Abstract

The optical properties of rare-earth organic complexes have been studied because of their possible application to polymer optical fibers and waveguides. Er3+, Nd3+, and Sm3+ ions are encapsulated in tetrakis(benzoyltrifluoroacetonate) and tetrakis(dibenzoylmethide) chelates, and their radiative properties are evaluated in several organic solvents. Analysis reveals that tetrakis(benzoyltrifluoroacetonate) chelates are promising dopants for use in rare-earth-doped polymer devices. These rare-earth complexes can be doped to high concentrations in polymer systems without quenching, providing the means for short-length amplification devices. Numerical simulations reveal that gains as high as and exceeding 20 dB should be realizable in rare-earth-doped polymer fiber amplifiers having lengths <60 cm. Similar calculations reveal threshold pump powers of tens of milliwatts for rare-earth-doped polymer fiber lasers.

© 1997 Optical Society of America

PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Digonnet, ed., Rare Earth Doped Fiber Lasers and Amplifiers (Marcel Dekker, New York, 1993).
  2. E. Desurvire, Erbium Doped Fiber Amplifiers (Wiley, New York, 1994).
  3. C. H. Henry, G. E. Blonder, and R. F. Kazarinov, “Glass waveguides on silica for hybrid optical packaging,” J. Lightwave Technol. 7, 1530 (1989).
  4. R. L. Mears, L. Reekie, S. B. Poole, and D. N. Payne, “Neodymium-doped silica single-mode fibre lasers,” Electron. Lett. 21, 738 (1985).
  5. M. C. Farries, P. R. Markel, and J. E. Townsend, “Samarium3+-doped glass laser operating at 651 nm,” Electron. Lett. 24, 709 (1988).
  6. B. R. Judd, “Optical absorption intensities of rare-earth ions,” Phys. Rev. 127, 750 (1962).
  7. G. S. Ofelt, “Intensities of crystal spectra of rare-earth ions,” J. Chem. Phys. 37, 511 (1962).
  8. P. C. Mehta and S. P. Tandon, “Spectral intensities of some Nd3+ β-diketonates,” J. Chem. Phys. 53, 414 (1970).
  9. W. T. Carnall, P. R. Fields, and K. Rajnak, “Electronic energy levels in the trivalent lanthanide aquo ions,” J. Chem. Phys. 49, 4424 (1968).
  10. R. D. Peacock, “The intensities of the lanthanide f→f transitions,” in Structure and Bonding, Vol. 22 (Springer-Verlag, New York, 1975).
  11. W. T. Carnall, P. R. Fields, and K. Rajnak, “Spectral intensities of the trivalent lanthanides and actinides in solution. II,” J. Chem. Phys. 49, 4412 (1968).
  12. J. Hoogschagen, Th. G. Scholte, and S. Kruyer, “The absorption of light in aqueous solutions of dysprosium, holmium, and thulium salts,” Physica 11, 504 (1946).
  13. C. Brecher, H. Samelson, and A. Lempicki, “Laser phenomena in europium chelates,” J. Chem. Phys. 42, 1081 (1965).
  14. C. B. Layne, W. H. Lowdermilk, and M. J. Weber, “Multiphonon relaxation of rare-earth ions in oxide glasses,” Phys. Rev. B 16, 10 (1977).
  15. W. T. Carnall, P. R. Fields, and B. G. Wybourne, “Spectral intensities of the trivalent lanthanides and actinides in solution. I,” J. Chem. Phys. 42, 3797 (1965).

1989

C. H. Henry, G. E. Blonder, and R. F. Kazarinov, “Glass waveguides on silica for hybrid optical packaging,” J. Lightwave Technol. 7, 1530 (1989).

1988

M. C. Farries, P. R. Markel, and J. E. Townsend, “Samarium3+-doped glass laser operating at 651 nm,” Electron. Lett. 24, 709 (1988).

1985

R. L. Mears, L. Reekie, S. B. Poole, and D. N. Payne, “Neodymium-doped silica single-mode fibre lasers,” Electron. Lett. 21, 738 (1985).

1977

C. B. Layne, W. H. Lowdermilk, and M. J. Weber, “Multiphonon relaxation of rare-earth ions in oxide glasses,” Phys. Rev. B 16, 10 (1977).

1970

P. C. Mehta and S. P. Tandon, “Spectral intensities of some Nd3+ β-diketonates,” J. Chem. Phys. 53, 414 (1970).

1968

W. T. Carnall, P. R. Fields, and K. Rajnak, “Electronic energy levels in the trivalent lanthanide aquo ions,” J. Chem. Phys. 49, 4424 (1968).

W. T. Carnall, P. R. Fields, and K. Rajnak, “Spectral intensities of the trivalent lanthanides and actinides in solution. II,” J. Chem. Phys. 49, 4412 (1968).

