Abstract

The optical properties of rare-earth organic complexes have been studied because of their possible application to polymer optical fibers and waveguides. Er3+, Nd3+, and Sm3+ ions are encapsulated in tetrakis(benzoyltrifluoroacetonate) and tetrakis(dibenzoylmethide) chelates, and their radiative properties are evaluated in several organic solvents. Analysis reveals that tetrakis(benzoyltrifluoroacetonate) chelates are promising dopants for use in rare-earth-doped polymer devices. These rare-earth complexes can be doped to high concentrations in polymer systems without quenching, providing the means for short-length amplification devices. Numerical simulations reveal that gains as high as and exceeding 20 dB should be realizable in rare-earth-doped polymer fiber amplifiers having lengths <60 cm. Similar calculations reveal threshold pump powers of tens of milliwatts for rare-earth-doped polymer fiber lasers.

© 1997 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Digonnet, ed., Rare Earth Doped Fiber Lasers and Amplifiers (Marcel Dekker, New York, 1993).
  2. E. Desurvire, Erbium Doped Fiber Amplifiers (Wiley, New York, 1994).
  3. C. H. Henry, G. E. Blonder, and R. F. Kazarinov, “Glass waveguides on silica for hybrid optical packaging,” J. Lightwave Technol. 7, 1530 (1989).
    [CrossRef]
  4. R. L. Mears, L. Reekie, S. B. Poole, and D. N. Payne, “Neodymium-doped silica single-mode fibre lasers,” Electron. Lett. 21, 738 (1985).
    [CrossRef]
  5. M. C. Farries, P. R. Markel, and J. E. Townsend, “Samarium3+-doped glass laser operating at 651 nm,” Electron. Lett. 24, 709 (1988).
    [CrossRef]
  6. B. R. Judd, “Optical absorption intensities of rare-earth ions,” Phys. Rev. 127, 750 (1962).
    [CrossRef]
  7. G. S. Ofelt, “Intensities of crystal spectra of rare-earth ions,” J. Chem. Phys. 37, 511 (1962).
    [CrossRef]
  8. P. C. Mehta and S. P. Tandon, “Spectral intensities of some Nd3+ β-diketonates,” J. Chem. Phys. 53, 414 (1970).
    [CrossRef]
  9. W. T. Carnall, P. R. Fields, and K. Rajnak, “Electronic energy levels in the trivalent lanthanide aquo ions,” J. Chem. Phys. 49, 4424 (1968).
    [CrossRef]
  10. R. D. Peacock, “The intensities of the lanthanide f→f transitions,” in Structure and Bonding, Vol. 22 (Springer-Verlag, New York, 1975).
  11. W. T. Carnall, P. R. Fields, and K. Rajnak, “Spectral intensities of the trivalent lanthanides and actinides in solution. II,” J. Chem. Phys. 49, 4412 (1968).
    [CrossRef]
  12. J. Hoogschagen, Th. G. Scholte, and S. Kruyer, “The absorption of light in aqueous solutions of dysprosium, holmium, and thulium salts,” Physica 11, 504 (1946).
    [CrossRef]
  13. C. Brecher, H. Samelson, and A. Lempicki, “Laser phenomena in europium chelates,” J. Chem. Phys. 42, 1081 (1965).
    [CrossRef]
  14. C. B. Layne, W. H. Lowdermilk, and M. J. Weber, “Multiphonon relaxation of rare-earth ions in oxide glasses,” Phys. Rev. B 16, 10 (1977).
    [CrossRef]
  15. W. T. Carnall, P. R. Fields, and B. G. Wybourne, “Spectral intensities of the trivalent lanthanides and actinides in solution. I,” J. Chem. Phys. 42, 3797 (1965).
    [CrossRef]

1989

C. H. Henry, G. E. Blonder, and R. F. Kazarinov, “Glass waveguides on silica for hybrid optical packaging,” J. Lightwave Technol. 7, 1530 (1989).
[CrossRef]

1988

M. C. Farries, P. R. Markel, and J. E. Townsend, “Samarium3+-doped glass laser operating at 651 nm,” Electron. Lett. 24, 709 (1988).
[CrossRef]

