Abstract

We present an experimental and theoretical study of passively mode-locked fiber soliton lasers. Our theoretical analysis based on perturbation theory describes the soliton interactions that occur when pulse bunches form. Our results indicate that the nonsoliton component emitted by the propagating solitons causes small changes of the central frequency of individual solitons, and the strength and the sign of this interaction between the soliton and dispersive waves depend on their mutual phase as well as on the soliton position within the soliton bunch. For a certain phase difference between the solitons and the nonsoliton component the interaction force becomes repulsive for all solitons within a soliton bunch and results in an almost uniform distribution of the pulses inside the laser cavity. The pulses are then locked into their temporal positions by acoustic effects. We also demonstrate that the laser performance could be further improved by the use of a multiple-quantum-well saturable absorber in combination with a nonlinear amplifying loop mirror. In this instance the multiple-quantum-well sample acts not only as a fast saturable absorber but also as a passive phase modulator. We experimentally demonstrate that such a laser is capable of generating 500-fs pulses at repetition rates exceeding 2 GHz.

© 1997 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. I. N. Duling III, “Subpicosecond all-fibre erbium laser,” Electron. Lett. 27, 544–545 (1991).
    [CrossRef]
  2. D. J. Richardson, R. I. Laming, D. N. Payne, M. W. Phillips, and V. J. Matsas, “320 fs soliton generation with passively mode-locked erbium fibre laser,” Electron. Lett. 27, 730–732 (1991).
    [CrossRef]
  3. M. Nakazawa, E. Yoshida, and Y. Kimura, “Low threshold, 290 fs erbium-doped fiber laser with a nonlinear amplifying loop mirror pumped by InGaAsP laser diodes,” Appl. Phys. Lett. 59, 2073–2075 (1991).
    [CrossRef]
  4. R. P. Davey, N. Langford, and A. I. Ferguson, “Interacting solitons in erbium fiber laser,” Electron. Lett. 27, 1257–1259 (1991).
    [CrossRef]
  5. A. B. Grudinin, D. J. Richardson, and D. N. Payne, “Energy quantization in figure eight fibre laser,” Electron. Lett. 28, 67–68 (1992).
    [CrossRef]
  6. V. J. Matsas, T. P. Newson, D. J. Richardson, and D. N. Payne “Self-starting passively mode-locked fibre ring laser exploiting nonlinear polarization rotation,” Electron. Lett. 28, 1391–1393 (1992).
    [CrossRef]
  7. V. J. Matsas, D. J. Richardson, T. P. Newson, and D. N. Payne, “Characterization of a self-starting, passively mode-locked fiber ring laser that exploits nonlinear polarization evolution,” Opt. Lett. 18, 358–360 (1993).
    [CrossRef] [PubMed]
  8. C. J. Chen, P. K. A. Wai, and C. R. Menyuk, “Soliton fiber ring laser,” Opt. Lett. 17, 417–419 (1992).
    [CrossRef] [PubMed]
  9. A. B. Grudinin, D. J. Richardson, and D. N. Payne, “Passive harmonic mode-locking of a fibre soliton ring laser,” Electron. Lett. 29, 1860–1861 (1993).
    [CrossRef]
  10. S. Gray, A. B. Grudinin, W. H. Loh, and D. N. Payne, “Femtosecond harmonically mode-locked fiber laser with time jitter below 1 ps,” Opt. Lett. 20, 189–191 (1995).
    [CrossRef] [PubMed]
  11. M. E Fermann, M. J. Andrejco, M. L. Stock, Y. Silberberg, and A. M. Weiner, “Passive mode-locking in erbium fibre lasers with negative group delay,” Appl. Phys. Lett. 62, 910–912 (1993).
    [CrossRef]
  12. V. J. Matsas, W. H. Loh, and D. J. Richardson, “Self-starting, passively mode-locked Fabry–Perot fiber soliton laser using nonlinear polarization evolution,” IEEE Photonics Technol. Lett. 5, 492–494 (1993).
    [CrossRef]
  13. M. E. Fermann, K. Sugden, and I. Bennion, “Environmentally stable high-power soliton fiber lasers that use chirped fiber Bragg gratings,” Opt. Lett. 20, 1625–1627 (1995).
    [CrossRef] [PubMed]
  14. M. N. Islam, E. R. Sunderman, C. E. Soccolich, I. Bar-Joseph, N. Saurer, T. Y. Chang, and B. I. Miller, “Color center lasers passively mode-locked by quantum wells,” IEEE J. Quantum Electron. 25, 2454–2463 (1989).
    [CrossRef]
  15. M. Zirngibl, L. W. Stulz, J. Stone, J. Hugi, D. DiGiovanni, and P. B. Hansen, “1.2 ps pulses from passively mode-locked laser diode pumped Er-doped fibre ring laser,” Electron. Lett. 27, 1734–1735 (1991).
    [CrossRef]
  16. U. Keller, W. H. Knox, and G. W. ’tHooft, “Ultrafast solid-state mode-locked lasers using resonant nonlinearities,” IEEE J. Quantum Electron. 28, 2123–2133 (1992).
    [CrossRef]
  17. W. H. Loh, D. Atkinson, P. R. Morkel, M. Hopkinson, A. Rivers, A. J. Seeds, and D. N. Payne, “Passively mode-locked Er3+ fiber laser using a nonlinear mirror,” Photonics Technol. Lett. 5, 35–37 (1993).
  18. K. V. Reddy, W. Riha, A. B. Grudinin, D. J. Richardson, J. E. Townsend, D. N. Payne, and M. N. Islam, “A turnkey 1.5 μm picosecond Er/Yb fibre laser,” in Optical Four Communication Conference and International Conference on Integrated Optics and Optical Fiber Communication, Vol. 4 of 1993 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1993), paper PD17.
  19. K. Tamura, H. A. Haus, and E. P. Ippen, “Self-starting additive pulse mode-locked erbium fibre ring laser,” Electron. Lett. 28, 2226–2228 (1992).
    [CrossRef]
  20. K. Tamura, L. E. Nelson, H. A. Haus, and E. P. Ippen, “Soliton versus non-soliton operation of fibre ring lasers,” Appl. Phys. Lett. 64, 149–151 (1994).
    [CrossRef]
  21. K. Tamura, C. R. Doerr, L. E. Nelson, H. A. Haus, and E. P. Ippen, “Technique for obtaining high-energy ultrashort pulses from an additive-pulse mode-locked erbium-doped fiber ring laser,” Opt. Lett. 19, 46–48 (1994).
    [CrossRef] [PubMed]
  22. E. Yoshida, Y. Kimura, and M. Nakazawa, “Laser diode-pumped femtosecond erbium-doped fiber laser with a sub-ring cavity for repetition rate control,” Appl. Phys. Lett. 60, 932–934 (1992).
    [CrossRef]
  23. M. L. Dennis, and I. N. Duling III, “High repetition rate figure eight laser with extra-cavity feedback,” Electron. Lett. 28, 1894–1895 (1992).
    [CrossRef]
  24. I. Y. Khrushchev, D. J. Richardson, and E. M. Dianov, “Generation of 800 MHz stable train of subpicosecond solitons from the figure 8 laser,” presented at the European Conference on Optical Communications, Montreux, Switzerland, 1993.
  25. D. von der Linde, “Characterization of the noise in continuously operating mode-locked lasers,” Appl. Phys. B 39, 201–217 (1985).
    [CrossRef]
  26. A. Bondeson, M. Lisak, and D. Anderson, “Soliton perturbations: a variational principle for the soliton parameters,” Phys. Scr. 20, 479–485 (1979).
    [CrossRef]
  27. W. H. Loh, A. B. Gridinin, V. V. Afanasjev, and D. N. Payne, “Soliton interaction in the presence of a weak nonsoliton component,” Opt. Lett. 19, 698–700 (1994).
    [CrossRef] [PubMed]
  28. E. M. Dianov, A. V. Luchnikov, A. N. Pilipetskii, and A. N. Starodumov, “Electrostrictional mechanism of soliton interaction in optical fibers,” Opt. Lett. 15, 314–316 (1990).
    [CrossRef]
  29. E. M. Dianov, A. V. Luchnikov, A. N. Pilipetskii, and A. N. Starodumov, “Long-range interaction of soliton pulse trains in a single-mode fibre,” Sov. Lightwave Commun. 1, 37–45 (1991).
  30. A. N. Pilipetskii, E. A. Golovchenko, and C. R. Menyuk, “Acoustic effect in passively mode-locked fiber ring lasers,” Opt. Lett. 20, 907–909 (1995).
    [CrossRef] [PubMed]
  31. N. J. Smith, K. J. Blow, and I. Andonovich, “Sideband generation through perturbations to the average soliton model,” J. Lightwave Technol. 10, 1329–1333 (1992).
    [CrossRef]
  32. M. Wegener, I. Bar-Joseph, G. Sucha, M. N. Islam, N. Saurer, T. Y. Chang, and D. Chelma, “Femtosecond dynamics of excitonic absorption in the infrared InxGa1−xAs quantum wells,” Phys. Rev. B 39, 12, 794–12, 801 (1989).
    [CrossRef]
  33. H. A. Haus and Y. Silberberg, “Theory of mode-locking of a laser diode with a multiple-quantum-well structure,” J. Opt. Soc. Am. B 2, 1237–1243 (1985).
    [CrossRef]
  34. H. Haus and A. Mecozzi, “Noise in mode-locked lasers,” IEEE J. Quantum Electron. 29, 983–996 (1993).
    [CrossRef]
  35. J. P. Gordon and H. A. Haus, “Random walk of coherently amplified solitons in optical fiber transmission,” Opt. Lett. 11, 665–667 (1986).
    [CrossRef] [PubMed]
  36. A. Mecozzi, J. D. Moores, H. A. Haus, and Y. Lai, “Soliton transmission control,” Opt. Lett. 16, 1841–1843 (1991).
    [CrossRef] [PubMed]
  37. A. Mecozzi, J. D. Moores, H. A. Haus, and Y. Lai, “Modulation and filtering control of soliton transmission,” J. Opt. Soc. Am. B 9, 1350–1357 (1992).
    [CrossRef]
  38. M. Matsumoto and A. Hasegawa, “Numerical study of the reduction of instability in bandwidth-limited amplified soliton transmission,” Opt. Lett. 18, 897–899 (1993).
    [CrossRef] [PubMed]
  39. H. Kubota and M. Nakazawa, “Soliton transmission control in time and frequency domains,” IEEE J. Quantum Electron. 29, 2189–2197 (1993).
    [CrossRef]
  40. N. J. Smith, K. J. Blow, W. J. Firth, and K. Smith, “Soliton dynamics in the presence of phase modulators,” Opt. Commun. 102, 324–328 (1993).
    [CrossRef]

