. Kim, P. T. Leung, and T. F. George, “Classical decay rates for molecules in the presence of a spherical surface: a complete treatment,” Surf. Sci. 195, 1–14 (1988).
[Crossref]

1987 (1)

1986 (1)

P. A. Bobbert and J. Vlieger, “Light scattering by a sphere on a substrate,” Physica A 137, 209–241 (1986).
[Crossref]

1985 (2)

1984 (2)

1980 (1)

R. E. Benner, P. W. Barber, J. F. Owen, and R. K. Chang, “Observations of structure resonances in the fluorescence emission from microspheres,” Phys. Rev. Lett. 44, 475–478 (1980).
[Crossref]

1976 (1)

H. Chew, P. J. McNulty, and M. Kerker, “Model for Raman and fluorescent scattering by molecules embedded in small particles,” Phys. Rev. A 13, 396–404 (1976).
[Crossref]

1975 (1)

J. C. Bertrand and J. W. Young, “Multiple scattering between a cylinder and a plane,” J. Acoust. Soc. Am. 60, 1265–1269 (1975).
[Crossref]

Allen, T. M.

M. F. Buehler, T. M. Allen, and E. J. Davis, “Microparticle Raman spectroscopy of multicomponent aerosols,” J. Colloid Interface Sci. 146, 79–89 (1991).
[Crossref]

Armstrong, R. L.

Arnold, S.

M. D. Barnes, C.-Y. Kung, W. B. Whitten, J. M. Ramsey, S. Arnold, and S. Holler, “Fluorescence of oriented molecules in a microcavity,” Phys. Rev. Lett. 76, 3931–3934 (1996).
[Crossref] [PubMed]

B. V. Bronk, M. J. Smith, and S. Arnold, “Photon-correlation spectroscopy for small spherical inclusions in a micrometer-sized electrodynamically levitated droplet,” Opt. Lett. 18, 93–95 (1993).
[Crossref] [PubMed]

M. D. Barnes, C.-Y. Kung, W. B. Whitten, J. M. Ramsey, and S. Arnold, “Molecular fluorescence in a microcavity: solvation dynamics and single molecule detection,” in Optical Processes in Microcavities, R. K. Chang and A. J. Campillo, eds. (World Scientific, Singapore, 1996), pp. 135–165.

Barakat, R.

Barber, P. W.

Barnes, M. D.

M. D. Barnes, C.-Y. Kung, W. B. Whitten, J. M. Ramsey, S. Arnold, and S. Holler, “Fluorescence of oriented molecules in a microcavity,” Phys. Rev. Lett. 76, 3931–3934 (1996).
[Crossref] [PubMed]

S. C. Hill, H. I. Saleheen, M. D. Barnes, W. B. Whitten, and J. M. Ramsey, “Collection of fluorescence from single molecules inside of droplets:effects of position, orientation and frequency,” Appl. Opt. 35, 6278–6288 (1996).
[Crossref] [PubMed]

M. D. Barnes, C.-Y. Kung, W. B. Whitten, J. M. Ramsey, and S. Arnold, “Molecular fluorescence in a microcavity: solvation dynamics and single molecule detection,” in Optical Processes in Microcavities, R. K. Chang and A. J. Campillo, eds. (World Scientific, Singapore, 1996), pp. 135–165.

Benincasa, D. S.

Benner, R. E.

Bertrand, J. C.

J. C. Bertrand and J. W. Young, “Multiple scattering between a cylinder and a plane,” J. Acoust. Soc. Am. 60, 1265–1269 (1975).
[Crossref]

Bobbert, P. A.

P. A. Bobbert and J. Vlieger, “Light scattering by a sphere on a substrate,” Physica A 137, 209–241 (1986).
[Crossref]

Borghi, R.

Bronk, B. V.

Buehler, M. F.

M. F. Buehler, T. M. Allen, and E. J. Davis, “Microparticle Raman spectroscopy of multicomponent aerosols,” J. Colloid Interface Sci. 146, 79–89 (1991).
[Crossref]

Campillo, A. J.

H.-B. Lin, J. D. Eversole, and A. J. Campillo, “Spectral properties of lasing microdroplets,” J. Opt. Soc. Am. B 9, 43–50 (1992).
[Crossref]

A. J. Campillo, J. D. Eversole, and H. B. Lin, “Cavity QED modified stimulated and spontaneous processes in microdroplets,” in Optical Processes in Microcavities, R. K. Chang and A. J. Campillo, eds. (World Scientific, Singapore, 1996), pp. 167–207.

Chang, R. K.

Chen, G.

Cheung, J. L.

J. L. Cheung, J. M. Hartings, and R. K. Chang, “Nonlinear optics of microdroplets illuminated by picosecond laser pulses,” in Handbook of Optical Properties, Vol. 2 of Optics of Small Particles, Interfaces, and Surfaces, R. E. Hummel and P. Wissman, eds. (CRC Press, Boca Raton, Fla, 1997), pp. 233–260.