1965

W. T. Carnall, P. R. Fields, and B. G. Wybourne, “Spectral intensities of the trivalent lanthanides and actinides in solution. I,” J. Chem. Phys. 42, 3797 (1965).

C. Brecher, H. Samelson, and A. Lempicki, “Laser phenomena in europium chelates,” J. Chem. Phys. 42, 1081 (1965).

1962

B. R. Judd, “Optical absorption intensities of rare-earth ions,” Phys. Rev. 127, 750 (1962).

G. S. Ofelt, “Intensities of crystal spectra of rare-earth ions,” J. Chem. Phys. 37, 511 (1962).

1946

J. Hoogschagen, Th. G. Scholte, and S. Kruyer, “The absorption of light in aqueous solutions of dysprosium, holmium, and thulium salts,” Physica 11, 504 (1946).

Blonder, G. E.

C. H. Henry, G. E. Blonder, and R. F. Kazarinov, “Glass waveguides on silica for hybrid optical packaging,” J. Lightwave Technol. 7, 1530 (1989).

Brecher, C.

C. Brecher, H. Samelson, and A. Lempicki, “Laser phenomena in europium chelates,” J. Chem. Phys. 42, 1081 (1965).

Carnall, W. T.

W. T. Carnall, P. R. Fields, and K. Rajnak, “Electronic energy levels in the trivalent lanthanide aquo ions,” J. Chem. Phys. 49, 4424 (1968).

W. T. Carnall, P. R. Fields, and K. Rajnak, “Spectral intensities of the trivalent lanthanides and actinides in solution. II,” J. Chem. Phys. 49, 4412 (1968).

W. T. Carnall, P. R. Fields, and B. G. Wybourne, “Spectral intensities of the trivalent lanthanides and actinides in solution. I,” J. Chem. Phys. 42, 3797 (1965).

Farries, M. C.

M. C. Farries, P. R. Markel, and J. E. Townsend, “Samarium3+-doped glass laser operating at 651 nm,” Electron. Lett. 24, 709 (1988).

Fields, P. R.

W. T. Carnall, P. R. Fields, and K. Rajnak, “Electronic energy levels in the trivalent lanthanide aquo ions,” J. Chem. Phys. 49, 4424 (1968).

W. T. Carnall, P. R. Fields, and K. Rajnak, “Spectral intensities of the trivalent lanthanides and actinides in solution. II,” J. Chem. Phys. 49, 4412 (1968).

W. T. Carnall, P. R. Fields, and B. G. Wybourne, “Spectral intensities of the trivalent lanthanides and actinides in solution. I,” J. Chem. Phys. 42, 3797 (1965).

Henry, C. H.

C. H. Henry, G. E. Blonder, and R. F. Kazarinov, “Glass waveguides on silica for hybrid optical packaging,” J. Lightwave Technol. 7, 1530 (1989).

Hoogschagen, J.

J. Hoogschagen, Th. G. Scholte, and S. Kruyer, “The absorption of light in aqueous solutions of dysprosium, holmium, and thulium salts,” Physica 11, 504 (1946).

Judd, B. R.

B. R. Judd, “Optical absorption intensities of rare-earth ions,” Phys. Rev. 127, 750 (1962).

Kazarinov, R. F.

C. H. Henry, G. E. Blonder, and R. F. Kazarinov, “Glass waveguides on silica for hybrid optical packaging,” J. Lightwave Technol. 7, 1530 (1989).

Kruyer, S.

J. Hoogschagen, Th. G. Scholte, and S. Kruyer, “The absorption of light in aqueous solutions of dysprosium, holmium, and thulium salts,” Physica 11, 504 (1946).

Layne, C. B.

C. B. Layne, W. H. Lowdermilk, and M. J. Weber, “Multiphonon relaxation of rare-earth ions in oxide glasses,” Phys. Rev. B 16, 10 (1977).

Lempicki, A.

C. Brecher, H. Samelson, and A. Lempicki, “Laser phenomena in europium chelates,” J. Chem. Phys. 42, 1081 (1965).

Lowdermilk, W. H.

C. B. Layne, W. H. Lowdermilk, and M. J. Weber, “Multiphonon relaxation of rare-earth ions in oxide glasses,” Phys. Rev. B 16, 10 (1977).

Markel, P. R.

M. C. Farries, P. R. Markel, and J. E. Townsend, “Samarium3+-doped glass laser operating at 651 nm,” Electron. Lett. 24, 709 (1988).

Mears, R. L.

R. L. Mears, L. Reekie, S. B. Poole, and D. N. Payne, “Neodymium-doped silica single-mode fibre lasers,” Electron. Lett. 21, 738 (1985).

Mehta, P. C.

P. C. Mehta and S. P. Tandon, “Spectral intensities of some Nd3+ β-diketonates,” J. Chem. Phys. 53, 414 (1970).

Ofelt, G. S.

G. S. Ofelt, “Intensities of crystal spectra of rare-earth ions,” J. Chem. Phys. 37, 511 (1962).

Payne, D. N.

