Abstract

The ordinary and extraordinary nonlinear refractive indices of SrLaGa3O7 and Ca2Ga2SiO7 were determined from the measured spectral changes in intense 800-nm, 150-fs pulses, propagated through these uniaxial crystals. A numerical analysis involving both group-velocity dispersion and self-phase modulation gave n2 =(11±1)×10-20 m2/W in SrLaGa3O7 and n2=(6.5±1)×10-20 m2/W in Ca2Ga2SiO7 for ordinary polarization; results for extraordinary beams agreed with these values to within experimental error. These high values suggest that these crystals are viable host matrices for pulsed solid-state lasers, capable of producing subpicosecond pulses through Kerr-lens mode locking.

© 1997 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Piché, “Beam reshaping and self-mode locking in nonlinear laser resonators,” Opt. Commun. 86, 156–160 (1991).
    [CrossRef]
  2. F. Salin, J. Squier, and M. Piché, “Mode locking of Ti:Al2O3 lasers and self-focusing: a Gaussian approximation,” Opt. Lett. 16, 1674–1676 (1991).
    [CrossRef] [PubMed]
  3. See, for example, D. E. Spence, P. N. Kean, and W. Sibbett, “60-fsec pulse generation from a self-mode-locked Ti:sapphire laser,” Opt. Lett. 16, 42–44 (1991).
    [CrossRef] [PubMed]
  4. A. Sennaroglu, C. R. Pollock, and H. Nathel, “Generation of tunable femtosecond pulses in the 1.21–1.27 μm and 605–635 nm wavelength region by using a regeneratively initiated self-mode-locked Cr:Forsterite laser,” IEEE J. Quantum Electron. 30, 1851–1861 (1994).
    [CrossRef]
  5. I. Practa, W. Giersz, M. Swirkowicz, A. Pajaczkowska, S. Kaczmarek, Z. Mierczyk, and K. Kopczynski, “The Czochralski growth of SrLaGa3O7 single crystals and their optical and lasing properties,” Mater. Sci. Eng. B 26, 201–206 (1994).
    [CrossRef]
  6. A. A. Ismatov, V. A. Kolesva, and M. M. Piryulko, “Binary gallates with gehlenite lattices,” Izv. Akad. Nauk SSSR, Neorg. Mat. 6, 1361–1363 (1970).
  7. Z. Burshtein, Y. Shimony, I. Levy, A. M. Lejus, J. M. Benitez, and F. Mougel, “Refractive index studies in Ca2Ga2SiO7 and SrLaGa3O7 melilite type compounds,” J. Opt. Soc. Am. B 13, 1941–1944 (1996).
    [CrossRef]
  8. E. T. J. Nibbering, M. A. Franco, B. S. Prade, G. Grillon, J.-P. Chambaret, and A. Mysyrowicz, “Spectral determination of the amplitude and the phase of intense ultrashort optical pulses,” J. Opt. Soc. Am. B 13, 317–329 (1996).
    [CrossRef]
  9. A. Mysyrowicz, “Applications of ultrashort optical pulses,”in Laser Sources and Applications, A. Miller and D.M. Finlayson, eds. (Scottish Universities Summer School in Physics & Institute of Physics, Bristol and Philadelphia, 1996), pp. 291–330.
  10. G. W. Pearson, C. Radzewicz, and J. S. Krasinski, “Analysis of self focusing mode-locked lasers with additional highly non-linear self focusing elements,” Opt. Commun. 94, 221–226 (1992).
    [CrossRef]
  11. G. P. A. Malcolm and A. I. Ferguson, “Self-mode locking of a diode-pumped Nd:YLF laser,” Opt. Lett. 16, 1967–1969 (1991).
    [CrossRef] [PubMed]

1996 (2)

1994 (2)

A. Sennaroglu, C. R. Pollock, and H. Nathel, “Generation of tunable femtosecond pulses in the 1.21–1.27 μm and 605–635 nm wavelength region by using a regeneratively initiated self-mode-locked Cr:Forsterite laser,” IEEE J. Quantum Electron. 30, 1851–1861 (1994).
[CrossRef]

I. Practa, W. Giersz, M. Swirkowicz, A. Pajaczkowska, S. Kaczmarek, Z. Mierczyk, and K. Kopczynski, “The Czochralski growth of SrLaGa3O7 single crystals and their optical and lasing properties,” Mater. Sci. Eng. B 26, 201–206 (1994).
[CrossRef]

1992 (1)

G. W. Pearson, C. Radzewicz, and J. S. Krasinski, “Analysis of self focusing mode-locked lasers with additional highly non-linear self focusing elements,” Opt. Commun. 94, 221–226 (1992).
[CrossRef]

1991 (4)

1970 (1)

A. A. Ismatov, V. A. Kolesva, and M. M. Piryulko, “Binary gallates with gehlenite lattices,” Izv. Akad. Nauk SSSR, Neorg. Mat. 6, 1361–1363 (1970).

