Abstract

We developed a high-power tunable picosecond IR laser system suitable for nonlinear spectroscopic investigations. We employ a Ti:sapphire regenerative amplifier that produces 1.9-ps, 17-cm-1, 800-nm pulses at 1 kHz as a pump source. White-light generation in ethylene glycol and optical parametric amplification in potassium titanyl phosphate are used to produce the IR pulses. The tuning range extends from 2.4 to 3.8 µm in the idler and 1.0 to 1.2 µm in the signal. A total efficiency (signal plus idler) as high as 20% was achieved. The spatial, spectral, and temporal characteristics of the IR beam are presented along with vibrational sum-frequency spectra from a glass/octadecyltrichlorosilane/air interface.

© 1996 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Q. Du, E. Freysz, and Y. R. Shen, “Surface vibrational spectroscopic studies of hydrogen bonding and hydrophobicity,” Science 264, 826 (1994).
    [Crossref] [PubMed]
  2. M. C. Mesmer, J. C. Conboy, and G. L. Richmond, “Observation of molecular ordering at the liquid-liquid interface by resonant sum frequency generation,” J. Am. Chem. Soc. 117, 8039 (1995).
    [Crossref]
  3. C. D. Bain, P. B. Davies, and R. N. Ward, “In situ sum-frequency spectroscopy of sodium dodecyl sulfate and dodecanol coadsorbed at a hydrophobic surface,” Langmuir 10, 2060 (1994).
    [Crossref]
  4. V. Pflumio, J. C. Vallet, A. J. Boeglin, A. A. Villaeys, and J. P. Lavoine, “Application of the sum-frequency generation to the vibrational spectroscopy of a Langmuir–Blodgett film,” Phys. Rev. A 51, 3174 (1995).
    [Crossref] [PubMed]
  5. K. Wolfrum, H. Graener, and A. Laubereau, “Sum-frequency vibrational spectroscopy at the liquid-air interface of methanol water solutions,” Chem. Phys. Lett. 213, 41 (1993).
    [Crossref]
  6. D. Zhang, J. H. Gutow, K. B. Eisenthal, and T. F. Heinz, “Sudden structural change at an air/binary liquid interface: sum-frequency study of the air/acetonitrile-water interface,” J. Chem. Phys. 98, 5099 (1993).
    [Crossref]
  7. R. Laenen, K. Wolfrum, A. Seilmeier, and A. Laubereau, “Parametric generation of femtosecond and picosecond pulses for spectroscopic applications,” J. Opt. Soc. Am. B 10, 2151 (1993).
    [Crossref]
  8. H. M. van Driel and G. Mak, “Femtosecond pulses from the ultraviolet to the infrared: optical parametric processes in a new light,” Can. J. Phys. 71, 47 (1993).
    [Crossref]
  9. J. Y. Zhang, J. Y. Huang, Y. R. Shen, and C. Chen, “Optical parametric generation and amplification in barium borate and lithium triborate crystals,” J. Opt. Soc. Am. B 10, 1758 (1993).
    [Crossref]
  10. H. Vanherzeele, “Picosecond laser system continuously tunable in the 0.6–4 µm range,” Appl. Opt. 29, 2246 (1990).
    [Crossref] [PubMed]
  11. H. J. Krause and W. Daum, “High-power source of coherent picosecond light pulses tunable from 0.41 to 12.9 µm,” Appl. Phys. B 56, 8 (1993).
    [Crossref]
  12. U. Sukowski and A. Seilmeier, “Intense tunable picosecond pulses generated by parametric amplification in barium betaborate,” Appl. Phys. B 50, 541 (1990).
    [Crossref]
  13. F. Seifert, V. Petrov, and M. Woerner, “Solid-state laser system for the generation of midinfrared femtosecond pulses tunable from 3.3 to 10 µm,” Opt. Lett. 19, 2009 (1994).