Chew, H.

H. Chew, P. J. McNulty, and M. Kerker, “Model for Raman and fluorescent scattering by molecules embedded in small particles,” Phys. Rev. A 13, 396–404 (1976).
[Crossref]

Chew, W. C.

W. C. Chew, Waves and Fields in Inhomogeneous Media (Van Nostrand Reinhold, New York, 1995), Chap. 7.

Ching, E. S. C.

E. S. C. Ching, P. T. Leung, and K. Young, “Optical Processes in Microcavities—The Role of Quasinormal Modes,” in Optical Processes in Microcavities, R. K. Chang and A. J. Campillo, eds. (World Scientific, Singapore, 1996), pp. 18–65.

Chowdhury, D. Q.

D. Q. Chowdhury, P. W. Barber, and S. C. Hill, “Energy density distribution inside large nonabsorbing spheres via Mie theory and geometrical optics,” Appl. Opt. 31, 3518–3523 (1992).
[Crossref] [PubMed]

M. Schneider, E. D. Hirleman, H. I. Saleheen, D. Q. Chowdhury, and S. C. Hill, “Light scattering by radially inhomogeneous fuel droplets in a high temperature environment,” in Proceedings of the Conference on Laser Applications in Combustion and Combustion Diagnostics, SPIE1862, 269–286 (1993).
[Crossref]

Collin, R. E.

R. E. Collin, Field Theory of Guided Waves, 2nd ed. (IEEE, Piscataway, N.J., 1991), p. 102.

Conwell, P. R.

Davis, E. J.

M. F. Buehler, T. M. Allen, and E. J. Davis, “Microparticle Raman spectroscopy of multicomponent aerosols,” J. Colloid Interface Sci. 146, 79–89 (1991).
[Crossref]

Eversole, J. D.

H.-B. Lin, J. D. Eversole, and A. J. Campillo, “Spectral properties of lasing microdroplets,” J. Opt. Soc. Am. B 9, 43–50 (1992).
[Crossref]

A. J. Campillo, J. D. Eversole, and H. B. Lin, “Cavity QED modified stimulated and spontaneous processes in microdroplets,” in Optical Processes in Microcavities, R. K. Chang and A. J. Campillo, eds. (World Scientific, Singapore, 1996), pp. 167–207.

Fink, M.

Time reversal invariance and spatial reciprocity of acoustic waves are discussed in M. Fink, “Time reversed acoustics,” Phys. Today 50(3), 34–40 (1997).
[Crossref]

Frezza, F.

Fuller, K. A.

George, T. F.

Y. S. Kim, P. T. Leung, and T. F. George, “Classical decay rates for molecules in the presence of a spherical surface: a complete treatment,” Surf. Sci. 195, 1–14 (1988).
[Crossref]

González, F.

Gori, F.

Hartings, J. M.

J. L. Cheung, J. M. Hartings, and R. K. Chang, “Nonlinear optics of microdroplets illuminated by picosecond laser pulses,” in Handbook of Optical Properties, Vol. 2 of Optics of Small Particles, Interfaces, and Surfaces, R. E. Hummel and P. Wissman, eds. (CRC Press, Boca Raton, Fla, 1997), pp. 233–260.

Hill, S. C.

S. C. Hill, H. I. Saleheen, M. D. Barnes, W. B. Whitten, and J. M. Ramsey, “Collection of fluorescence from single molecules inside of droplets:effects of position, orientation and frequency,” Appl. Opt. 35, 6278–6288 (1996).
[Crossref] [PubMed]

G. Chen, P. Nachman, R. G. Pinnick, S. C. Hill, and R. K. Chang, “Conditional-firing aerosol-fluorescence spectrum analyzer for individual airborne particles with pulsed 266-nm laser excitation,” Opt. Lett. 21, 1307–1309 (1996). Some of the particles studied were composed of several-to-many rod-shaped bacterial cells.
[Crossref] [PubMed]

S. C. Hill, H. I. Saleheen, and K. A. Fuller, “Volume current method for modeling light scattering by inhomogeneously perturbed spheres,” J. Opt. Soc. Am. A 12, 905–915 (1995).
[Crossref]

D. Q. Chowdhury, P. W. Barber, and S. C. Hill, “Energy density distribution inside large nonabsorbing spheres via Mie theory and geometrical optics,” Appl. Opt. 31, 3518–3523 (1992).
[Crossref] [PubMed]

S. C. Hill, C. K. Rushforth, R. E. Benner, and P. R. Conwell, “Sizing dielectric spheres and cylinders by aligning structural resonance locations: algorithm for multiple orders,” Appl. Opt. 24, 2380–2390 (1985).
[Crossref] [PubMed]

S. C. Hill, R. E. Benner, P. R. Conwell, and C. K. Rushforth, “Structural resonances observed in the fluorescence emission from small particles on substrates,” Appl. Opt. 23, 1680–1683 (1984).
[Crossref]

P. W. Barber and S. C. Hill, Light Scattering by Particles: Computational Methods (World Scientific, Singapore, 1990).

M. Schneider, E. D. Hirleman, H. I. Saleheen, D. Q. Chowdhury, and S. C. Hill, “Light scattering by radially inhomogeneous fuel droplets in a high temperature environment,” in Proceedings of the Conference on Laser Applications in Combustion and Combustion Diagnostics, SPIE1862, 269–286 (1993).
[Crossref]

Hirleman, E. D.