1985

R. L. Mears, L. Reekie, S. B. Poole, and D. N. Payne, “Neodymium-doped silica single-mode fibre lasers,” Electron. Lett. 21, 738 (1985).
[CrossRef]

1977

C. B. Layne, W. H. Lowdermilk, and M. J. Weber, “Multiphonon relaxation of rare-earth ions in oxide glasses,” Phys. Rev. B 16, 10 (1977).
[CrossRef]

1970

P. C. Mehta and S. P. Tandon, “Spectral intensities of some Nd3+ β-diketonates,” J. Chem. Phys. 53, 414 (1970).
[CrossRef]

1968

W. T. Carnall, P. R. Fields, and K. Rajnak, “Electronic energy levels in the trivalent lanthanide aquo ions,” J. Chem. Phys. 49, 4424 (1968).
[CrossRef]

W. T. Carnall, P. R. Fields, and K. Rajnak, “Spectral intensities of the trivalent lanthanides and actinides in solution. II,” J. Chem. Phys. 49, 4412 (1968).
[CrossRef]

1965

W. T. Carnall, P. R. Fields, and B. G. Wybourne, “Spectral intensities of the trivalent lanthanides and actinides in solution. I,” J. Chem. Phys. 42, 3797 (1965).
[CrossRef]

C. Brecher, H. Samelson, and A. Lempicki, “Laser phenomena in europium chelates,” J. Chem. Phys. 42, 1081 (1965).
[CrossRef]

1962

B. R. Judd, “Optical absorption intensities of rare-earth ions,” Phys. Rev. 127, 750 (1962).
[CrossRef]

G. S. Ofelt, “Intensities of crystal spectra of rare-earth ions,” J. Chem. Phys. 37, 511 (1962).
[CrossRef]

1946

J. Hoogschagen, Th. G. Scholte, and S. Kruyer, “The absorption of light in aqueous solutions of dysprosium, holmium, and thulium salts,” Physica 11, 504 (1946).
[CrossRef]

Blonder, G. E.

C. H. Henry, G. E. Blonder, and R. F. Kazarinov, “Glass waveguides on silica for hybrid optical packaging,” J. Lightwave Technol. 7, 1530 (1989).
[CrossRef]

Brecher, C.

C. Brecher, H. Samelson, and A. Lempicki, “Laser phenomena in europium chelates,” J. Chem. Phys. 42, 1081 (1965).
[CrossRef]

Carnall, W. T.

W. T. Carnall, P. R. Fields, and K. Rajnak, “Electronic energy levels in the trivalent lanthanide aquo ions,” J. Chem. Phys. 49, 4424 (1968).
[CrossRef]

W. T. Carnall, P. R. Fields, and K. Rajnak, “Spectral intensities of the trivalent lanthanides and actinides in solution. II,” J. Chem. Phys. 49, 4412 (1968).
[CrossRef]

W. T. Carnall, P. R. Fields, and B. G. Wybourne, “Spectral intensities of the trivalent lanthanides and actinides in solution. I,” J. Chem. Phys. 42, 3797 (1965).
[CrossRef]

Farries, M. C.

M. C. Farries, P. R. Markel, and J. E. Townsend, “Samarium3+-doped glass laser operating at 651 nm,” Electron. Lett. 24, 709 (1988).
[CrossRef]

Fields, P. R.

W. T. Carnall, P. R. Fields, and K. Rajnak, “Spectral intensities of the trivalent lanthanides and actinides in solution. II,” J. Chem. Phys. 49, 4412 (1968).
[CrossRef]

W. T. Carnall, P. R. Fields, and K. Rajnak, “Electronic energy levels in the trivalent lanthanide aquo ions,” J. Chem. Phys. 49, 4424 (1968).
[CrossRef]

W. T. Carnall, P. R. Fields, and B. G. Wybourne, “Spectral intensities of the trivalent lanthanides and actinides in solution. I,” J. Chem. Phys. 42, 3797 (1965).
[CrossRef]

Henry, C. H.

C. H. Henry, G. E. Blonder, and R. F. Kazarinov, “Glass waveguides on silica for hybrid optical packaging,” J. Lightwave Technol. 7, 1530 (1989).
[CrossRef]

Hoogschagen, J.