    [Crossref] [PubMed]
  14. P. Hamm, C. Lauterwasser, and W. Zinth, “Generation of tunable subpicosecond light pulses in the midinfrared between 4.5 and 11.5 µm,” Opt. Lett. 18, 1943 (1993).
    [Crossref] [PubMed]
  15. S. Takeuchi and T. Kobayashi, “Broadband near-infrared pulse generation KTiOPO4,” J. Appl. Phys. 75, 2757 (1994).
    [Crossref]
  16. M. K. Reed, M. K. Steiner-Shepard, and D. K. Negus, “Widely tunable femtosecond optical parametric amplifier at 250 kHz using a Ti:sapphire regenerative amplifier,” Opt. Lett. 19, 1973 (1994).
    [Crossref]
  17. M. K. Reed, M. K. Steiner-Shepard, M. S. Armas, and D. K. Negus, “Microjoule-energy ultrafast optical parametric amplifiers,” J. Opt. Soc. Am. B 12, 2229 (1995).
    [Crossref]
  18. W. H. Knox, M. C. Downer, R. L. Fork, and C. V. Shank, “Amplified femtosecond optical pulses and continuum generation at 5-kHz repetition rate,” Opt. Lett. 9, 552 (1984).
    [Crossref] [PubMed]
  19. V. Petrov and F. Noack, “Tunable femtosecond optical parametric amplifier in the mid-infrared with narrow-band seeding,” J. Opt. Soc. Am. B 12, 2214 (1995).
    [Crossref]
  20. A. Yariv, Optical Electronics (Holt, Rinehart, & Winston, New York, 1986).
  21. A. E. Siegman, “Defining and measuring laser beam quality,” in Solid State Lasers: New Developments and Applications, M. Inguscio and R. Wallenstein, eds. (Plenum, New York, 1993), p. 13.
    [Crossref]
  22. M. M. Wefers and K. A. Nelson, “Ultrafast optical waveforms,” Science 262, 1381 (1993).
    [Crossref] [PubMed]
  23. A. M. Weiner, D. E. Leaird, J. S. Patel, and J. R. Wullert, “Programmable femtosecond pulse shaping by use of a multielement liquid-crystal phase modulator,” Opt. Lett. 15, 326 (1990).
    [Crossref] [PubMed]
  24. G. R. Fleming, Chemical Applications of Ultrafast Spectroscopy (Oxford U. Press, New York, 1986).
  25. D. E. Gragson, D. S. Alavi, and G. L. Richmond, “Tunable picosecond infrared laser system based on parametric amplification in KTP with a Ti:sapphire amplifier,” Opt. Lett. 20, 1991 (1995).
    [Crossref] [PubMed]
  26. V. G. Dmitriev, G. G. Gurzadyan, and D. N. Nikogosyan, Handbook of Nonlinear Optical Crystals (Springer-Verlag, New York, 1991).
    [Crossref]
  27. H. Vanherzeele, J. D. Bierlein, and F. C. Zumsteg, “Index of refraction measurements and parametric generation in hydrothermally grown potassium titanyl phosphate (KTiOPO4),” Appl. Opt. 27, 3314 (1988).
    [Crossref] [PubMed]
  28. P. Guyot-Sionnest, R. Superfine, J. H. Hunt, and Y. R. Shen, “Vibrational spectroscopy of a silane monolayer at air/solid and liquid/solid interfaces using sum-frequency generation,” Chem. Phys. Lett. 144, 1 (1988).
    [Crossref]
  29. N. Watanabe, H. Yamamoto, A. Wada, K. Domen, C. Hirose, T. Ohtake, and N. Mino, “Vibrational sum-frequency generation (VSFG) spectra of n-alkyltrichlorosilanes chemisorbed on quartz plate,” Spectrochim. Acta 50A, 1529 (1994).
    [Crossref]
  30. K. Wolfrum, J. Lobau, and A. Laubereau, “Sum-frequency spectroscopy of physisorbed and chemisorbed molecules at liquid and solid surfaces using bandwidth limited picosecond pulses,” Appl. Phys. A 59, 605 (1994).
    [Crossref]