1995

1994

1993

V. J. Matsas, D. J. Richardson, T. P. Newson, and D. N. Payne, “Characterization of a self-starting, passively mode-locked fiber ring laser that exploits nonlinear polarization evolution,” Opt. Lett. 18, 358–360 (1993).
[CrossRef] [PubMed]

M. Matsumoto and A. Hasegawa, “Numerical study of the reduction of instability in bandwidth-limited amplified soliton transmission,” Opt. Lett. 18, 897–899 (1993).
[CrossRef] [PubMed]

H. Haus and A. Mecozzi, “Noise in mode-locked lasers,” IEEE J. Quantum Electron. 29, 983–996 (1993).
[CrossRef]

H. Kubota and M. Nakazawa, “Soliton transmission control in time and frequency domains,” IEEE J. Quantum Electron. 29, 2189–2197 (1993).
[CrossRef]

N. J. Smith, K. J. Blow, W. J. Firth, and K. Smith, “Soliton dynamics in the presence of phase modulators,” Opt. Commun. 102, 324–328 (1993).
[CrossRef]

A. B. Grudinin, D. J. Richardson, and D. N. Payne, “Passive harmonic mode-locking of a fibre soliton ring laser,” Electron. Lett. 29, 1860–1861 (1993).
[CrossRef]

M. E Fermann, M. J. Andrejco, M. L. Stock, Y. Silberberg, and A. M. Weiner, “Passive mode-locking in erbium fibre lasers with negative group delay,” Appl. Phys. Lett. 62, 910–912 (1993).
[CrossRef]

V. J. Matsas, W. H. Loh, and D. J. Richardson, “Self-starting, passively mode-locked Fabry–Perot fiber soliton laser using nonlinear polarization evolution,” IEEE Photonics Technol. Lett. 5, 492–494 (1993).
[CrossRef]

1992

E. Yoshida, Y. Kimura, and M. Nakazawa, “Laser diode-pumped femtosecond erbium-doped fiber laser with a sub-ring cavity for repetition rate control,” Appl. Phys. Lett. 60, 932–934 (1992).
[CrossRef]

M. L. Dennis, and I. N. Duling III, “High repetition rate figure eight laser with extra-cavity feedback,” Electron. Lett. 28, 1894–1895 (1992).
[CrossRef]

A. B. Grudinin, D. J. Richardson, and D. N. Payne, “Energy quantization in figure eight fibre laser,” Electron. Lett. 28, 67–68 (1992).
[CrossRef]

V. J. Matsas, T. P. Newson, D. J. Richardson, and D. N. Payne “Self-starting passively mode-locked fibre ring laser exploiting nonlinear polarization rotation,” Electron. Lett. 28, 1391–1393 (1992).
[CrossRef]