J. Hoogschagen, Th. G. Scholte, and S. Kruyer, “The absorption of light in aqueous solutions of dysprosium, holmium, and thulium salts,” Physica 11, 504 (1946).
[CrossRef]

Judd, B. R.

B. R. Judd, “Optical absorption intensities of rare-earth ions,” Phys. Rev. 127, 750 (1962).
[CrossRef]

Kazarinov, R. F.

C. H. Henry, G. E. Blonder, and R. F. Kazarinov, “Glass waveguides on silica for hybrid optical packaging,” J. Lightwave Technol. 7, 1530 (1989).
[CrossRef]

Kruyer, S.

J. Hoogschagen, Th. G. Scholte, and S. Kruyer, “The absorption of light in aqueous solutions of dysprosium, holmium, and thulium salts,” Physica 11, 504 (1946).
[CrossRef]

Layne, C. B.

C. B. Layne, W. H. Lowdermilk, and M. J. Weber, “Multiphonon relaxation of rare-earth ions in oxide glasses,” Phys. Rev. B 16, 10 (1977).
[CrossRef]

Lempicki, A.

C. Brecher, H. Samelson, and A. Lempicki, “Laser phenomena in europium chelates,” J. Chem. Phys. 42, 1081 (1965).
[CrossRef]

Lowdermilk, W. H.

C. B. Layne, W. H. Lowdermilk, and M. J. Weber, “Multiphonon relaxation of rare-earth ions in oxide glasses,” Phys. Rev. B 16, 10 (1977).
[CrossRef]

Markel, P. R.

M. C. Farries, P. R. Markel, and J. E. Townsend, “Samarium3+-doped glass laser operating at 651 nm,” Electron. Lett. 24, 709 (1988).
[CrossRef]

Mears, R. L.

R. L. Mears, L. Reekie, S. B. Poole, and D. N. Payne, “Neodymium-doped silica single-mode fibre lasers,” Electron. Lett. 21, 738 (1985).
[CrossRef]

Mehta, P. C.

P. C. Mehta and S. P. Tandon, “Spectral intensities of some Nd3+ β-diketonates,” J. Chem. Phys. 53, 414 (1970).
[CrossRef]

Ofelt, G. S.

G. S. Ofelt, “Intensities of crystal spectra of rare-earth ions,” J. Chem. Phys. 37, 511 (1962).
[CrossRef]

Payne, D. N.

R. L. Mears, L. Reekie, S. B. Poole, and D. N. Payne, “Neodymium-doped silica single-mode fibre lasers,” Electron. Lett. 21, 738 (1985).
[CrossRef]

Poole, S. B.

R. L. Mears, L. Reekie, S. B. Poole, and D. N. Payne, “Neodymium-doped silica single-mode fibre lasers,” Electron. Lett. 21, 738 (1985).
[CrossRef]

Rajnak, K.

W. T. Carnall, P. R. Fields, and K. Rajnak, “Electronic energy levels in the trivalent lanthanide aquo ions,” J. Chem. Phys. 49, 4424 (1968).
[CrossRef]

W. T. Carnall, P. R. Fields, and K. Rajnak, “Spectral intensities of the trivalent lanthanides and actinides in solution. II,” J. Chem. Phys. 49, 4412 (1968).
[CrossRef]

Reekie, L.

R. L. Mears, L. Reekie, S. B. Poole, and D. N. Payne, “Neodymium-doped silica single-mode fibre lasers,” Electron. Lett. 21, 738 (1985).
[CrossRef]

Samelson, H.

C. Brecher, H. Samelson, and A. Lempicki, “Laser phenomena in europium chelates,” J. Chem. Phys. 42, 1081 (1965).
[CrossRef]

Scholte, Th. G.

J. Hoogschagen, Th. G. Scholte, and S. Kruyer, “The absorption of light in aqueous solutions of dysprosium, holmium, and thulium salts,” Physica 11, 504 (1946).
[CrossRef]

Tandon, S. P.

P. C. Mehta and S. P. Tandon, “Spectral intensities of some Nd3+ β-diketonates,” J. Chem. Phys. 53, 414 (1970).
[CrossRef]

Townsend, J. E.