1995 (5)

V. Pflumio, J. C. Vallet, A. J. Boeglin, A. A. Villaeys, and J. P. Lavoine, “Application of the sum-frequency generation to the vibrational spectroscopy of a Langmuir–Blodgett film,” Phys. Rev. A 51, 3174 (1995).
[Crossref] [PubMed]

M. C. Mesmer, J. C. Conboy, and G. L. Richmond, “Observation of molecular ordering at the liquid-liquid interface by resonant sum frequency generation,” J. Am. Chem. Soc. 117, 8039 (1995).
[Crossref]

V. Petrov and F. Noack, “Tunable femtosecond optical parametric amplifier in the mid-infrared with narrow-band seeding,” J. Opt. Soc. Am. B 12, 2214 (1995).
[Crossref]

M. K. Reed, M. K. Steiner-Shepard, M. S. Armas, and D. K. Negus, “Microjoule-energy ultrafast optical parametric amplifiers,” J. Opt. Soc. Am. B 12, 2229 (1995).
[Crossref]

D. E. Gragson, D. S. Alavi, and G. L. Richmond, “Tunable picosecond infrared laser system based on parametric amplification in KTP with a Ti:sapphire amplifier,” Opt. Lett. 20, 1991 (1995).
[Crossref] [PubMed]

1994 (7)

C. D. Bain, P. B. Davies, and R. N. Ward, “In situ sum-frequency spectroscopy of sodium dodecyl sulfate and dodecanol coadsorbed at a hydrophobic surface,” Langmuir 10, 2060 (1994).
[Crossref]

S. Takeuchi and T. Kobayashi, “Broadband near-infrared pulse generation KTiOPO4,” J. Appl. Phys. 75, 2757 (1994).
[Crossref]

N. Watanabe, H. Yamamoto, A. Wada, K. Domen, C. Hirose, T. Ohtake, and N. Mino, “Vibrational sum-frequency generation (VSFG) spectra of n-alkyltrichlorosilanes chemisorbed on quartz plate,” Spectrochim. Acta 50A, 1529 (1994).
[Crossref]

K. Wolfrum, J. Lobau, and A. Laubereau, “Sum-frequency spectroscopy of physisorbed and chemisorbed molecules at liquid and solid surfaces using bandwidth limited picosecond pulses,” Appl. Phys. A 59, 605 (1994).
[Crossref]

Q. Du, E. Freysz, and Y. R. Shen, “Surface vibrational spectroscopic studies of hydrogen bonding and hydrophobicity,” Science 264, 826 (1994).
[Crossref] [PubMed]

M. K. Reed, M. K. Steiner-Shepard, and D. K. Negus, “Widely tunable femtosecond optical parametric amplifier at 250 kHz using a Ti:sapphire regenerative amplifier,” Opt. Lett. 19, 1973 (1994).
[Crossref]

F. Seifert, V. Petrov, and M. Woerner, “Solid-state laser system for the generation of midinfrared femtosecond pulses tunable from 3.3 to 10 µm,” Opt. Lett. 19, 2009 (1994).
[Crossref] [PubMed]

1993 (8)

J. Y. Zhang, J. Y. Huang, Y. R. Shen, and C. Chen, “Optical parametric generation and amplification in barium borate and lithium triborate crystals,” J. Opt. Soc. Am. B 10, 1758 (1993).
[Crossref]

R. Laenen, K. Wolfrum, A. Seilmeier, and A. Laubereau, “Parametric generation of femtosecond and picosecond pulses for spectroscopic applications,” J. Opt. Soc. Am. B 10, 2151 (1993).
[Crossref]

M. M. Wefers and K. A. Nelson, “Ultrafast optical waveforms,” Science 262, 1381 (1993).
[Crossref] [PubMed]

K. Wolfrum, H. Graener, and A. Laubereau, “Sum-frequency vibrational spectroscopy at the liquid-air interface of methanol water solutions,” Chem. Phys. Lett. 213, 41 (1993).
[Crossref]

D. Zhang, J. H. Gutow, K. B. Eisenthal, and T. F. Heinz, “Sudden structural change at an air/binary liquid interface: sum-frequency study of the air/acetonitrile-water interface,” J. Chem. Phys. 98, 5099 (1993).
[Crossref]

H. M. van Driel and G. Mak, “Femtosecond pulses from the ultraviolet to the infrared: optical parametric processes in a new light,” Can. J. Phys. 71, 47 (1993).
[Crossref]

H. J. Krause and W. Daum, “High-power source of coherent picosecond light pulses tunable from 0.41 to 12.9 µm,” Appl. Phys. B 56, 8 (1993).
[Crossref]

P. Hamm, C. Lauterwasser, and W. Zinth, “Generation of tunable subpicosecond light pulses in the midinfrared between 4.5 and 11.5 µm,” Opt. Lett. 18, 1943 (1993).
[Crossref] [PubMed]

1990 (3)

1988 (2)

H. Vanherzeele, J. D. Bierlein, and F. C. Zumsteg, “Index of refraction measurements and parametric generation in hydrothermally grown potassium titanyl phosphate (KTiOPO4),” Appl. Opt. 27, 3314 (1988).
[Crossref] [PubMed]

P. Guyot-Sionnest, R. Superfine, J. H. Hunt, and Y. R. Shen, “Vibrational spectroscopy of a silane monolayer at air/solid and liquid/solid interfaces using sum-frequency generation,” Chem. Phys. Lett. 144, 1 (1988).
[Crossref]

1984 (1)

Alavi, D. S.