U. Keller, W. H. Knox, and G. W. ’tHooft, “Ultrafast solid-state mode-locked lasers using resonant nonlinearities,” IEEE J. Quantum Electron. 28, 2123–2133 (1992).
[CrossRef]

K. Tamura, H. A. Haus, and E. P. Ippen, “Self-starting additive pulse mode-locked erbium fibre ring laser,” Electron. Lett. 28, 2226–2228 (1992).
[CrossRef]

N. J. Smith, K. J. Blow, and I. Andonovich, “Sideband generation through perturbations to the average soliton model,” J. Lightwave Technol. 10, 1329–1333 (1992).
[CrossRef]

A. Mecozzi, J. D. Moores, H. A. Haus, and Y. Lai, “Modulation and filtering control of soliton transmission,” J. Opt. Soc. Am. B 9, 1350–1357 (1992).
[CrossRef]

C. J. Chen, P. K. A. Wai, and C. R. Menyuk, “Soliton fiber ring laser,” Opt. Lett. 17, 417–419 (1992).
[CrossRef] [PubMed]

1991

A. Mecozzi, J. D. Moores, H. A. Haus, and Y. Lai, “Soliton transmission control,” Opt. Lett. 16, 1841–1843 (1991).
[CrossRef] [PubMed]

M. Zirngibl, L. W. Stulz, J. Stone, J. Hugi, D. DiGiovanni, and P. B. Hansen, “1.2 ps pulses from passively mode-locked laser diode pumped Er-doped fibre ring laser,” Electron. Lett. 27, 1734–1735 (1991).
[CrossRef]

I. N. Duling III, “Subpicosecond all-fibre erbium laser,” Electron. Lett. 27, 544–545 (1991).
[CrossRef]

D. J. Richardson, R. I. Laming, D. N. Payne, M. W. Phillips, and V. J. Matsas, “320 fs soliton generation with passively mode-locked erbium fibre laser,” Electron. Lett. 27, 730–732 (1991).
[CrossRef]

M. Nakazawa, E. Yoshida, and Y. Kimura, “Low threshold, 290 fs erbium-doped fiber laser with a nonlinear amplifying loop mirror pumped by InGaAsP laser diodes,” Appl. Phys. Lett. 59, 2073–2075 (1991).
[CrossRef]

R. P. Davey, N. Langford, and A. I. Ferguson, “Interacting solitons in erbium fiber laser,” Electron. Lett. 27, 1257–1259 (1991).
[CrossRef]

1990

1989

M. Wegener, I. Bar-Joseph, G. Sucha, M. N. Islam, N. Saurer, T. Y. Chang, and D. Chelma, “Femtosecond dynamics of excitonic absorption in the infrared InxGa1−xAs quantum wells,” Phys. Rev. B 39, 12, 794–12, 801 (1989).
[CrossRef]

M. N. Islam, E. R. Sunderman, C. E. Soccolich, I. Bar-Joseph, N. Saurer, T. Y. Chang, and B. I. Miller, “Color center lasers passively mode-locked by quantum wells,” IEEE J. Quantum Electron. 25, 2454–2463 (1989).
[CrossRef]

1986

1985

H. A. Haus and Y. Silberberg, “Theory of mode-locking of a laser diode with a multiple-quantum-well structure,” J. Opt. Soc. Am. B 2, 1237–1243 (1985).
[CrossRef]

D. von der Linde, “Characterization of the noise in continuously operating mode-locked lasers,” Appl. Phys. B 39, 201–217 (1985).
[CrossRef]

1979

A. Bondeson, M. Lisak, and D. Anderson, “Soliton perturbations: a variational principle for the soliton parameters,” Phys. Scr. 20, 479–485 (1979).
[CrossRef]

’tHooft, G. W.

U. Keller, W. H. Knox, and G. W. ’tHooft, “Ultrafast solid-state mode-locked lasers using resonant nonlinearities,” IEEE J. Quantum Electron. 28, 2123–2133 (1992).
[CrossRef]

Afanasjev, V. V.

Anderson, D.

A. Bondeson, M. Lisak, and D. Anderson, “Soliton perturbations: a variational principle for the soliton parameters,” Phys. Scr. 20, 479–485 (1979).
[CrossRef]

Andonovich, I.

N. J. Smith, K. J. Blow, and I. Andonovich, “Sideband generation through perturbations to the average soliton model,” J. Lightwave Technol. 10, 1329–1333 (1992).
[CrossRef]

Andrejco, M. J.

M. E Fermann, M. J. Andrejco, M. L. Stock, Y. Silberberg, and A. M. Weiner, “Passive mode-locking in erbium fibre lasers with negative group delay,” Appl. Phys. Lett. 62, 910–912 (1993).
[CrossRef]

Bar-Joseph, I.

M. Wegener, I. Bar-Joseph, G. Sucha, M. N. Islam, N. Saurer, T. Y. Chang, and D. Chelma, “Femtosecond dynamics of excitonic absorption in the infrared InxGa1−xAs quantum wells,” Phys. Rev. B 39, 12, 794–12, 801 (1989).
[CrossRef]

M. N. Islam, E. R. Sunderman, C. E. Soccolich, I. Bar-Joseph, N. Saurer, T. Y. Chang, and B. I. Miller, “Color center lasers passively mode-locked by quantum wells,” IEEE J. Quantum Electron. 25, 2454–2463 (1989).
[CrossRef]

Bennion, I.

Blow, K. J.

N. J. Smith, K. J. Blow, W. J. Firth, and K. Smith, “Soliton dynamics in the presence of phase modulators,” Opt. Commun. 102, 324–328 (1993).
[CrossRef]

N. J. Smith, K. J. Blow, and I. Andonovich, “Sideband generation through perturbations to the average soliton model,” J. Lightwave Technol. 10, 1329–1333 (1992).
[CrossRef]

Bondeson, A.

A. Bondeson, M. Lisak, and D. Anderson, “Soliton perturbations: a variational principle for the soliton parameters,” Phys. Scr. 20, 479–485 (1979).
[CrossRef]

Chang, T. Y.

M. N. Islam, E. R. Sunderman, C. E. Soccolich, I. Bar-Joseph, N. Saurer, T. Y. Chang, and B. I. Miller, “Color center lasers passively mode-locked by quantum wells,” IEEE J. Quantum Electron. 25, 2454–2463 (1989).
[CrossRef]

M. Wegener, I. Bar-Joseph, G. Sucha, M. N. Islam, N. Saurer, T. Y. Chang, and D. Chelma, “Femtosecond dynamics of excitonic absorption in the infrared InxGa1−xAs quantum wells,” Phys. Rev. B 39, 12, 794–12, 801 (1989).
[CrossRef]

Chelma, D.

M. Wegener, I. Bar-Joseph, G. Sucha, M. N. Islam, N. Saurer, T. Y. Chang, and D. Chelma, “Femtosecond dynamics of excitonic absorption in the infrared InxGa1−xAs quantum wells,” Phys. Rev. B 39, 12, 794–12, 801 (1989).
[CrossRef]

Chen, C. J.