M. Schneider, E. D. Hirleman, H. I. Saleheen, D. Q. Chowdhury, and S. C. Hill, “Light scattering by radially inhomogeneous fuel droplets in a high temperature environment,” in Proceedings of the Conference on Laser Applications in Combustion and Combustion Diagnostics, SPIE1862, 269–286 (1993).
[Crossref]

Holler, S.

M. D. Barnes, C.-Y. Kung, W. B. Whitten, J. M. Ramsey, S. Arnold, and S. Holler, “Fluorescence of oriented molecules in a microcavity,” Phys. Rev. Lett. 76, 3931–3934 (1996).
[Crossref] [PubMed]

Hovenac, E. A.

Hsieh, W.-F.

Johnson, B. R.

Kerker, M.

H. Chew, P. J. McNulty, and M. Kerker, “Model for Raman and fluorescent scattering by molecules embedded in small particles,” Phys. Rev. A 13, 396–404 (1976).
[Crossref]

Kiefer, W.

Kim, Y. S.

Y. S. Kim, P. T. Leung, and T. F. George, “Classical decay rates for molecules in the presence of a spherical surface: a complete treatment,” Surf. Sci. 195, 1–14 (1988).
[Crossref]

Kung, C.-Y.

M. D. Barnes, C.-Y. Kung, W. B. Whitten, J. M. Ramsey, S. Arnold, and S. Holler, “Fluorescence of oriented molecules in a microcavity,” Phys. Rev. Lett. 76, 3931–3934 (1996).
[Crossref] [PubMed]

M. D. Barnes, C.-Y. Kung, W. B. Whitten, J. M. Ramsey, and S. Arnold, “Molecular fluorescence in a microcavity: solvation dynamics and single molecule detection,” in Optical Processes in Microcavities, R. K. Chang and A. J. Campillo, eds. (World Scientific, Singapore, 1996), pp. 135–165.

Leung, P. T.

Y. S. Kim, P. T. Leung, and T. F. George, “Classical decay rates for molecules in the presence of a spherical surface: a complete treatment,” Surf. Sci. 195, 1–14 (1988).
[Crossref]

E. S. C. Ching, P. T. Leung, and K. Young, “Optical Processes in Microcavities—The Role of Quasinormal Modes,” in Optical Processes in Microcavities, R. K. Chang and A. J. Campillo, eds. (World Scientific, Singapore, 1996), pp. 18–65.

Levi, A. F. J.

S. L. McCall, A. F. J. Levi, R. E. Slusher, S. J. Pearton, and R. A. Logan, “Whispering-gallery mode microdisk lasers,” Appl. Phys. Lett. 60, 289–291 (1992).
[Crossref]

Lin, H. B.

A. J. Campillo, J. D. Eversole, and H. B. Lin, “Cavity QED modified stimulated and spontaneous processes in microdroplets,” in Optical Processes in Microcavities, R. K. Chang and A. J. Campillo, eds. (World Scientific, Singapore, 1996), pp. 167–207.

Lin, H.-B.

Lock, J. A.

Logan, R. A.

S. L. McCall, A. F. J. Levi, R. E. Slusher, S. J. Pearton, and R. A. Logan, “Whispering-gallery mode microdisk lasers,” Appl. Phys. Lett. 60, 289–291 (1992).
[Crossref]

Long, M. B.

Madrazo, A.

McCall, S. L.

S. L. McCall, A. F. J. Levi, R. E. Slusher, S. J. Pearton, and R. A. Logan, “Whispering-gallery mode microdisk lasers,” Appl. Phys. Lett. 60, 289–291 (1992).
[Crossref]

McNulty, P. J.

H. Chew, P. J. McNulty, and M. Kerker, “Model for Raman and fluorescent scattering by molecules embedded in small particles,” Phys. Rev. A 13, 396–404 (1976).
[Crossref]

Moreno, F.

Nachman, P.

Ngo, D.

Nieto-Vesperinas, M.

Owen, J. F.

R. E. Benner, P. W. Barber, J. F. Owen, and R. K. Chang, “Observations of structure resonances in the fluorescence emission from microspheres,” Phys. Rev. Lett. 44, 475–478 (1980).
[Crossref]

Pearton, S. J.

S. L. McCall, A. F. J. Levi, R. E. Slusher, S. J. Pearton, and R. A. Logan, “Whispering-gallery mode microdisk lasers,” Appl. Phys. Lett. 60, 289–291 (1992).
[Crossref]

Pinnick, R. G.