Armas, M. S.

Bain, C. D.

C. D. Bain, P. B. Davies, and R. N. Ward, “In situ sum-frequency spectroscopy of sodium dodecyl sulfate and dodecanol coadsorbed at a hydrophobic surface,” Langmuir 10, 2060 (1994).
[Crossref]

Bierlein, J. D.

Boeglin, A. J.

V. Pflumio, J. C. Vallet, A. J. Boeglin, A. A. Villaeys, and J. P. Lavoine, “Application of the sum-frequency generation to the vibrational spectroscopy of a Langmuir–Blodgett film,” Phys. Rev. A 51, 3174 (1995).
[Crossref] [PubMed]

Chen, C.

Conboy, J. C.

M. C. Mesmer, J. C. Conboy, and G. L. Richmond, “Observation of molecular ordering at the liquid-liquid interface by resonant sum frequency generation,” J. Am. Chem. Soc. 117, 8039 (1995).
[Crossref]

Daum, W.

H. J. Krause and W. Daum, “High-power source of coherent picosecond light pulses tunable from 0.41 to 12.9 µm,” Appl. Phys. B 56, 8 (1993).
[Crossref]

Davies, P. B.

C. D. Bain, P. B. Davies, and R. N. Ward, “In situ sum-frequency spectroscopy of sodium dodecyl sulfate and dodecanol coadsorbed at a hydrophobic surface,” Langmuir 10, 2060 (1994).
[Crossref]

Dmitriev, V. G.

V. G. Dmitriev, G. G. Gurzadyan, and D. N. Nikogosyan, Handbook of Nonlinear Optical Crystals (Springer-Verlag, New York, 1991).
[Crossref]

Domen, K.

N. Watanabe, H. Yamamoto, A. Wada, K. Domen, C. Hirose, T. Ohtake, and N. Mino, “Vibrational sum-frequency generation (VSFG) spectra of n-alkyltrichlorosilanes chemisorbed on quartz plate,” Spectrochim. Acta 50A, 1529 (1994).
[Crossref]

Downer, M. C.

Du, Q.

Q. Du, E. Freysz, and Y. R. Shen, “Surface vibrational spectroscopic studies of hydrogen bonding and hydrophobicity,” Science 264, 826 (1994).
[Crossref] [PubMed]

Eisenthal, K. B.

D. Zhang, J. H. Gutow, K. B. Eisenthal, and T. F. Heinz, “Sudden structural change at an air/binary liquid interface: sum-frequency study of the air/acetonitrile-water interface,” J. Chem. Phys. 98, 5099 (1993).
[Crossref]

Fleming, G. R.

G. R. Fleming, Chemical Applications of Ultrafast Spectroscopy (Oxford U. Press, New York, 1986).

Fork, R. L.

Freysz, E.

Q. Du, E. Freysz, and Y. R. Shen, “Surface vibrational spectroscopic studies of hydrogen bonding and hydrophobicity,” Science 264, 826 (1994).
[Crossref] [PubMed]

Graener, H.

K. Wolfrum, H. Graener, and A. Laubereau, “Sum-frequency vibrational spectroscopy at the liquid-air interface of methanol water solutions,” Chem. Phys. Lett. 213, 41 (1993).
[Crossref]

Gragson, D. E.

Gurzadyan, G. G.

V. G. Dmitriev, G. G. Gurzadyan, and D. N. Nikogosyan, Handbook of Nonlinear Optical Crystals (Springer-Verlag, New York, 1991).
[Crossref]

Gutow, J. H.

D. Zhang, J. H. Gutow, K. B. Eisenthal, and T. F. Heinz, “Sudden structural change at an air/binary liquid interface: sum-frequency study of the air/acetonitrile-water interface,” J. Chem. Phys. 98, 5099 (1993).
[Crossref]

Guyot-Sionnest, P.

P. Guyot-Sionnest, R. Superfine, J. H. Hunt, and Y. R. Shen, “Vibrational spectroscopy of a silane monolayer at air/solid and liquid/solid interfaces using sum-frequency generation,” Chem. Phys. Lett. 144, 1 (1988).
[Crossref]

Hamm, P.

Heinz, T. F.

D. Zhang, J. H. Gutow, K. B. Eisenthal, and T. F. Heinz, “Sudden structural change at an air/binary liquid interface: sum-frequency study of the air/acetonitrile-water interface,” J. Chem. Phys. 98, 5099 (1993).
[Crossref]

Hirose, C.