Davey, R. P.

R. P. Davey, N. Langford, and A. I. Ferguson, “Interacting solitons in erbium fiber laser,” Electron. Lett. 27, 1257–1259 (1991).
[CrossRef]

Dennis, M. L.

M. L. Dennis, and I. N. Duling III, “High repetition rate figure eight laser with extra-cavity feedback,” Electron. Lett. 28, 1894–1895 (1992).
[CrossRef]

Dianov, E. M.

DiGiovanni, D.

M. Zirngibl, L. W. Stulz, J. Stone, J. Hugi, D. DiGiovanni, and P. B. Hansen, “1.2 ps pulses from passively mode-locked laser diode pumped Er-doped fibre ring laser,” Electron. Lett. 27, 1734–1735 (1991).
[CrossRef]

Doerr, C. R.

Duling III, I. N.

M. L. Dennis, and I. N. Duling III, “High repetition rate figure eight laser with extra-cavity feedback,” Electron. Lett. 28, 1894–1895 (1992).
[CrossRef]

I. N. Duling III, “Subpicosecond all-fibre erbium laser,” Electron. Lett. 27, 544–545 (1991).
[CrossRef]

Ferguson, A. I.

R. P. Davey, N. Langford, and A. I. Ferguson, “Interacting solitons in erbium fiber laser,” Electron. Lett. 27, 1257–1259 (1991).
[CrossRef]

Fermann, M. E

M. E Fermann, M. J. Andrejco, M. L. Stock, Y. Silberberg, and A. M. Weiner, “Passive mode-locking in erbium fibre lasers with negative group delay,” Appl. Phys. Lett. 62, 910–912 (1993).
[CrossRef]

Fermann, M. E.

Firth, W. J.

N. J. Smith, K. J. Blow, W. J. Firth, and K. Smith, “Soliton dynamics in the presence of phase modulators,” Opt. Commun. 102, 324–328 (1993).
[CrossRef]

Golovchenko, E. A.

Gordon, J. P.

Gray, S.

Gridinin, A. B.

Grudinin, A. B.

S. Gray, A. B. Grudinin, W. H. Loh, and D. N. Payne, “Femtosecond harmonically mode-locked fiber laser with time jitter below 1 ps,” Opt. Lett. 20, 189–191 (1995).
[CrossRef] [PubMed]

A. B. Grudinin, D. J. Richardson, and D. N. Payne, “Passive harmonic mode-locking of a fibre soliton ring laser,” Electron. Lett. 29, 1860–1861 (1993).
[CrossRef]

A. B. Grudinin, D. J. Richardson, and D. N. Payne, “Energy quantization in figure eight fibre laser,” Electron. Lett. 28, 67–68 (1992).
[CrossRef]

Hansen, P. B.

M. Zirngibl, L. W. Stulz, J. Stone, J. Hugi, D. DiGiovanni, and P. B. Hansen, “1.2 ps pulses from passively mode-locked laser diode pumped Er-doped fibre ring laser,” Electron. Lett. 27, 1734–1735 (1991).
[CrossRef]

Hasegawa, A.

Haus, H.

H. Haus and A. Mecozzi, “Noise in mode-locked lasers,” IEEE J. Quantum Electron. 29, 983–996 (1993).
[CrossRef]

Haus, H. A.

Hugi, J.

M. Zirngibl, L. W. Stulz, J. Stone, J. Hugi, D. DiGiovanni, and P. B. Hansen, “1.2 ps pulses from passively mode-locked laser diode pumped Er-doped fibre ring laser,” Electron. Lett. 27, 1734–1735 (1991).
[CrossRef]

Ippen, E. P.

K. Tamura, L. E. Nelson, H. A. Haus, and E. P. Ippen, “Soliton versus non-soliton operation of fibre ring lasers,” Appl. Phys. Lett. 64, 149–151 (1994).
[CrossRef]

K. Tamura, C. R. Doerr, L. E. Nelson, H. A. Haus, and E. P. Ippen, “Technique for obtaining high-energy ultrashort pulses from an additive-pulse mode-locked erbium-doped fiber ring laser,” Opt. Lett. 19, 46–48 (1994).
[CrossRef] [PubMed]

K. Tamura, H. A. Haus, and E. P. Ippen, “Self-starting additive pulse mode-locked erbium fibre ring laser,” Electron. Lett. 28, 2226–2228 (1992).
[CrossRef]

Islam, M. N.

M. Wegener, I. Bar-Joseph, G. Sucha, M. N. Islam, N. Saurer, T. Y. Chang, and D. Chelma, “Femtosecond dynamics of excitonic absorption in the infrared InxGa1−xAs quantum wells,” Phys. Rev. B 39, 12, 794–12, 801 (1989).
[CrossRef]

M. N. Islam, E. R. Sunderman, C. E. Soccolich, I. Bar-Joseph, N. Saurer, T. Y. Chang, and B. I. Miller, “Color center lasers passively mode-locked by quantum wells,” IEEE J. Quantum Electron. 25, 2454–2463 (1989).
[CrossRef]

Keller, U.

U. Keller, W. H. Knox, and G. W. ’tHooft, “Ultrafast solid-state mode-locked lasers using resonant nonlinearities,” IEEE J. Quantum Electron. 28, 2123–2133 (1992).
[CrossRef]

Kimura, Y.

E. Yoshida, Y. Kimura, and M. Nakazawa, “Laser diode-pumped femtosecond erbium-doped fiber laser with a sub-ring cavity for repetition rate control,” Appl. Phys. Lett. 60, 932–934 (1992).
[CrossRef]

M. Nakazawa, E. Yoshida, and Y. Kimura, “Low threshold, 290 fs erbium-doped fiber laser with a nonlinear amplifying loop mirror pumped by InGaAsP laser diodes,” Appl. Phys. Lett. 59, 2073–2075 (1991).
[CrossRef]

Knox, W. H.

U. Keller, W. H. Knox, and G. W. ’tHooft, “Ultrafast solid-state mode-locked lasers using resonant nonlinearities,” IEEE J. Quantum Electron. 28, 2123–2133 (1992).
[CrossRef]

Kubota, H.

H. Kubota and M. Nakazawa, “Soliton transmission control in time and frequency domains,” IEEE J. Quantum Electron. 29, 2189–2197 (1993).
[CrossRef]

Lai, Y.

Laming, R. I.

D. J. Richardson, R. I. Laming, D. N. Payne, M. W. Phillips, and V. J. Matsas, “320 fs soliton generation with passively mode-locked erbium fibre laser,” Electron. Lett. 27, 730–732 (1991).
[CrossRef]

Langford, N.

R. P. Davey, N. Langford, and A. I. Ferguson, “Interacting solitons in erbium fiber laser,” Electron. Lett. 27, 1257–1259 (1991).
[CrossRef]

Lisak, M.