Ramsey, J. M.

M. D. Barnes, C.-Y. Kung, W. B. Whitten, J. M. Ramsey, S. Arnold, and S. Holler, “Fluorescence of oriented molecules in a microcavity,” Phys. Rev. Lett. 76, 3931–3934 (1996).
[Crossref] [PubMed]

S. C. Hill, H. I. Saleheen, M. D. Barnes, W. B. Whitten, and J. M. Ramsey, “Collection of fluorescence from single molecules inside of droplets:effects of position, orientation and frequency,” Appl. Opt. 35, 6278–6288 (1996).
[Crossref] [PubMed]

M. D. Barnes, C.-Y. Kung, W. B. Whitten, J. M. Ramsey, and S. Arnold, “Molecular fluorescence in a microcavity: solvation dynamics and single molecule detection,” in Optical Processes in Microcavities, R. K. Chang and A. J. Campillo, eds. (World Scientific, Singapore, 1996), pp. 135–165.

Rao, T. C.

Ruekgauer, T. E.

Rushforth, C. K.

Saleheen, H. I.

S. C. Hill, H. I. Saleheen, M. D. Barnes, W. B. Whitten, and J. M. Ramsey, “Collection of fluorescence from single molecules inside of droplets:effects of position, orientation and frequency,” Appl. Opt. 35, 6278–6288 (1996).
[Crossref] [PubMed]

S. C. Hill, H. I. Saleheen, and K. A. Fuller, “Volume current method for modeling light scattering by inhomogeneously perturbed spheres,” J. Opt. Soc. Am. A 12, 905–915 (1995).
[Crossref]

M. Schneider, E. D. Hirleman, H. I. Saleheen, D. Q. Chowdhury, and S. C. Hill, “Light scattering by radially inhomogeneous fuel droplets in a high temperature environment,” in Proceedings of the Conference on Laser Applications in Combustion and Combustion Diagnostics, SPIE1862, 269–286 (1993).
[Crossref]

Santarsiero, M.

Schettini, G.

Schneider, M.

M. Schneider, E. D. Hirleman, H. I. Saleheen, D. Q. Chowdhury, and S. C. Hill, “Light scattering by radially inhomogeneous fuel droplets in a high temperature environment,” in Proceedings of the Conference on Laser Applications in Combustion and Combustion Diagnostics, SPIE1862, 269–286 (1993).
[Crossref]

Slusher, R. E.

S. L. McCall, A. F. J. Levi, R. E. Slusher, S. J. Pearton, and R. A. Logan, “Whispering-gallery mode microdisk lasers,” Appl. Phys. Lett. 60, 289–291 (1992).
[Crossref]

Smith, M. J.

Tai, C.-T.

C.-T. Tai, Dyadic Green Functions in Electromagnetic Theory, 2nd ed. (IEEE, Piscataway, N.J., 1994), p. 102.

Thurn, R.

Tzeng, H.-M.

Valle, P. J.

Videen, G.

Vlieger, J.

P. A. Bobbert and J. Vlieger, “Light scattering by a sphere on a substrate,” Physica A 137, 209–241 (1986).
[Crossref]

Wall, K. F.

Whitten, W. B.

M. D. Barnes, C.-Y. Kung, W. B. Whitten, J. M. Ramsey, S. Arnold, and S. Holler, “Fluorescence of oriented molecules in a microcavity,” Phys. Rev. Lett. 76, 3931–3934 (1996).
[Crossref] [PubMed]

S. C. Hill, H. I. Saleheen, M. D. Barnes, W. B. Whitten, and J. M. Ramsey, “Collection of fluorescence from single molecules inside of droplets:effects of position, orientation and frequency,” Appl. Opt. 35, 6278–6288 (1996).
[Crossref] [PubMed]

M. D. Barnes, C.-Y. Kung, W. B. Whitten, J. M. Ramsey, and S. Arnold, “Molecular fluorescence in a microcavity: solvation dynamics and single molecule detection,” in Optical Processes in Microcavities, R. K. Chang and A. J. Campillo, eds. (World Scientific, Singapore, 1996), pp. 135–165.

Xie, J.-G.

Young, J. W.

J. C. Bertrand and J. W. Young, “Multiple scattering between a cylinder and a plane,” J. Acoust. Soc. Am. 60, 1265–1269 (1975).
[Crossref]

Young, K.

E. S. C. Ching, P. T. Leung, and K. Young, “Optical Processes in Microcavities—The Role of Quasinormal Modes,” in Optical Processes in Microcavities, R. K. Chang and A. J. Campillo, eds. (World Scientific, Singapore, 1996), pp. 18–65.

Zhang, J. Z.