N. Watanabe, H. Yamamoto, A. Wada, K. Domen, C. Hirose, T. Ohtake, and N. Mino, “Vibrational sum-frequency generation (VSFG) spectra of n-alkyltrichlorosilanes chemisorbed on quartz plate,” Spectrochim. Acta 50A, 1529 (1994).
[Crossref]

Huang, J. Y.

Hunt, J. H.

P. Guyot-Sionnest, R. Superfine, J. H. Hunt, and Y. R. Shen, “Vibrational spectroscopy of a silane monolayer at air/solid and liquid/solid interfaces using sum-frequency generation,” Chem. Phys. Lett. 144, 1 (1988).
[Crossref]

Knox, W. H.

Kobayashi, T.

S. Takeuchi and T. Kobayashi, “Broadband near-infrared pulse generation KTiOPO4,” J. Appl. Phys. 75, 2757 (1994).
[Crossref]

Krause, H. J.

H. J. Krause and W. Daum, “High-power source of coherent picosecond light pulses tunable from 0.41 to 12.9 µm,” Appl. Phys. B 56, 8 (1993).
[Crossref]

Laenen, R.

Laubereau, A.

K. Wolfrum, J. Lobau, and A. Laubereau, “Sum-frequency spectroscopy of physisorbed and chemisorbed molecules at liquid and solid surfaces using bandwidth limited picosecond pulses,” Appl. Phys. A 59, 605 (1994).
[Crossref]

R. Laenen, K. Wolfrum, A. Seilmeier, and A. Laubereau, “Parametric generation of femtosecond and picosecond pulses for spectroscopic applications,” J. Opt. Soc. Am. B 10, 2151 (1993).
[Crossref]

K. Wolfrum, H. Graener, and A. Laubereau, “Sum-frequency vibrational spectroscopy at the liquid-air interface of methanol water solutions,” Chem. Phys. Lett. 213, 41 (1993).
[Crossref]

Lauterwasser, C.

Lavoine, J. P.

V. Pflumio, J. C. Vallet, A. J. Boeglin, A. A. Villaeys, and J. P. Lavoine, “Application of the sum-frequency generation to the vibrational spectroscopy of a Langmuir–Blodgett film,” Phys. Rev. A 51, 3174 (1995).
[Crossref] [PubMed]

Leaird, D. E.

Lobau, J.

K. Wolfrum, J. Lobau, and A. Laubereau, “Sum-frequency spectroscopy of physisorbed and chemisorbed molecules at liquid and solid surfaces using bandwidth limited picosecond pulses,” Appl. Phys. A 59, 605 (1994).
[Crossref]

Mak, G.

H. M. van Driel and G. Mak, “Femtosecond pulses from the ultraviolet to the infrared: optical parametric processes in a new light,” Can. J. Phys. 71, 47 (1993).
[Crossref]

Mesmer, M. C.

M. C. Mesmer, J. C. Conboy, and G. L. Richmond, “Observation of molecular ordering at the liquid-liquid interface by resonant sum frequency generation,” J. Am. Chem. Soc. 117, 8039 (1995).
[Crossref]

Mino, N.

N. Watanabe, H. Yamamoto, A. Wada, K. Domen, C. Hirose, T. Ohtake, and N. Mino, “Vibrational sum-frequency generation (VSFG) spectra of n-alkyltrichlorosilanes chemisorbed on quartz plate,” Spectrochim. Acta 50A, 1529 (1994).
[Crossref]

Negus, D. K.

Nelson, K. A.

M. M. Wefers and K. A. Nelson, “Ultrafast optical waveforms,” Science 262, 1381 (1993).
[Crossref] [PubMed]

Nikogosyan, D. N.

V. G. Dmitriev, G. G. Gurzadyan, and D. N. Nikogosyan, Handbook of Nonlinear Optical Crystals (Springer-Verlag, New York, 1991).
[Crossref]

Noack, F.

Ohtake, T.

N. Watanabe, H. Yamamoto, A. Wada, K. Domen, C. Hirose, T. Ohtake, and N. Mino, “Vibrational sum-frequency generation (VSFG) spectra of n-alkyltrichlorosilanes chemisorbed on quartz plate,” Spectrochim. Acta 50A, 1529 (1994).
[Crossref]

Patel, J. S.

Petrov, V.

Pflumio, V.