Benitez, J. M.

Burshtein, Z.

Chambaret, J.-P.

Ferguson, A. I.

Franco, M. A.

Giersz, W.

I. Practa, W. Giersz, M. Swirkowicz, A. Pajaczkowska, S. Kaczmarek, Z. Mierczyk, and K. Kopczynski, “The Czochralski growth of SrLaGa3O7 single crystals and their optical and lasing properties,” Mater. Sci. Eng. B 26, 201–206 (1994).
[CrossRef]

Grillon, G.

Ismatov, A. A.

A. A. Ismatov, V. A. Kolesva, and M. M. Piryulko, “Binary gallates with gehlenite lattices,” Izv. Akad. Nauk SSSR, Neorg. Mat. 6, 1361–1363 (1970).

Kaczmarek, S.

I. Practa, W. Giersz, M. Swirkowicz, A. Pajaczkowska, S. Kaczmarek, Z. Mierczyk, and K. Kopczynski, “The Czochralski growth of SrLaGa3O7 single crystals and their optical and lasing properties,” Mater. Sci. Eng. B 26, 201–206 (1994).
[CrossRef]

Kean, P. N.

Kolesva, V. A.

A. A. Ismatov, V. A. Kolesva, and M. M. Piryulko, “Binary gallates with gehlenite lattices,” Izv. Akad. Nauk SSSR, Neorg. Mat. 6, 1361–1363 (1970).

Kopczynski, K.

I. Practa, W. Giersz, M. Swirkowicz, A. Pajaczkowska, S. Kaczmarek, Z. Mierczyk, and K. Kopczynski, “The Czochralski growth of SrLaGa3O7 single crystals and their optical and lasing properties,” Mater. Sci. Eng. B 26, 201–206 (1994).
[CrossRef]

Krasinski, J. S.

G. W. Pearson, C. Radzewicz, and J. S. Krasinski, “Analysis of self focusing mode-locked lasers with additional highly non-linear self focusing elements,” Opt. Commun. 94, 221–226 (1992).
[CrossRef]

Lejus, A. M.

Levy, I.

Malcolm, G. P. A.

Mierczyk, Z.

I. Practa, W. Giersz, M. Swirkowicz, A. Pajaczkowska, S. Kaczmarek, Z. Mierczyk, and K. Kopczynski, “The Czochralski growth of SrLaGa3O7 single crystals and their optical and lasing properties,” Mater. Sci. Eng. B 26, 201–206 (1994).
[CrossRef]

Mougel, F.

Mysyrowicz, A.

Nathel, H.

A. Sennaroglu, C. R. Pollock, and H. Nathel, “Generation of tunable femtosecond pulses in the 1.21–1.27 μm and 605–635 nm wavelength region by using a regeneratively initiated self-mode-locked Cr:Forsterite laser,” IEEE J. Quantum Electron. 30, 1851–1861 (1994).
[CrossRef]

Nibbering, E. T. J.

Pajaczkowska, A.

I. Practa, W. Giersz, M. Swirkowicz, A. Pajaczkowska, S. Kaczmarek, Z. Mierczyk, and K. Kopczynski, “The Czochralski growth of SrLaGa3O7 single crystals and their optical and lasing properties,” Mater. Sci. Eng. B 26, 201–206 (1994).
[CrossRef]

Pearson, G. W.

G. W. Pearson, C. Radzewicz, and J. S. Krasinski, “Analysis of self focusing mode-locked lasers with additional highly non-linear self focusing elements,” Opt. Commun. 94, 221–226 (1992).
[CrossRef]

Piché, M.

Piryulko, M. M.

A. A. Ismatov, V. A. Kolesva, and M. M. Piryulko, “Binary gallates with gehlenite lattices,” Izv. Akad. Nauk SSSR, Neorg. Mat. 6, 1361–1363 (1970).

Pollock, C. R.

A. Sennaroglu, C. R. Pollock, and H. Nathel, “Generation of tunable femtosecond pulses in the 1.21–1.27 μm and 605–635 nm wavelength region by using a regeneratively initiated self-mode-locked Cr:Forsterite laser,” IEEE J. Quantum Electron. 30, 1851–1861 (1994).
[CrossRef]

Practa, I.