A. Bondeson, M. Lisak, and D. Anderson, “Soliton perturbations: a variational principle for the soliton parameters,” Phys. Scr. 20, 479–485 (1979).
[CrossRef]

Loh, W. H.

Luchnikov, A. V.

Matsas, V. J.

V. J. Matsas, W. H. Loh, and D. J. Richardson, “Self-starting, passively mode-locked Fabry–Perot fiber soliton laser using nonlinear polarization evolution,” IEEE Photonics Technol. Lett. 5, 492–494 (1993).
[CrossRef]

V. J. Matsas, D. J. Richardson, T. P. Newson, and D. N. Payne, “Characterization of a self-starting, passively mode-locked fiber ring laser that exploits nonlinear polarization evolution,” Opt. Lett. 18, 358–360 (1993).
[CrossRef] [PubMed]

V. J. Matsas, T. P. Newson, D. J. Richardson, and D. N. Payne “Self-starting passively mode-locked fibre ring laser exploiting nonlinear polarization rotation,” Electron. Lett. 28, 1391–1393 (1992).
[CrossRef]

D. J. Richardson, R. I. Laming, D. N. Payne, M. W. Phillips, and V. J. Matsas, “320 fs soliton generation with passively mode-locked erbium fibre laser,” Electron. Lett. 27, 730–732 (1991).
[CrossRef]

Matsumoto, M.

Mecozzi, A.

Menyuk, C. R.

Miller, B. I.

M. N. Islam, E. R. Sunderman, C. E. Soccolich, I. Bar-Joseph, N. Saurer, T. Y. Chang, and B. I. Miller, “Color center lasers passively mode-locked by quantum wells,” IEEE J. Quantum Electron. 25, 2454–2463 (1989).
[CrossRef]

Moores, J. D.

Nakazawa, M.

H. Kubota and M. Nakazawa, “Soliton transmission control in time and frequency domains,” IEEE J. Quantum Electron. 29, 2189–2197 (1993).
[CrossRef]

E. Yoshida, Y. Kimura, and M. Nakazawa, “Laser diode-pumped femtosecond erbium-doped fiber laser with a sub-ring cavity for repetition rate control,” Appl. Phys. Lett. 60, 932–934 (1992).
[CrossRef]

M. Nakazawa, E. Yoshida, and Y. Kimura, “Low threshold, 290 fs erbium-doped fiber laser with a nonlinear amplifying loop mirror pumped by InGaAsP laser diodes,” Appl. Phys. Lett. 59, 2073–2075 (1991).
[CrossRef]

Nelson, L. E.

Newson, T. P.

V. J. Matsas, D. J. Richardson, T. P. Newson, and D. N. Payne, “Characterization of a self-starting, passively mode-locked fiber ring laser that exploits nonlinear polarization evolution,” Opt. Lett. 18, 358–360 (1993).
[CrossRef] [PubMed]

V. J. Matsas, T. P. Newson, D. J. Richardson, and D. N. Payne “Self-starting passively mode-locked fibre ring laser exploiting nonlinear polarization rotation,” Electron. Lett. 28, 1391–1393 (1992).
[CrossRef]

Payne, D. N.

S. Gray, A. B. Grudinin, W. H. Loh, and D. N. Payne, “Femtosecond harmonically mode-locked fiber laser with time jitter below 1 ps,” Opt. Lett. 20, 189–191 (1995).
[CrossRef] [PubMed]

W. H. Loh, A. B. Gridinin, V. V. Afanasjev, and D. N. Payne, “Soliton interaction in the presence of a weak nonsoliton component,” Opt. Lett. 19, 698–700 (1994).
[CrossRef] [PubMed]

V. J. Matsas, D. J. Richardson, T. P. Newson, and D. N. Payne, “Characterization of a self-starting, passively mode-locked fiber ring laser that exploits nonlinear polarization evolution,” Opt. Lett. 18, 358–360 (1993).
[CrossRef] [PubMed]

A. B. Grudinin, D. J. Richardson, and D. N. Payne, “Passive harmonic mode-locking of a fibre soliton ring laser,” Electron. Lett. 29, 1860–1861 (1993).
[CrossRef]

A. B. Grudinin, D. J. Richardson, and D. N. Payne, “Energy quantization in figure eight fibre laser,” Electron. Lett. 28, 67–68 (1992).
[CrossRef]

V. J. Matsas, T. P. Newson, D. J. Richardson, and D. N. Payne “Self-starting passively mode-locked fibre ring laser exploiting nonlinear polarization rotation,” Electron. Lett. 28, 1391–1393 (1992).
[CrossRef]

D. J. Richardson, R. I. Laming, D. N. Payne, M. W. Phillips, and V. J. Matsas, “320 fs soliton generation with passively mode-locked erbium fibre laser,” Electron. Lett. 27, 730–732 (1991).
[CrossRef]

Phillips, M. W.

D. J. Richardson, R. I. Laming, D. N. Payne, M. W. Phillips, and V. J. Matsas, “320 fs soliton generation with passively mode-locked erbium fibre laser,” Electron. Lett. 27, 730–732 (1991).
[CrossRef]

Pilipetskii, A. N.

Richardson, D. J.

A. B. Grudinin, D. J. Richardson, and D. N. Payne, “Passive harmonic mode-locking of a fibre soliton ring laser,” Electron. Lett. 29, 1860–1861 (1993).
[CrossRef]

V. J. Matsas, W. H. Loh, and D. J. Richardson, “Self-starting, passively mode-locked Fabry–Perot fiber soliton laser using nonlinear polarization evolution,” IEEE Photonics Technol. Lett. 5, 492–494 (1993).
[CrossRef]

V. J. Matsas, D. J. Richardson, T. P. Newson, and D. N. Payne, “Characterization of a self-starting, passively mode-locked fiber ring laser that exploits nonlinear polarization evolution,” Opt. Lett. 18, 358–360 (1993).
[CrossRef] [PubMed]

V. J. Matsas, T. P. Newson, D. J. Richardson, and D. N. Payne “Self-starting passively mode-locked fibre ring laser exploiting nonlinear polarization rotation,” Electron. Lett. 28, 1391–1393 (1992).
[CrossRef]

A. B. Grudinin, D. J. Richardson, and D. N. Payne, “Energy quantization in figure eight fibre laser,” Electron. Lett. 28, 67–68 (1992).
[CrossRef]

D. J. Richardson, R. I. Laming, D. N. Payne, M. W. Phillips, and V. J. Matsas, “320 fs soliton generation with passively mode-locked erbium fibre laser,” Electron. Lett. 27, 730–732 (1991).
[CrossRef]

Saurer, N.