V. Pflumio, J. C. Vallet, A. J. Boeglin, A. A. Villaeys, and J. P. Lavoine, “Application of the sum-frequency generation to the vibrational spectroscopy of a Langmuir–Blodgett film,” Phys. Rev. A 51, 3174 (1995).
[Crossref] [PubMed]

Reed, M. K.

Richmond, G. L.

D. E. Gragson, D. S. Alavi, and G. L. Richmond, “Tunable picosecond infrared laser system based on parametric amplification in KTP with a Ti:sapphire amplifier,” Opt. Lett. 20, 1991 (1995).
[Crossref] [PubMed]

M. C. Mesmer, J. C. Conboy, and G. L. Richmond, “Observation of molecular ordering at the liquid-liquid interface by resonant sum frequency generation,” J. Am. Chem. Soc. 117, 8039 (1995).
[Crossref]

Seifert, F.

Seilmeier, A.

R. Laenen, K. Wolfrum, A. Seilmeier, and A. Laubereau, “Parametric generation of femtosecond and picosecond pulses for spectroscopic applications,” J. Opt. Soc. Am. B 10, 2151 (1993).
[Crossref]

U. Sukowski and A. Seilmeier, “Intense tunable picosecond pulses generated by parametric amplification in barium betaborate,” Appl. Phys. B 50, 541 (1990).
[Crossref]

Shank, C. V.

Shen, Y. R.

Q. Du, E. Freysz, and Y. R. Shen, “Surface vibrational spectroscopic studies of hydrogen bonding and hydrophobicity,” Science 264, 826 (1994).
[Crossref] [PubMed]

J. Y. Zhang, J. Y. Huang, Y. R. Shen, and C. Chen, “Optical parametric generation and amplification in barium borate and lithium triborate crystals,” J. Opt. Soc. Am. B 10, 1758 (1993).
[Crossref]

P. Guyot-Sionnest, R. Superfine, J. H. Hunt, and Y. R. Shen, “Vibrational spectroscopy of a silane monolayer at air/solid and liquid/solid interfaces using sum-frequency generation,” Chem. Phys. Lett. 144, 1 (1988).
[Crossref]

Siegman, A. E.

A. E. Siegman, “Defining and measuring laser beam quality,” in Solid State Lasers: New Developments and Applications, M. Inguscio and R. Wallenstein, eds. (Plenum, New York, 1993), p. 13.
[Crossref]

Steiner-Shepard, M. K.

Sukowski, U.

U. Sukowski and A. Seilmeier, “Intense tunable picosecond pulses generated by parametric amplification in barium betaborate,” Appl. Phys. B 50, 541 (1990).
[Crossref]

Superfine, R.

P. Guyot-Sionnest, R. Superfine, J. H. Hunt, and Y. R. Shen, “Vibrational spectroscopy of a silane monolayer at air/solid and liquid/solid interfaces using sum-frequency generation,” Chem. Phys. Lett. 144, 1 (1988).
[Crossref]

Takeuchi, S.

S. Takeuchi and T. Kobayashi, “Broadband near-infrared pulse generation KTiOPO4,” J. Appl. Phys. 75, 2757 (1994).
[Crossref]

Vallet, J. C.

V. Pflumio, J. C. Vallet, A. J. Boeglin, A. A. Villaeys, and J. P. Lavoine, “Application of the sum-frequency generation to the vibrational spectroscopy of a Langmuir–Blodgett film,” Phys. Rev. A 51, 3174 (1995).
[Crossref] [PubMed]

van Driel, H. M.

H. M. van Driel and G. Mak, “Femtosecond pulses from the ultraviolet to the infrared: optical parametric processes in a new light,” Can. J. Phys. 71, 47 (1993).
[Crossref]

Vanherzeele, H.

Villaeys, A. A.

V. Pflumio, J. C. Vallet, A. J. Boeglin, A. A. Villaeys, and J. P. Lavoine, “Application of the sum-frequency generation to the vibrational spectroscopy of a Langmuir–Blodgett film,” Phys. Rev. A 51, 3174 (1995).
[Crossref] [PubMed]

Wada, A.

N. Watanabe, H. Yamamoto, A. Wada, K. Domen, C. Hirose, T. Ohtake, and N. Mino, “Vibrational sum-frequency generation (VSFG) spectra of n-alkyltrichlorosilanes chemisorbed on quartz plate,” Spectrochim. Acta 50A, 1529 (1994).
[Crossref]

Ward, R. N.

C. D. Bain, P. B. Davies, and R. N. Ward, “In situ sum-frequency spectroscopy of sodium dodecyl sulfate and dodecanol coadsorbed at a hydrophobic surface,” Langmuir 10, 2060 (1994).
[Crossref]

Watanabe, N.