I. Practa, W. Giersz, M. Swirkowicz, A. Pajaczkowska, S. Kaczmarek, Z. Mierczyk, and K. Kopczynski, “The Czochralski growth of SrLaGa3O7 single crystals and their optical and lasing properties,” Mater. Sci. Eng. B 26, 201–206 (1994).
[CrossRef]

Prade, B. S.

Radzewicz, C.

G. W. Pearson, C. Radzewicz, and J. S. Krasinski, “Analysis of self focusing mode-locked lasers with additional highly non-linear self focusing elements,” Opt. Commun. 94, 221–226 (1992).
[CrossRef]

Salin, F.

Sennaroglu, A.

A. Sennaroglu, C. R. Pollock, and H. Nathel, “Generation of tunable femtosecond pulses in the 1.21–1.27 μm and 605–635 nm wavelength region by using a regeneratively initiated self-mode-locked Cr:Forsterite laser,” IEEE J. Quantum Electron. 30, 1851–1861 (1994).
[CrossRef]

Shimony, Y.

Sibbett, W.

Spence, D. E.

Squier, J.

Swirkowicz, M.

I. Practa, W. Giersz, M. Swirkowicz, A. Pajaczkowska, S. Kaczmarek, Z. Mierczyk, and K. Kopczynski, “The Czochralski growth of SrLaGa3O7 single crystals and their optical and lasing properties,” Mater. Sci. Eng. B 26, 201–206 (1994).
[CrossRef]

IEEE J. Quantum Electron. (1)

A. Sennaroglu, C. R. Pollock, and H. Nathel, “Generation of tunable femtosecond pulses in the 1.21–1.27 μm and 605–635 nm wavelength region by using a regeneratively initiated self-mode-locked Cr:Forsterite laser,” IEEE J. Quantum Electron. 30, 1851–1861 (1994).
[CrossRef]

Izv. Akad. Nauk SSSR, Neorg. Mat. (1)

A. A. Ismatov, V. A. Kolesva, and M. M. Piryulko, “Binary gallates with gehlenite lattices,” Izv. Akad. Nauk SSSR, Neorg. Mat. 6, 1361–1363 (1970).

J. Opt. Soc. Am. B (2)

Mater. Sci. Eng. B (1)

I. Practa, W. Giersz, M. Swirkowicz, A. Pajaczkowska, S. Kaczmarek, Z. Mierczyk, and K. Kopczynski, “The Czochralski growth of SrLaGa3O7 single crystals and their optical and lasing properties,” Mater. Sci. Eng. B 26, 201–206 (1994).
[CrossRef]

Opt. Commun. (2)

M. Piché, “Beam reshaping and self-mode locking in nonlinear laser resonators,” Opt. Commun. 86, 156–160 (1991).
[CrossRef]

G. W. Pearson, C. Radzewicz, and J. S. Krasinski, “Analysis of self focusing mode-locked lasers with additional highly non-linear self focusing elements,” Opt. Commun. 94, 221–226 (1992).
[CrossRef]

Opt. Lett. (3)

Other (1)

A. Mysyrowicz, “Applications of ultrashort optical pulses,”in Laser Sources and Applications, A. Miller and D.M. Finlayson, eds. (Scottish Universities Summer School in Physics & Institute of Physics, Bristol and Philadelphia, 1996), pp. 291–330.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (2)

Fig. 1
Fig. 1

(a) Intensity (open circles), and calculated optimal phase (filled circles) input pulse spectra for ordinary polarization in the case of SLGM. (b) Mean-square deviation as a function of attempted n2. (c) Measured (open circles), and calculated (dashed curve) output pulse spectra obtained by use of the phase spectrum of (a) and n2=11×10-20 m2/W.

Fig. 2
Fig. 2

As in Fig. 1 but for CGSM (ordinary polarization). The n2 in this case is 6.5×10-20 m2/W.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

F(ω, Δz)=F(ω, 0)exp(+iβΔz),β=2πn(ω)ω/c,
E(t, Δz)=12π-+F(ω, Δz)exp(-iωt)dω.
E(t, Δz)=E(t, 0)exp+2πi n2λI(t, Δz)Δz,
F(ω, Δz)=-+E(t, Δz)exp(+iωt)dt.
D=j=1N[Sp(ωj)-|Fcalc(ωj, L)|2]21/2j=1NSp(ωj),

Metrics