M. Wegener, I. Bar-Joseph, G. Sucha, M. N. Islam, N. Saurer, T. Y. Chang, and D. Chelma, “Femtosecond dynamics of excitonic absorption in the infrared InxGa1−xAs quantum wells,” Phys. Rev. B 39, 12, 794–12, 801 (1989).
[CrossRef]

M. N. Islam, E. R. Sunderman, C. E. Soccolich, I. Bar-Joseph, N. Saurer, T. Y. Chang, and B. I. Miller, “Color center lasers passively mode-locked by quantum wells,” IEEE J. Quantum Electron. 25, 2454–2463 (1989).
[CrossRef]

Silberberg, Y.

M. E Fermann, M. J. Andrejco, M. L. Stock, Y. Silberberg, and A. M. Weiner, “Passive mode-locking in erbium fibre lasers with negative group delay,” Appl. Phys. Lett. 62, 910–912 (1993).
[CrossRef]

H. A. Haus and Y. Silberberg, “Theory of mode-locking of a laser diode with a multiple-quantum-well structure,” J. Opt. Soc. Am. B 2, 1237–1243 (1985).
[CrossRef]

Smith, K.

N. J. Smith, K. J. Blow, W. J. Firth, and K. Smith, “Soliton dynamics in the presence of phase modulators,” Opt. Commun. 102, 324–328 (1993).
[CrossRef]

Smith, N. J.

N. J. Smith, K. J. Blow, W. J. Firth, and K. Smith, “Soliton dynamics in the presence of phase modulators,” Opt. Commun. 102, 324–328 (1993).
[CrossRef]

N. J. Smith, K. J. Blow, and I. Andonovich, “Sideband generation through perturbations to the average soliton model,” J. Lightwave Technol. 10, 1329–1333 (1992).
[CrossRef]

Soccolich, C. E.

M. N. Islam, E. R. Sunderman, C. E. Soccolich, I. Bar-Joseph, N. Saurer, T. Y. Chang, and B. I. Miller, “Color center lasers passively mode-locked by quantum wells,” IEEE J. Quantum Electron. 25, 2454–2463 (1989).
[CrossRef]

Starodumov, A. N.

Stock, M. L.

M. E Fermann, M. J. Andrejco, M. L. Stock, Y. Silberberg, and A. M. Weiner, “Passive mode-locking in erbium fibre lasers with negative group delay,” Appl. Phys. Lett. 62, 910–912 (1993).
[CrossRef]

Stone, J.

M. Zirngibl, L. W. Stulz, J. Stone, J. Hugi, D. DiGiovanni, and P. B. Hansen, “1.2 ps pulses from passively mode-locked laser diode pumped Er-doped fibre ring laser,” Electron. Lett. 27, 1734–1735 (1991).
[CrossRef]

Stulz, L. W.

M. Zirngibl, L. W. Stulz, J. Stone, J. Hugi, D. DiGiovanni, and P. B. Hansen, “1.2 ps pulses from passively mode-locked laser diode pumped Er-doped fibre ring laser,” Electron. Lett. 27, 1734–1735 (1991).
[CrossRef]

Sucha, G.

M. Wegener, I. Bar-Joseph, G. Sucha, M. N. Islam, N. Saurer, T. Y. Chang, and D. Chelma, “Femtosecond dynamics of excitonic absorption in the infrared InxGa1−xAs quantum wells,” Phys. Rev. B 39, 12, 794–12, 801 (1989).
[CrossRef]

Sugden, K.

Sunderman, E. R.

M. N. Islam, E. R. Sunderman, C. E. Soccolich, I. Bar-Joseph, N. Saurer, T. Y. Chang, and B. I. Miller, “Color center lasers passively mode-locked by quantum wells,” IEEE J. Quantum Electron. 25, 2454–2463 (1989).
[CrossRef]

Tamura, K.

K. Tamura, C. R. Doerr, L. E. Nelson, H. A. Haus, and E. P. Ippen, “Technique for obtaining high-energy ultrashort pulses from an additive-pulse mode-locked erbium-doped fiber ring laser,” Opt. Lett. 19, 46–48 (1994).
[CrossRef] [PubMed]

K. Tamura, L. E. Nelson, H. A. Haus, and E. P. Ippen, “Soliton versus non-soliton operation of fibre ring lasers,” Appl. Phys. Lett. 64, 149–151 (1994).
[CrossRef]

K. Tamura, H. A. Haus, and E. P. Ippen, “Self-starting additive pulse mode-locked erbium fibre ring laser,” Electron. Lett. 28, 2226–2228 (1992).
[CrossRef]

von der Linde, D.

D. von der Linde, “Characterization of the noise in continuously operating mode-locked lasers,” Appl. Phys. B 39, 201–217 (1985).
[CrossRef]

Wai, P. K. A.

Wegener, M.

M. Wegener, I. Bar-Joseph, G. Sucha, M. N. Islam, N. Saurer, T. Y. Chang, and D. Chelma, “Femtosecond dynamics of excitonic absorption in the infrared InxGa1−xAs quantum wells,” Phys. Rev. B 39, 12, 794–12, 801 (1989).
[CrossRef]

Weiner, A. M.

M. E Fermann, M. J. Andrejco, M. L. Stock, Y. Silberberg, and A. M. Weiner, “Passive mode-locking in erbium fibre lasers with negative group delay,” Appl. Phys. Lett. 62, 910–912 (1993).
[CrossRef]

Yoshida, E.

E. Yoshida, Y. Kimura, and M. Nakazawa, “Laser diode-pumped femtosecond erbium-doped fiber laser with a sub-ring cavity for repetition rate control,” Appl. Phys. Lett. 60, 932–934 (1992).
[CrossRef]

M. Nakazawa, E. Yoshida, and Y. Kimura, “Low threshold, 290 fs erbium-doped fiber laser with a nonlinear amplifying loop mirror pumped by InGaAsP laser diodes,” Appl. Phys. Lett. 59, 2073–2075 (1991).
[CrossRef]

Zirngibl, M.

M. Zirngibl, L. W. Stulz, J. Stone, J. Hugi, D. DiGiovanni, and P. B. Hansen, “1.2 ps pulses from passively mode-locked laser diode pumped Er-doped fibre ring laser,” Electron. Lett. 27, 1734–1735 (1991).
[CrossRef]

Appl. Phys. B

D. von der Linde, “Characterization of the noise in continuously operating mode-locked lasers,” Appl. Phys. B 39, 201–217 (1985).
[CrossRef]

Appl. Phys. Lett.