N. Watanabe, H. Yamamoto, A. Wada, K. Domen, C. Hirose, T. Ohtake, and N. Mino, “Vibrational sum-frequency generation (VSFG) spectra of n-alkyltrichlorosilanes chemisorbed on quartz plate,” Spectrochim. Acta 50A, 1529 (1994).
[Crossref]

Wefers, M. M.

M. M. Wefers and K. A. Nelson, “Ultrafast optical waveforms,” Science 262, 1381 (1993).
[Crossref] [PubMed]

Weiner, A. M.

Woerner, M.

Wolfrum, K.

K. Wolfrum, J. Lobau, and A. Laubereau, “Sum-frequency spectroscopy of physisorbed and chemisorbed molecules at liquid and solid surfaces using bandwidth limited picosecond pulses,” Appl. Phys. A 59, 605 (1994).
[Crossref]

K. Wolfrum, H. Graener, and A. Laubereau, “Sum-frequency vibrational spectroscopy at the liquid-air interface of methanol water solutions,” Chem. Phys. Lett. 213, 41 (1993).
[Crossref]

R. Laenen, K. Wolfrum, A. Seilmeier, and A. Laubereau, “Parametric generation of femtosecond and picosecond pulses for spectroscopic applications,” J. Opt. Soc. Am. B 10, 2151 (1993).
[Crossref]

Wullert, J. R.

Yamamoto, H.

N. Watanabe, H. Yamamoto, A. Wada, K. Domen, C. Hirose, T. Ohtake, and N. Mino, “Vibrational sum-frequency generation (VSFG) spectra of n-alkyltrichlorosilanes chemisorbed on quartz plate,” Spectrochim. Acta 50A, 1529 (1994).
[Crossref]

Yariv, A.

A. Yariv, Optical Electronics (Holt, Rinehart, & Winston, New York, 1986).

Zhang, D.

D. Zhang, J. H. Gutow, K. B. Eisenthal, and T. F. Heinz, “Sudden structural change at an air/binary liquid interface: sum-frequency study of the air/acetonitrile-water interface,” J. Chem. Phys. 98, 5099 (1993).
[Crossref]

Zhang, J. Y.

Zinth, W.

Zumsteg, F. C.

Appl. Opt. (2)

Appl. Phys. A (1)

K. Wolfrum, J. Lobau, and A. Laubereau, “Sum-frequency spectroscopy of physisorbed and chemisorbed molecules at liquid and solid surfaces using bandwidth limited picosecond pulses,” Appl. Phys. A 59, 605 (1994).
[Crossref]

Appl. Phys. B (2)

H. J. Krause and W. Daum, “High-power source of coherent picosecond light pulses tunable from 0.41 to 12.9 µm,” Appl. Phys. B 56, 8 (1993).
[Crossref]

U. Sukowski and A. Seilmeier, “Intense tunable picosecond pulses generated by parametric amplification in barium betaborate,” Appl. Phys. B 50, 541 (1990).
[Crossref]

Can. J. Phys. (1)

H. M. van Driel and G. Mak, “Femtosecond pulses from the ultraviolet to the infrared: optical parametric processes in a new light,” Can. J. Phys. 71, 47 (1993).
[Crossref]

Chem. Phys. Lett. (2)

K. Wolfrum, H. Graener, and A. Laubereau, “Sum-frequency vibrational spectroscopy at the liquid-air interface of methanol water solutions,” Chem. Phys. Lett. 213, 41 (1993).
[Crossref]

P. Guyot-Sionnest, R. Superfine, J. H. Hunt, and Y. R. Shen, “Vibrational spectroscopy of a silane monolayer at air/solid and liquid/solid interfaces using sum-frequency generation,” Chem. Phys. Lett. 144, 1 (1988).
[Crossref]

J. Am. Chem. Soc. (1)

M. C. Mesmer, J. C. Conboy, and G. L. Richmond, “Observation of molecular ordering at the liquid-liquid interface by resonant sum frequency generation,” J. Am. Chem. Soc. 117, 8039 (1995).
[Crossref]

J. Appl. Phys. (1)

S. Takeuchi and T. Kobayashi, “Broadband near-infrared pulse generation KTiOPO4,” J. Appl. Phys. 75, 2757 (1994).
[Crossref]