R. L. Mears, L. Reekie, S. B. Poole, and D. N. Payne, “Neodymium-doped silica single-mode fibre lasers,” Electron. Lett. 21, 738 (1985).

Poole, S. B.

R. L. Mears, L. Reekie, S. B. Poole, and D. N. Payne, “Neodymium-doped silica single-mode fibre lasers,” Electron. Lett. 21, 738 (1985).

Rajnak, K.

W. T. Carnall, P. R. Fields, and K. Rajnak, “Electronic energy levels in the trivalent lanthanide aquo ions,” J. Chem. Phys. 49, 4424 (1968).

W. T. Carnall, P. R. Fields, and K. Rajnak, “Spectral intensities of the trivalent lanthanides and actinides in solution. II,” J. Chem. Phys. 49, 4412 (1968).

Reekie, L.

R. L. Mears, L. Reekie, S. B. Poole, and D. N. Payne, “Neodymium-doped silica single-mode fibre lasers,” Electron. Lett. 21, 738 (1985).

Samelson, H.

C. Brecher, H. Samelson, and A. Lempicki, “Laser phenomena in europium chelates,” J. Chem. Phys. 42, 1081 (1965).

Scholte, Th. G.

J. Hoogschagen, Th. G. Scholte, and S. Kruyer, “The absorption of light in aqueous solutions of dysprosium, holmium, and thulium salts,” Physica 11, 504 (1946).

Tandon, S. P.

P. C. Mehta and S. P. Tandon, “Spectral intensities of some Nd3+ β-diketonates,” J. Chem. Phys. 53, 414 (1970).

Townsend, J. E.

M. C. Farries, P. R. Markel, and J. E. Townsend, “Samarium3+-doped glass laser operating at 651 nm,” Electron. Lett. 24, 709 (1988).

Weber, M. J.

C. B. Layne, W. H. Lowdermilk, and M. J. Weber, “Multiphonon relaxation of rare-earth ions in oxide glasses,” Phys. Rev. B 16, 10 (1977).

Wybourne, B. G.

W. T. Carnall, P. R. Fields, and B. G. Wybourne, “Spectral intensities of the trivalent lanthanides and actinides in solution. I,” J. Chem. Phys. 42, 3797 (1965).

Electron. Lett.

R. L. Mears, L. Reekie, S. B. Poole, and D. N. Payne, “Neodymium-doped silica single-mode fibre lasers,” Electron. Lett. 21, 738 (1985).

M. C. Farries, P. R. Markel, and J. E. Townsend, “Samarium3+-doped glass laser operating at 651 nm,” Electron. Lett. 24, 709 (1988).

J. Chem. Phys.

G. S. Ofelt, “Intensities of crystal spectra of rare-earth ions,” J. Chem. Phys. 37, 511 (1962).

P. C. Mehta and S. P. Tandon, “Spectral intensities of some Nd3+ β-diketonates,” J. Chem. Phys. 53, 414 (1970).

W. T. Carnall, P. R. Fields, and K. Rajnak, “Electronic energy levels in the trivalent lanthanide aquo ions,” J. Chem. Phys. 49, 4424 (1968).

W. T. Carnall, P. R. Fields, and K. Rajnak, “Spectral intensities of the trivalent lanthanides and actinides in solution. II,” J. Chem. Phys. 49, 4412 (1968).

C. Brecher, H. Samelson, and A. Lempicki, “Laser phenomena in europium chelates,” J. Chem. Phys. 42, 1081 (1965).

W. T. Carnall, P. R. Fields, and B. G. Wybourne, “Spectral intensities of the trivalent lanthanides and actinides in solution. I,” J. Chem. Phys. 42, 3797 (1965).

J. Lightwave Technol.

C. H. Henry, G. E. Blonder, and R. F. Kazarinov, “Glass waveguides on silica for hybrid optical packaging,” J. Lightwave Technol. 7, 1530 (1989).

Phys. Rev.

B. R. Judd, “Optical absorption intensities of rare-earth ions,” Phys. Rev. 127, 750 (1962).

Phys. Rev. B

C. B. Layne, W. H. Lowdermilk, and M. J. Weber, “Multiphonon relaxation of rare-earth ions in oxide glasses,” Phys. Rev. B 16, 10 (1977).

Physica

J. Hoogschagen, Th. G. Scholte, and S. Kruyer, “The absorption of light in aqueous solutions of dysprosium, holmium, and thulium salts,” Physica 11, 504 (1946).

Other

M. Digonnet, ed., Rare Earth Doped Fiber Lasers and Amplifiers (Marcel Dekker, New York, 1993).

E. Desurvire, Erbium Doped Fiber Amplifiers (Wiley, New York, 1994).

R. D. Peacock, “The intensities of the lanthanide f→f transitions,” in Structure and Bonding, Vol. 22 (Springer-Verlag, New York, 1975).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Metrics