M. Nakazawa, E. Yoshida, and Y. Kimura, “Low threshold, 290 fs erbium-doped fiber laser with a nonlinear amplifying loop mirror pumped by InGaAsP laser diodes,” Appl. Phys. Lett. 59, 2073–2075 (1991).
[CrossRef]

M. E Fermann, M. J. Andrejco, M. L. Stock, Y. Silberberg, and A. M. Weiner, “Passive mode-locking in erbium fibre lasers with negative group delay,” Appl. Phys. Lett. 62, 910–912 (1993).
[CrossRef]

K. Tamura, L. E. Nelson, H. A. Haus, and E. P. Ippen, “Soliton versus non-soliton operation of fibre ring lasers,” Appl. Phys. Lett. 64, 149–151 (1994).
[CrossRef]

E. Yoshida, Y. Kimura, and M. Nakazawa, “Laser diode-pumped femtosecond erbium-doped fiber laser with a sub-ring cavity for repetition rate control,” Appl. Phys. Lett. 60, 932–934 (1992).
[CrossRef]

Electron. Lett.

M. L. Dennis, and I. N. Duling III, “High repetition rate figure eight laser with extra-cavity feedback,” Electron. Lett. 28, 1894–1895 (1992).
[CrossRef]

M. Zirngibl, L. W. Stulz, J. Stone, J. Hugi, D. DiGiovanni, and P. B. Hansen, “1.2 ps pulses from passively mode-locked laser diode pumped Er-doped fibre ring laser,” Electron. Lett. 27, 1734–1735 (1991).
[CrossRef]

I. N. Duling III, “Subpicosecond all-fibre erbium laser,” Electron. Lett. 27, 544–545 (1991).
[CrossRef]

D. J. Richardson, R. I. Laming, D. N. Payne, M. W. Phillips, and V. J. Matsas, “320 fs soliton generation with passively mode-locked erbium fibre laser,” Electron. Lett. 27, 730–732 (1991).
[CrossRef]

R. P. Davey, N. Langford, and A. I. Ferguson, “Interacting solitons in erbium fiber laser,” Electron. Lett. 27, 1257–1259 (1991).
[CrossRef]

A. B. Grudinin, D. J. Richardson, and D. N. Payne, “Energy quantization in figure eight fibre laser,” Electron. Lett. 28, 67–68 (1992).
[CrossRef]

V. J. Matsas, T. P. Newson, D. J. Richardson, and D. N. Payne “Self-starting passively mode-locked fibre ring laser exploiting nonlinear polarization rotation,” Electron. Lett. 28, 1391–1393 (1992).
[CrossRef]

A. B. Grudinin, D. J. Richardson, and D. N. Payne, “Passive harmonic mode-locking of a fibre soliton ring laser,” Electron. Lett. 29, 1860–1861 (1993).
[CrossRef]

K. Tamura, H. A. Haus, and E. P. Ippen, “Self-starting additive pulse mode-locked erbium fibre ring laser,” Electron. Lett. 28, 2226–2228 (1992).
[CrossRef]

IEEE J. Quantum Electron.

M. N. Islam, E. R. Sunderman, C. E. Soccolich, I. Bar-Joseph, N. Saurer, T. Y. Chang, and B. I. Miller, “Color center lasers passively mode-locked by quantum wells,” IEEE J. Quantum Electron. 25, 2454–2463 (1989).
[CrossRef]

H. Haus and A. Mecozzi, “Noise in mode-locked lasers,” IEEE J. Quantum Electron. 29, 983–996 (1993).
[CrossRef]

H. Kubota and M. Nakazawa, “Soliton transmission control in time and frequency domains,” IEEE J. Quantum Electron. 29, 2189–2197 (1993).
[CrossRef]

U. Keller, W. H. Knox, and G. W. ’tHooft, “Ultrafast solid-state mode-locked lasers using resonant nonlinearities,” IEEE J. Quantum Electron. 28, 2123–2133 (1992).
[CrossRef]

IEEE Photonics Technol. Lett.

V. J. Matsas, W. H. Loh, and D. J. Richardson, “Self-starting, passively mode-locked Fabry–Perot fiber soliton laser using nonlinear polarization evolution,” IEEE Photonics Technol. Lett. 5, 492–494 (1993).
[CrossRef]

J. Lightwave Technol.

N. J. Smith, K. J. Blow, and I. Andonovich, “Sideband generation through perturbations to the average soliton model,” J. Lightwave Technol. 10, 1329–1333 (1992).
[CrossRef]

J. Opt. Soc. Am. B

Opt. Commun.

N. J. Smith, K. J. Blow, W. J. Firth, and K. Smith, “Soliton dynamics in the presence of phase modulators,” Opt. Commun. 102, 324–328 (1993).
[CrossRef]

Opt. Lett.

J. P. Gordon and H. A. Haus, “Random walk of coherently amplified solitons in optical fiber transmission,” Opt. Lett. 11, 665–667 (1986).
[CrossRef] [PubMed]

E. M. Dianov, A. V. Luchnikov, A. N. Pilipetskii, and A. N. Starodumov, “Electrostrictional mechanism of soliton interaction in optical fibers,” Opt. Lett. 15, 314–316 (1990).
[CrossRef]

A. Mecozzi, J. D. Moores, H. A. Haus, and Y. Lai, “Soliton transmission control,” Opt. Lett. 16, 1841–1843 (1991).
[CrossRef] [PubMed]

C. J. Chen, P. K. A. Wai, and C. R. Menyuk, “Soliton fiber ring laser,” Opt. Lett. 17, 417–419 (1992).
[CrossRef] [PubMed]

V. J. Matsas, D. J. Richardson, T. P. Newson, and D. N. Payne, “Characterization of a self-starting, passively mode-locked fiber ring laser that exploits nonlinear polarization evolution,” Opt. Lett. 18, 358–360 (1993).
[CrossRef] [PubMed]

M. Matsumoto and A. Hasegawa, “Numerical study of the reduction of instability in bandwidth-limited amplified soliton transmission,” Opt. Lett. 18, 897–899 (1993).
[CrossRef] [PubMed]

K. Tamura, C. R. Doerr, L. E. Nelson, H. A. Haus, and E. P. Ippen, “Technique for obtaining high-energy ultrashort pulses from an additive-pulse mode-locked erbium-doped fiber ring laser,” Opt. Lett. 19, 46–48 (1994).
[CrossRef] [PubMed]

W. H. Loh, A. B. Gridinin, V. V. Afanasjev, and D. N. Payne, “Soliton interaction in the presence of a weak nonsoliton component,” Opt. Lett. 19, 698–700 (1994).
[CrossRef] [PubMed]

S. Gray, A. B. Grudinin, W. H. Loh, and D. N. Payne, “Femtosecond harmonically mode-locked fiber laser with time jitter below 1 ps,” Opt. Lett. 20, 189–191 (1995).
[CrossRef] [PubMed]

A. N. Pilipetskii, E. A. Golovchenko, and C. R. Menyuk, “Acoustic effect in passively mode-locked fiber ring lasers,” Opt. Lett. 20, 907–909 (1995).
[CrossRef] [PubMed]

M. E. Fermann, K. Sugden, and I. Bennion, “Environmentally stable high-power soliton fiber lasers that use chirped fiber Bragg gratings,” Opt. Lett. 20, 1625–1627 (1995).
[CrossRef] [PubMed]

Phys. Rev. B

M. Wegener, I. Bar-Joseph, G. Sucha, M. N. Islam, N. Saurer, T. Y. Chang, and D. Chelma, “Femtosecond dynamics of excitonic absorption in the infrared InxGa1−xAs quantum wells,” Phys. Rev. B 39, 12, 794–12, 801 (1989).
[CrossRef]

Phys. Scr.