Appl. Opt. (7)

S. C. Hill, H. I. Saleheen, M. D. Barnes, W. B. Whitten, and J. M. Ramsey, “Collection of fluorescence from single molecules inside of droplets:effects of position, orientation and frequency,” Appl. Opt. 35, 6278–6288 (1996).
[Crossref] [PubMed]

R. Thurn and W. Kiefer, “Structural resonances observed in the Raman spectra of optically levitated liquid droplets,” Appl. Opt. 24, 1515–1519 (1985).
[Crossref]

S. C. Hill, R. E. Benner, P. R. Conwell, and C. K. Rushforth, “Structural resonances observed in the fluorescence emission from small particles on substrates,” Appl. Opt. 23, 1680–1683 (1984).
[Crossref]

S. C. Hill, C. K. Rushforth, R. E. Benner, and P. R. Conwell, “Sizing dielectric spheres and cylinders by aligning structural resonance locations: algorithm for multiple orders,” Appl. Opt. 24, 2380–2390 (1985).
[Crossref] [PubMed]

P. J. Valle, F. González, and F. Moreno, “Electromagnetic wave scattering from conducting cylindrical structures on flat substrates: study by means of the extinction theorem,” Appl. Opt. 33, 512–523 (1994).
[Crossref] [PubMed]

D. Q. Chowdhury, P. W. Barber, and S. C. Hill, “Energy density distribution inside large nonabsorbing spheres via Mie theory and geometrical optics,” Appl. Opt. 31, 3518–3523 (1992).
[Crossref] [PubMed]

D. S. Benincasa, P. W. Barber, J. Z. Zhang, W.-F. Hsieh, and R. K. Chang, “Spatial distribution of the internal and near-field intensities of large cylindrical and spherical scatterers,” Appl. Opt. 26, 1348–1356 (1987).
[Crossref] [PubMed]

Appl. Phys. Lett. (1)

S. L. McCall, A. F. J. Levi, R. E. Slusher, S. J. Pearton, and R. A. Logan, “Whispering-gallery mode microdisk lasers,” Appl. Phys. Lett. 60, 289–291 (1992).
[Crossref]

J. Acoust. Soc. Am. (1)

J. C. Bertrand and J. W. Young, “Multiple scattering between a cylinder and a plane,” J. Acoust. Soc. Am. 60, 1265–1269 (1975).
[Crossref]

J. Colloid Interface Sci. (1)

M. F. Buehler, T. M. Allen, and E. J. Davis, “Microparticle Raman spectroscopy of multicomponent aerosols,” J. Colloid Interface Sci. 146, 79–89 (1991).
[Crossref]

J. Opt. Soc. Am. A (12)

A. Madrazo and M. Nieto-Vesperinas, “Scattering of electromagnetic waves from a cylinder in front of a conducting plane,” J. Opt. Soc. Am. A 12, 1298–1309 (1995).
[Crossref]

R. Borghi, F. Gori, M. Santarsiero, F. Frezza, and G. Schettini, “Plane-wave scattering by a perfectly conducting circular cylinder near a plane surface: cylindrical-wave approach,” J. Opt. Soc. Am. A 13, 483–493 (1996).
[Crossref]

G. Videen and D. Ngo, “Light scattering from a cylinder near a plane interface: theory and comparison with experimental data,” J. Opt. Soc. Am. A 14, 70–78 (1997).
[Crossref]

S. C. Hill, H. I. Saleheen, and K. A. Fuller, “Volume current method for modeling light scattering by inhomogeneously perturbed spheres,” J. Opt. Soc. Am. A 12, 905–915 (1995).
[Crossref]

D. Ngo and R. G. Pinnick, “Suppression of scattering resonances in inhomogeneous microdroplets,” J. Opt. Soc. Am. A 11, 1352–1359 (1994).
[Crossref]

T. C. Rao and R. Barakat, “Plane-wave scattering by a conducting cylinder partially buried in a ground plane. I. TM case,” J. Opt. Soc. Am. A 6, 1270–1280 (1989).
[Crossref]

T. C. Rao and R. Barakat, “Plane-wave scattering by a conducting cylinder partially buried in a ground plane. II. TE case,” J. Opt. Soc. Am. A 8, 1986–1990 (1991).
[Crossref]

B. R. Johnson, “Light-scattering from a spherical particle on a conducting plane: 1. Normal incidence,” J. Opt. Soc. Am. A 9, 1341–1351 (1992); erratum,  10, 766 (1993).
[Crossref]

G. Videen, “Light scattering from a sphere on or near a surface,” J. Opt. Soc. Am. A 8, 483–489 (1991); erratum,  9, 844–845 (1992).
[Crossref]

B. R. Johnson, “Morphology-dependent resonances of a dielectric sphere on a conducting plane,” J. Opt. Soc. Am. A 11, 2055–2064 (1994).
[Crossref]

B. R. Johnson, “Calculation of light scattering from a spherical particle on a surface by the multipole expansion method,” J. Opt. Soc. Am. A 13, 326–337 (1996).
[Crossref]