M. C. Farries, P. R. Markel, and J. E. Townsend, “Samarium3+-doped glass laser operating at 651 nm,” Electron. Lett. 24, 709 (1988).
[CrossRef]

Weber, M. J.

C. B. Layne, W. H. Lowdermilk, and M. J. Weber, “Multiphonon relaxation of rare-earth ions in oxide glasses,” Phys. Rev. B 16, 10 (1977).
[CrossRef]

Wybourne, B. G.

W. T. Carnall, P. R. Fields, and B. G. Wybourne, “Spectral intensities of the trivalent lanthanides and actinides in solution. I,” J. Chem. Phys. 42, 3797 (1965).
[CrossRef]

Electron. Lett.

R. L. Mears, L. Reekie, S. B. Poole, and D. N. Payne, “Neodymium-doped silica single-mode fibre lasers,” Electron. Lett. 21, 738 (1985).
[CrossRef]

M. C. Farries, P. R. Markel, and J. E. Townsend, “Samarium3+-doped glass laser operating at 651 nm,” Electron. Lett. 24, 709 (1988).
[CrossRef]

J. Chem. Phys.

G. S. Ofelt, “Intensities of crystal spectra of rare-earth ions,” J. Chem. Phys. 37, 511 (1962).
[CrossRef]

P. C. Mehta and S. P. Tandon, “Spectral intensities of some Nd3+ β-diketonates,” J. Chem. Phys. 53, 414 (1970).
[CrossRef]

W. T. Carnall, P. R. Fields, and K. Rajnak, “Electronic energy levels in the trivalent lanthanide aquo ions,” J. Chem. Phys. 49, 4424 (1968).
[CrossRef]

W. T. Carnall, P. R. Fields, and K. Rajnak, “Spectral intensities of the trivalent lanthanides and actinides in solution. II,” J. Chem. Phys. 49, 4412 (1968).
[CrossRef]

C. Brecher, H. Samelson, and A. Lempicki, “Laser phenomena in europium chelates,” J. Chem. Phys. 42, 1081 (1965).
[CrossRef]

W. T. Carnall, P. R. Fields, and B. G. Wybourne, “Spectral intensities of the trivalent lanthanides and actinides in solution. I,” J. Chem. Phys. 42, 3797 (1965).
[CrossRef]

J. Lightwave Technol.

C. H. Henry, G. E. Blonder, and R. F. Kazarinov, “Glass waveguides on silica for hybrid optical packaging,” J. Lightwave Technol. 7, 1530 (1989).
[CrossRef]

Phys. Rev.

B. R. Judd, “Optical absorption intensities of rare-earth ions,” Phys. Rev. 127, 750 (1962).
[CrossRef]

Phys. Rev. B

C. B. Layne, W. H. Lowdermilk, and M. J. Weber, “Multiphonon relaxation of rare-earth ions in oxide glasses,” Phys. Rev. B 16, 10 (1977).
[CrossRef]

Physica

J. Hoogschagen, Th. G. Scholte, and S. Kruyer, “The absorption of light in aqueous solutions of dysprosium, holmium, and thulium salts,” Physica 11, 504 (1946).
[CrossRef]

Other

M. Digonnet, ed., Rare Earth Doped Fiber Lasers and Amplifiers (Marcel Dekker, New York, 1993).

E. Desurvire, Erbium Doped Fiber Amplifiers (Wiley, New York, 1994).

R. D. Peacock, “The intensities of the lanthanide f→f transitions,” in Structure and Bonding, Vol. 22 (Springer-Verlag, New York, 1975).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Fluorescence decay (at 645 nm) of the  4G5/2 metastable state of Sm(BTF)4 · P in acetone-d6 after being populated by a 355-nm, 30-ps pulse from a Nd:YAG laser. The observed lifetime is 245 µs.

Fig. 2
Fig. 2

Schematic illustrations for the molecular structures of (a) RE(D)4 · P, (b) RE(BTF)4 · P.

Fig. 3
Fig. 3

Energy-level diagrams and important optical transitions of (a) Er3+, (b) Nd3+, (c) Sm3+.

Fig. 4
Fig. 4

Fluorescence spectrum of Sm(BTF)4 · P in acetone-d6 under 355-nm excitation. The three main peaks correspond to the  4G5/26H9/2 (645 nm), the  4G5/26H7/2 (595 nm), and the  4G5/26H5/2 (560 nm) transitions.