A. Bondeson, M. Lisak, and D. Anderson, “Soliton perturbations: a variational principle for the soliton parameters,” Phys. Scr. 20, 479–485 (1979).
[CrossRef]

Other

E. M. Dianov, A. V. Luchnikov, A. N. Pilipetskii, and A. N. Starodumov, “Long-range interaction of soliton pulse trains in a single-mode fibre,” Sov. Lightwave Commun. 1, 37–45 (1991).

W. H. Loh, D. Atkinson, P. R. Morkel, M. Hopkinson, A. Rivers, A. J. Seeds, and D. N. Payne, “Passively mode-locked Er3+ fiber laser using a nonlinear mirror,” Photonics Technol. Lett. 5, 35–37 (1993).

K. V. Reddy, W. Riha, A. B. Grudinin, D. J. Richardson, J. E. Townsend, D. N. Payne, and M. N. Islam, “A turnkey 1.5 μm picosecond Er/Yb fibre laser,” in Optical Four Communication Conference and International Conference on Integrated Optics and Optical Fiber Communication, Vol. 4 of 1993 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1993), paper PD17.

I. Y. Khrushchev, D. J. Richardson, and E. M. Dianov, “Generation of 800 MHz stable train of subpicosecond solitons from the figure 8 laser,” presented at the European Conference on Optical Communications, Montreux, Switzerland, 1993.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (13)

Fig. 1
Fig. 1

Experimental configuration of a passively mode-locked ring laser. WDM, wavelength-division multiplexer; PC's, polarization controllers.

Fig. 2
Fig. 2

Typical optical spectrum from the passively mode-locked fiber laser.

Fig. 3
Fig. 3

Time jitter as a function of repetition frequency for a total cavity length of 35 m.

Fig. 4
Fig. 4

Third-order rf Spectrum for a repetition frequency of 463 MHz and a cavity length of 18 m, indicating 600-fs (100–550-Hz) jitter.

Fig. 5
Fig. 5

Peak refractive-index perturbations in an optical fiber generated by a continuous stream of pulses.

Fig. 6
Fig. 6

Acoustic response of an optical fiber to a pulse stream whose repetition rate of 463 MHz matches the 10th acoustic eigenfrequency. Resonant enhancement generates a peak refractive-index change 10-9.

Fig. 7
Fig. 7

Experimental configuration of a passively mode-locked laser with a hybrid saturable absorber. WDM, wavelength-division multiplexer; PC, polarization controller.

Fig. 8
Fig. 8

Pulse spectrum of the laser: (a) taken at the spare port of the wavelength-division multiplexer (WDM) and indicating 20-dB suppression of the nonsoliton component, (b) taken at the rejected port of the 60/40 coupler (this spectrum actually corresponds to that of the nonsoliton component).

Fig. 9
Fig. 9

rf Spectrum of the laser output intensity taken with a resolution of 30 kHz.

Fig. 10
Fig. 10

rf Spectrum of the 2-GHz passive harmonically mode-locked femtosecond soliton laser. Pump power fluctuations cause frequency hopping.

Fig. 11
Fig. 11

Optical spectrum of the 2-GHz femtosecond soliton laser.

Fig. 12
Fig. 12

Three-level model of a MQW-based passive phase modulator.

Fig. 13
Fig. 13

Illustration of the MQW refractive-index changes using the simple model of Eqs. (8) (solid and long-dashed curves) and the sinusoidal approximation defined by Eq. (12) (dotted curves) for a, T/τ2=1 and b, T/τ2=2.5.

Equations (22)

Equations on this page are rendered with MathJax. Learn more.

ψ(z, t)=ψs(z, t)+δψ(t),
ψs(z, t)=η sech[η(t-τs)]exp i(Ωst-ϕ).
δψn(t)=A exp(jΩt)k=1k=N exp j[(k-n)TΩ+ϕk-n],
δηn=Re -+ψs(z, t)δψn(t)dt=Aπ sech π(Ωs+Ω)2k=1k=N cos[(k-n)TΩ+ϕk-n],
δΩn=Im -+ψs(t)tanh(t)δψn(t)dt=Aπ(Ω+Ωs)sech π(Ωs+Ω)2×k=1k=Ncos[(k-n)TΩ+ϕk-n].
δΩ(n)=2Aπ(Ω+Ωs)sech π(Ω+Ωs)2×sin(Φ-nTΩ+ϕ+)sin(ϕ--Φ),
δn(t)=-ρ4cn2ρ2×I0τsF2(r)dSk BkCkΩkexp(-Γt)×sin(Ωkt)+exp(-ΓT)sin[Ωk(T-t)]1+exp(-2ΓT)2 exp(-ΓT) cos(ΩkT),
n(t, T)=n0-N2(t, T)Δn-N3(t, T)Δn,
N1=N0-N2-N3,
dN2dt=-N2τ2+N3τ3,
dN3dt=-N3τ3.
N2(t)=k=0 exp-(t-kT)τ2[Θ(t-kT)-Θ(t-(k+1)T)]-exp-tτ3-1-exp-Tτ2k=1 exp-(t-mt)τ3×Θ(t-kT),
N3(t)=exp-tτ2+1-exp-Tτ2×m=1exp-(t-mT)τ3Θ(t-mT),
n(T)=n0-Δn exp-Tτ2+(Δn-Δn)×1-exp-Tτ2exp-Tτ3n0-Δn exp-Tτ2.
Δω=-zaω0cdndtt=T=-zaω0cΔnτ2exp-Tτ2+Δn-Δnτ3×1-exp-Tτ2exp-Tτ3-zaω0cΔnτ2exp-Tτ2,
n(t)=n0-Δn exp(-T/τ2)23-cos2πtT=n0+Δneff cos2πtT,
i ψz+122ψτ2+|ψ|2ψ=iGψ+iβ 2ψτ2
+(ϕ0-ϕ2τ2)ψ+iα|ψ|2ψ+S(z),
ϕ0=kδnzckΔneffzafortheacousticeffectforMQWsaturableabsorber,
d2τs(z)dz2+4β3dτs(z)dz+2ϕ2τs(z)=SΩ(z).
SΩ(z)SΩ*(z)=δ(z-z) (G2-1)3N0ξc=δ(z-z)NΩ,
σT2=-+|τc(k)|2dk=3NΩ2βϕ2=(G2-1)Ω2T232N0ϕ0ξc2,

Metrics