J. A. Lock and E. A. Hovenac, “Internal caustic structure of illuminated liquid droplets,” J. Opt. Soc. Am. A 8, 1541–1549 (1991).
[Crossref]

J. Opt. Soc. Am. B (1)

Opt. Commun. (1)

G. Videen, “Light scattering from a particle on or near a perfectly conducting surface,” Opt. Commun. 115, 1–7 (1995).
[Crossref]

Opt. Lett. (4)

Phys. Rev. A (1)

H. Chew, P. J. McNulty, and M. Kerker, “Model for Raman and fluorescent scattering by molecules embedded in small particles,” Phys. Rev. A 13, 396–404 (1976).
[Crossref]

Phys. Rev. Lett. (2)

R. E. Benner, P. W. Barber, J. F. Owen, and R. K. Chang, “Observations of structure resonances in the fluorescence emission from microspheres,” Phys. Rev. Lett. 44, 475–478 (1980).
[Crossref]

M. D. Barnes, C.-Y. Kung, W. B. Whitten, J. M. Ramsey, S. Arnold, and S. Holler, “Fluorescence of oriented molecules in a microcavity,” Phys. Rev. Lett. 76, 3931–3934 (1996).
[Crossref] [PubMed]

Phys. Today (1)

Time reversal invariance and spatial reciprocity of acoustic waves are discussed in M. Fink, “Time reversed acoustics,” Phys. Today 50(3), 34–40 (1997).
[Crossref]

Physica A (1)

P. A. Bobbert and J. Vlieger, “Light scattering by a sphere on a substrate,” Physica A 137, 209–241 (1986).
[Crossref]

Surf. Sci. (1)

Y. S. Kim, P. T. Leung, and T. F. George, “Classical decay rates for molecules in the presence of a spherical surface: a complete treatment,” Surf. Sci. 195, 1–14 (1988).
[Crossref]

Other (12)

W. C. Chew, Waves and Fields in Inhomogeneous Media (Van Nostrand Reinhold, New York, 1995), Chap. 7.

P. W. Barber and S. C. Hill, Light Scattering by Particles: Computational Methods (World Scientific, Singapore, 1990).

M. Schneider, E. D. Hirleman, H. I. Saleheen, D. Q. Chowdhury, and S. C. Hill, “Light scattering by radially inhomogeneous fuel droplets in a high temperature environment,” in Proceedings of the Conference on Laser Applications in Combustion and Combustion Diagnostics, SPIE1862, 269–286 (1993).
[Crossref]

M. D. Barnes, C.-Y. Kung, W. B. Whitten, J. M. Ramsey, and S. Arnold, “Molecular fluorescence in a microcavity: solvation dynamics and single molecule detection,” in Optical Processes in Microcavities, R. K. Chang and A. J. Campillo, eds. (World Scientific, Singapore, 1996), pp. 135–165.

J. L. Cheung, J. M. Hartings, and R. K. Chang, “Nonlinear optics of microdroplets illuminated by picosecond laser pulses,” in Handbook of Optical Properties, Vol. 2 of Optics of Small Particles, Interfaces, and Surfaces, R. E. Hummel and P. Wissman, eds. (CRC Press, Boca Raton, Fla, 1997), pp. 233–260.

A. J. Campillo, J. D. Eversole, and H. B. Lin, “Cavity QED modified stimulated and spontaneous processes in microdroplets,” in Optical Processes in Microcavities, R. K. Chang and A. J. Campillo, eds. (World Scientific, Singapore, 1996), pp. 167–207.

C.-T. Tai, Dyadic Green Functions in Electromagnetic Theory, 2nd ed. (IEEE, Piscataway, N.J., 1994), p. 102.

Another common way to write the Green function relation is E(r)=ω2μ∫V′G¯(r, r′)·P(r′)dV′, where P(r′)=-iωJ(r′). The dipole moment p(r′) of the source is related to the polarization per unit volume P(r′) by p(r′)=∫V′P(r′)dv′. We use the notation of individual dipoles because we have been modeling radiation from individual molecules.

The assumption of a uniform permeability is valid for the problems we want to model, which are at optical frequencies.

Ref. 14, pp. 410–411. The relation for regions with varying μ is G¯(ra, rb)μ(rb)=G¯T(rb, ra)μ(ra).

R. E. Collin, Field Theory of Guided Waves, 2nd ed. (IEEE, Piscataway, N.J., 1991), p. 102.

E. S. C. Ching, P. T. Leung, and K. Young, “Optical Processes in Microcavities—The Role of Quasinormal Modes,” in Optical Processes in Microcavities, R. K. Chang and A. J. Campillo, eds. (World Scientific, Singapore, 1996), pp. 18–65.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Equations (57)

Equations on this page are rendered with MathJax. Learn more.