Fig. 5
Fig. 5

Metastable-state (5D0) lifetime dependence on doping concentration of Eu(BTF)4P in MMA monomer. Filled circles are experimental data, and the solid curve is a theoretical fit. The quenching concentration is calculated to be ρQ=5.0×1020cm-3.

Fig. 6
Fig. 6

Energy-level diagram of a four-level laser transition. In the case of Sm(BTF)4 · P, the lasing transition is the 645-nm (4G5/26H9/2) transition.

Fig. 7
Fig. 7

Gain dependence on (a) radius and (b) length, for a Sm(BTF)4 · P-doped polymer-fiber amplifier. In (a) a maximum gain of 23 dB occurs for a 1.5-µm-diameter fiber. In (b) a maximum gain of 12 dB occurs for a 0.58-m-long fiber amplifier.

Fig. 8
Fig. 8

Input pump power dependence on length for a Sm(BTF)4 · P-doped polymer-fiber laser for typical minimum (δ=0.1) and maximum (δ=1.0) round-trip cavity losses.

Tables (9)

Tables Icon

Table 1 Observed Lifetimes of the  4G5/2 Metastable State of Sm(BTF)4 · P and Sm(D)4 · P in Various Solvents

Tables Icon

Table 2 Observed Lifetimes of the  4G5/2 Metastable State of Sm(BTF)4 · P in Various Solvents

Tables Icon

Table 3 Experimental and Calculated Oscillator Strengths Between the  4I15/2 Ground State and the 2S′ + 1 LJ Excited States for Er(BTF)4 · P in Acetone-d6

Tables Icon

Table 4 Experimental and Calculated Oscillator Strengths Between the  4I9/2 Ground State and the 2S′ + 1 LJ Excited States for Nd(BTF)4 · P in Acetone-d6

Tables Icon

Table 5 Experimental and Calculated Oscillator Strengths Between the  6H5/2 Ground State and the 2S′ + 1 LJ Excited States for Sm(BTF)4 · P in Acetone-d6

Tables Icon

Table 6 Calculated Judd–Ofelt Parameters for RE(BTF)4 · P Chelates in Acetone-d6

Tables Icon

Table 7 Calculated Radiative Lifetimes of Major Transitions for RE(BTF)4 · P Chelates

Tables Icon

Table 8 Calculated Emission Cross Sections for Three Transitions of Sm(BTF)4 · P

Tables Icon

Table 9 Parameters Used in Numerical Simulations of Sm(BTF)4P-Doped PMMA Fiber Amplifiers

Equations (18)

Equations on this page are rendered with MathJax. Learn more.

Ped=λ=2,4,6σTλfNΨJU(λ) fNΨJ2,
Ped=χ8π2mc3hσλ=2,4,6Ωλ(2J+1)×fNΨJU(λ) fNΨJ2,
Pmd=χ2π23hmcfNΨJ,M|L+2S| fNΨJ,M2,
Pexp=Ped+Pmd.
Pexp=4.318×10-9band(σ)dσ,
rmsdeviation=iPexpi-PcalciN-M1/2
1τi=jAij,
Aij=14π08π2e2νij2n2mc3Pij,
σije=Aijλ48π2n2cΔλ,whereΔλ=bandIe(λ)Iepeakdλ,
τ=τ01[1+(ρ/ρQ)2]
N1N=W32+(1/τ3)W32+(1/τ3)+W14,
N3N=W14W32+(1/τ3)+W14,
W14=σpIphvp, W32=σeIshvs,
002πdIpdzrdrdϕ=-002π[n(r, ϕ, z)×σpN1-αp]Iprdrdϕ,
002πdIsdzrdrdϕ=-002π[n(r, ϕ, z)×σeN3-αs]Isrdrdϕ,
dp(z)dz=-αp-2πσpNp(z)0ap0(r)1+βAp(z)p0(r)rdr,
dg(z)dz=-αs+2πσeNβAp(z)0as0(r)p0(r)1+βAp(z)p0(r)rdr,
β=σpτ3hvpPp(0)A,

Metrics