J. Chem. Phys. (1)

D. Zhang, J. H. Gutow, K. B. Eisenthal, and T. F. Heinz, “Sudden structural change at an air/binary liquid interface: sum-frequency study of the air/acetonitrile-water interface,” J. Chem. Phys. 98, 5099 (1993).
[Crossref]

J. Opt. Soc. Am. B (4)

Langmuir (1)

C. D. Bain, P. B. Davies, and R. N. Ward, “In situ sum-frequency spectroscopy of sodium dodecyl sulfate and dodecanol coadsorbed at a hydrophobic surface,” Langmuir 10, 2060 (1994).
[Crossref]

Opt. Lett. (6)

Phys. Rev. A (1)

V. Pflumio, J. C. Vallet, A. J. Boeglin, A. A. Villaeys, and J. P. Lavoine, “Application of the sum-frequency generation to the vibrational spectroscopy of a Langmuir–Blodgett film,” Phys. Rev. A 51, 3174 (1995).
[Crossref] [PubMed]

Science (2)

Q. Du, E. Freysz, and Y. R. Shen, “Surface vibrational spectroscopic studies of hydrogen bonding and hydrophobicity,” Science 264, 826 (1994).
[Crossref] [PubMed]

M. M. Wefers and K. A. Nelson, “Ultrafast optical waveforms,” Science 262, 1381 (1993).
[Crossref] [PubMed]

Spectrochim. Acta (1)

N. Watanabe, H. Yamamoto, A. Wada, K. Domen, C. Hirose, T. Ohtake, and N. Mino, “Vibrational sum-frequency generation (VSFG) spectra of n-alkyltrichlorosilanes chemisorbed on quartz plate,” Spectrochim. Acta 50A, 1529 (1994).
[Crossref]

Other (4)

V. G. Dmitriev, G. G. Gurzadyan, and D. N. Nikogosyan, Handbook of Nonlinear Optical Crystals (Springer-Verlag, New York, 1991).
[Crossref]

G. R. Fleming, Chemical Applications of Ultrafast Spectroscopy (Oxford U. Press, New York, 1986).

A. Yariv, Optical Electronics (Holt, Rinehart, & Winston, New York, 1986).

A. E. Siegman, “Defining and measuring laser beam quality,” in Solid State Lasers: New Developments and Applications, M. Inguscio and R. Wallenstein, eds. (Plenum, New York, 1993), p. 13.
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

Optical layout of a tunable IR laser system (see text for description).

Fig. 2
Fig. 2

Autocorrelation and spectrum of the pump (800-nm) beam: (a) autocorrelation and (b) the spectrum obtained with a monochromator (see text). The solid curves are a guide for the eye.

Fig. 3
Fig. 3

Tuning curve for KTP OPA under type II phase matching in the xz plane. The markers are the experimental data points for the signal and the idler, the solid curve is the theoretical tuning curve from Eq. (1).

Fig. 4
Fig. 4

Autocorrelation and spectra, obtained with a monochromator, of pump (800-nm) and signal (1.091-µm) beams: (a) pump autocorrelation, (b) pump spectrum, (c) signal autocorrelation, and (d) signal spectrum. Solid curves are a guide to the eye.

Fig. 5
Fig. 5

Spectra of the idler beam at various wavelengths: (a) 2.6 µm, (b) 3.0 µm, and (c) 3.6 µm. Solid curves are a guide for the eye.

Fig. 6
Fig. 6

Cross correlation of the idler beam at various wavelengths: (a) 2.6 µm, (b) 3.0 µm, and (c) 3.6 µm. Solid curves are a guide for the eye.

Fig. 7
Fig. 7

Comparison of the spectra and the cross correlation of the idler beam in the water absorption region (2.6 µm) for different pump spectral bandwidths: (a) spectra and (b) cross correlation.

Fig. 8
Fig. 8

Transverse spatial beam profile (see text) of the idler beam at 3.0 µm. Open circles are experimental data points, and the solid curve is a fit to ω2 = ω02 + (M2λ/πω0)2(z-z0)2.

Fig. 9
Fig. 9

Pulse energy and photon conversion efficiency for signal and idler beams: (a) output energy and (b) photon conversion efficiency. Solid curves are a guide to the eye.

Fig. 10
Fig. 10

Sum-frequency spectra of a monolayer of OTS on glass in air under different polarization conditions: (a) Psfg Pvis Pir and (b) Ssfg Svis Pir. Solid curves are a guide to the eye.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

Δν¯aν¯2 cos βdD=9166 cm-126000 cm-1 cos 21° 0.209 mm400 mm=6.8 cm-1,

Metrics