E1(ra)E2(ra)E3(ra)=ω2μG11(ra, rb)G12(ra, rb)G13(ra, rb)G21(ra, rb)G22(ra, rb)G23(ra, rb)G31(ra, rb)G32(ra, rb)G33(ra, rb)×p1(rb)p2(rb)p3(rb),
G¯(ra, rb)=G¯T(rb, ra),
E1(rb)E2(rb)E3(rb)=F11(rb, ra)F12(rb, ra)F13(rb, ra)F21(rb, ra)F22(rb, ra)F23(rb, ra)F31(rb, ra)F32(rb, ra)F33(rb, ra)×Eoeo·i1(ra)Eoeo·i2(ra)Eoeo·i3(ra),
Einc(r)=Eoeo exp(ik·r),
E(r)=ω2μ4πexp[ik·(r-ra)]|r-ra|p(ra)eo.
Eo=ω2μ exp(-ik·ra)4πrap(ra),
E1(rb)E2(rb)E3(rb)=ω2μG11(rb, ra)G12(rb, ra)G13(rb, ra)G21(rb, ra)G22(rb, ra)G23(rb, ra)G31(rb, ra)G32(rb, ra)G33(rb, ra)×p1(ra)p2(ra)p3(ra),
Gij(rb, ra)=exp(-ik·ra)4πraFij(rb, ra).
E1(ra)E2(ra)E3(ra)=ω2μG11(rb, ra)G21(rb, ra)G31(rb, ra)G12(rb, ra)G22(rb, ra)G32(rb, ra)G13(rb, ra)G23(rb, ra)G33(rb, ra)×p1(rb)p2(rb)p3(rb).
Er(rb)Eθ(rb)Eϕ(rb)=U11F(rb, ra)F12(rb, ra)F13(rb, ra)U21F(rb, ra)F22(rb, ra)F23(rb, ra)U31F(rb, ra)F32(rb, ra)F33(rb, ra)×0Eoeo·iθEoeo·iϕ,
Er(ra)Eθ(ra)Eϕ(ra)=ω2μU11G(rb, ra)U21G(rb, ra)U31G(rb, ra)G12(rb, ra)G22(rb, ra)G32(rb, ra)G13(rb, ra)G23(rb, ra)G33(rb, ra)×pr(rb)pθ(rb)pϕ(rb),
Er(rb)Eθ(rb)Eϕ(rb)=U11F(rb, ra)F12(rb, ra)0U21F(rb, ra)F22(rb, ra)0U31F(rb, ra)0F33(rb, ra)×0Eoeo·iθ(ra)Eoeo·iϕ(ra).
Er(ra)Eθ(ra)Eϕ(ra)=ω2μU11G(rb, ra)U21G(rb, ra)U31G(rb, ra)G12(rb, ra)G22(rb, ra)000G33(rb, ra)×pr(rb)pθ(rb)pϕ(rb).
Eϕ(ra)=ω2μG33(rb, ra)pϕ=ω2μpϕ exp(ikra)4πraF33(rb, ra),
Eϕ(ra)=ω2μpϕ exp(ikra)4πran-jn(mkrb)×ddθbPn1(cos θb)ce1n+1mkrb×ddrb[rbjn(mkrb)] Pn1(cos θb)sin θbdo1n,
ce1n=-in2n+1n(n+1)×ixjn(mx)[xhn(1)(x)]-[mxjn(mx)]xhn(1)(x),
do1n=-in+1 2n+1n(n+1)×mim2xjn(mx)[xhn(1)(x)]-[mxjn(mx)]xhn(1)(x),
Eϕ(ra)
=exp(ikra)kran ω2μkpϕ4π(2n+1)n(n+1)×in+1jn(mkrb) ddθbPn1(cos θb)xjn(mx)[xhn(1)(x)]-[mxjn(mx)]xhn(1)(x)+inkrbddrb[rbjn(mkrb)]Pn1(cosθb)sinθbm2xjn(mx)[xhn(1)(x)]-[mxjn(mx)]xhn(1)(x).
fvG=-ω2μpϕkπx×iϕ·Mv1(mkrb)jn(mx)[xhn(1)(x)]-[mxjn(mx)]hn(1)(x),
gvG=-ω2μpϕkπx×miϕ·Nv1(mkrb)m2jn(mx)[xhn(1)(x)]-[mxjn(mx)]hn(1)(x),
femnG=ω2μkpϕπx×jn(mkrb) ddθbPnm(cos θb)jn(mx)[xhn(1)(x)]-[mxjn(mx)]hn(1)(x),
gomnG=-ω2μpϕπxrb×ddrb[rjn(mkrb)] Pnm(cos θb)sin θbm2jn(mx)[xhn(1)(x)]-[mxjn(mx)]hn(1)(x).
Pn1(cos θa)sin θaθa=π=(-1)n+1 n(n+1)2,
ddθaPn1(cos θa)θa=π=(-1)n n(n+1)2,
hn(1)(kr)=i-(n+1)krexp(ikr),
Me1n(kr)|θ=π=in+1 n(n+1)2exp(ikr)kriϕ,
No1n(kr)|θ=π=-in n(n+1)2exp(ikr)kriϕ.
Eϕs=exp(ikra)kran n(n+1)2D1n[i(n+1)fe1n+ingo1n],
Eϕs=exp(ikra)kran ω2μkpϕ4π(2n+1)n(n+1)×i(n+1)jn(mkrb) ddθbPn1(cos θb)xjn(mx)[xhn(1)(x)]-[mxjn(mx)]xhn(1)(x)+inkrbddrb[rbjn(mkrb)] Pn1(cos θb)sin θbm2xjn(mx)[xhn(1)(x)]-[mxjn(mx)]xhn(1)(x).
M˜nm(ρ)=θˆ imsin θzn(ρ)(kr)P˜nm(cos θ)exp(imφ)-φˆzn(ρ)(kr) ddθP˜nm(cos θ)exp(imφ),
N˜nm(ρ)=rˆ 1krzn(ρ)(kr)n(n+1)P˜nm(cos θ)exp(imφ)+θˆ 1krddr[rzn(ρ)(kr)] ddθP˜nm(cos θ)×exp(imφ)+φˆ 1krddr[rzn(ρ)(kr)] ×imsin θP˜nm(cos θ)exp(imφ).
E1int(mkr)=n,menm(1)M˜nm(1)(mkr)+enm(2)N˜nm(1)(mkr),
enm(1)jn(mkr)=anm(1)jn(ka)+bnm(1)hn(ka)+cnm(1)jn(ka),
menm(2)jn(mkr)=anm(2)jn(ka)+bnm(2)hn(ka)+cnm(2)jn(ka).
F12(rb, ra)=n,menm(2)TM 1mkrbzn(1)(mkrb)n(n+1)×P˜nm(cos θb)exp(imφb),
F13(rb, ra)=n,menm(2)TE 1mkrbzn(1)(mkrb)n(n+1)×P˜nm(cos θb)exp(imφb),
F22(rb, ra)=n,menm(1)TM imsin θbzn(1)(mkrb)×P˜nm(cos θb)exp(imφb)+enm(2)TM 1mkrbddrb[rbzn(1)(mkrb)]×ddθbP˜nm(cos θb)exp(imφb),
F23(rb, ra)=n,menm(1)TE imsin θbzn(1)(mkrb)×P˜nm(cos θb)exp(imφb)+enm(2)TE 1mkrbddrb[rbzn(1)(mkrb)]×ddθbP˜nm(cos θb)exp(imφb),
F32(rb, ra)=n,m-enm(1)TMzn(1)(mkrb)×ddθbP˜nm(cos θb)exp(imφb)+enm(2)TM 1mkrbddrb[rbzn(1)(mkrb)]×imsin θbP˜nm(cos θb)exp(imφb),
F33(rb, ra)=n,m-enm(1)TEzn(1)(mkrb)×ddθbP˜nm(cos θb)exp(imφb)+enm(2)TE 1mkrbddrb[rbzn(1)(mkrb)]×imsin θbP˜nm(cos θb)exp(imφb),
F12=n,mn(n+1) jn(mkrb)mkrb×cos mϕb Pnm(cos θb)sin θbsin θbdemn,
F22=n,mjn(mkrb)cos mϕb mPnm(cos θb)sin θbcomn+1mkrbddrb[rbjn(mkrb)]cos mϕ×ddθPnm(cos θb)demn,
F32=n,m-jn(mkrb)sin mϕb ddθPnm(cos θb)comn-1mkrbddrb[rbjn(mkrb)]sin mϕb×mPnm(cos θb)sin θbdemn,
F13=n,mn(n+1) jn(mkrb)mkrb×sin mϕb Pnm(cos θb)sin θbsin θbdomn,
F23=n,m-jn(mkrb)sin mϕb mPnm(cos θb)sin θbcemn+1mkrbddrb[rbjn(mkrb)]sin mϕb×ddθPnm(cos θb)domn,
F33=n,m-jn(mkrb)cos mϕb ddθPnm(cos θb)cemn+1mkrbddrb[rbjn(mkrb)]cos mϕb×mPnm(cos θb)sin θbdomn.
ET(mkr)=EH(mkr)+EiG(mkr).
EH(mkr)=ν=1Dν[cνHMν3(mkr)+dνHNν3(mkr)].
Dmn=m(2n+1)(n-m)!4n(n+1)(n+m)!,
cνH=iω2μ kmπp(rb)·Mν1(mkrb),
dνH=iω2μ kmπp(rb)·Nν1(mkrb),
EsG(kr)=ν=1Dν[fνGMν3(kr)+gνGNν3(kr)],
fνG=cνHimxjn(mx)[xhn(1)(x)]-m[mxjn(mx)]xhn(1)(x),
gνG=dνH im2xjn(mx)[xhn(1)(x)]-[mxjn(mx)]xhn(1)(x),
E(r)=ω2μVG¯(r, r)·P(r)dV,
p(r)=VP(r)dv.

Metrics