Abstract

We report on the successful demonstration of a single-mode polymer-optical fiber with an 8-µm-diameter nonlinear-optical core composed of a dye-chromophore-doped polymer. Both solid-solution cores and copolymer cores were successfully fabricated. Using an imaging system, we show that the far-field transverse light pattern is that of a single-mode guide. We find that the loss at 1064 nm for the single-mode fiber is approximately 0.2 dB/cm and that it preserves polarization to better than 99.8%/cm.

© 1996 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Jinno and T. Matsumoto, “Ultrafast, low power, and highly stable all-optical switching in an all polarization maintaining fiber Sagnac interferometer, IEEE Photon. Technol. Lett. 2, 349 (1990).
    [CrossRef]
  2. N. A. Whitaker, M. C. Gabriel, H. Avramopolous, and A. Huang, “All-optical, all-fiber circulating shift register with an inverter,” Opt. Lett. 24, 1999 (1991).
    [CrossRef]
  3. N. A. Whitaker, H. Avramopoulos, P. M. W. French, M. C. Gabriel, R. E. LaMarche, D. J. Giovanni, and H. M. Presby, “All-optical arbitrary demultiplexing at 2.5 Gbits/s with tolerance to timing jitter,” Opt. Lett. 16, 1838 (1991).
    [CrossRef] [PubMed]
  4. T. Kaino, M. Fujiki, S. Oikawa, and S. Nara, “Low-loss plastic optical fibers,” Appl. Opt. 20, 2886 (1981).
    [CrossRef] [PubMed]
  5. Y. Ohtsuka, E. Nihei, and Y. Koike, “Graded-index optical fibers of methyl methacrylate–vinyl benzoate copolymer with low loss and high bandwidth,” Appl. Phys. Lett. 57, 120 (1990).
    [CrossRef]
  6. S. Matsumoto, K. Kubodera, T. Kurihara, and T. Kaino, “Nonlinear optical properties of an azo dye attached polymer,” Appl. Phys. Lett. 51, 1 (1987).
    [CrossRef]
  7. M. G. Kuzyk, R. C. Moore, and L. A. King, “Second-harmonic-generation measurements of the elastic constant of a molecule in a polymer matrix,” J. Opt. Soc. Am. B 7, 64 (1990).
    [CrossRef]
  8. M. C. Gabriel, N. H. Whitaker, C. W. Dirk, M. G. Kuzyk, and M. Thakur, “Measurement of ultrafast optical nonlinearities using a modified Sagnac interferometer,” Opt. Lett. 16, 1334 (1991).
    [CrossRef] [PubMed]
  9. D. W. Garvey, Q. Li, and M. G. Kuzyk, “Sagnac interferometric intensity dependent refractive index,” Opt. Lett. 21, 104 (1996).
    [CrossRef] [PubMed]
  10. M. G. Kuzyk, U. C. Paek, and C. W. Dirk, “Guest-host polymer fibers for nonlinear optics,” Appl. Phys. Lett. 59, 902 (1991).
    [CrossRef]
  11. A. Skumanich, M. Jurich, and J. D. Swalen, “Absorption and scattering in nonlinear optical polymeric systems,” Appl. Phys. Lett. 62, 446 (1993).
    [CrossRef]

1996 (1)

1993 (1)

A. Skumanich, M. Jurich, and J. D. Swalen, “Absorption and scattering in nonlinear optical polymeric systems,” Appl. Phys. Lett. 62, 446 (1993).
[CrossRef]

1991 (4)

1990 (3)

M. Jinno and T. Matsumoto, “Ultrafast, low power, and highly stable all-optical switching in an all polarization maintaining fiber Sagnac interferometer, IEEE Photon. Technol. Lett. 2, 349 (1990).
[CrossRef]

Y. Ohtsuka, E. Nihei, and Y. Koike, “Graded-index optical fibers of methyl methacrylate–vinyl benzoate copolymer with low loss and high bandwidth,” Appl. Phys. Lett. 57, 120 (1990).
[CrossRef]

M. G. Kuzyk, R. C. Moore, and L. A. King, “Second-harmonic-generation measurements of the elastic constant of a molecule in a polymer matrix,” J. Opt. Soc. Am. B 7, 64 (1990).
[CrossRef]

1987 (1)

S. Matsumoto, K. Kubodera, T. Kurihara, and T. Kaino, “Nonlinear optical properties of an azo dye attached polymer,” Appl. Phys. Lett. 51, 1 (1987).
[CrossRef]

1981 (1)

Avramopolous, H.

N. A. Whitaker, M. C. Gabriel, H. Avramopolous, and A. Huang, “All-optical, all-fiber circulating shift register with an inverter,” Opt. Lett. 24, 1999 (1991).
[CrossRef]

Avramopoulos, H.

Dirk, C. W.

French, P. M. W.

Fujiki, M.

Gabriel, M. C.

Garvey, D. W.

Giovanni, D. J.

Huang, A.

N. A. Whitaker, M. C. Gabriel, H. Avramopolous, and A. Huang, “All-optical, all-fiber circulating shift register with an inverter,” Opt. Lett. 24, 1999 (1991).
[CrossRef]

Jinno, M.

M. Jinno and T. Matsumoto, “Ultrafast, low power, and highly stable all-optical switching in an all polarization maintaining fiber Sagnac interferometer, IEEE Photon. Technol. Lett. 2, 349 (1990).
[CrossRef]

Jurich, M.

A. Skumanich, M. Jurich, and J. D. Swalen, “Absorption and scattering in nonlinear optical polymeric systems,” Appl. Phys. Lett. 62, 446 (1993).
[CrossRef]

Kaino, T.

S. Matsumoto, K. Kubodera, T. Kurihara, and T. Kaino, “Nonlinear optical properties of an azo dye attached polymer,” Appl. Phys. Lett. 51, 1 (1987).
[CrossRef]

T. Kaino, M. Fujiki, S. Oikawa, and S. Nara, “Low-loss plastic optical fibers,” Appl. Opt. 20, 2886 (1981).
[CrossRef] [PubMed]

King, L. A.

Koike, Y.

Y. Ohtsuka, E. Nihei, and Y. Koike, “Graded-index optical fibers of methyl methacrylate–vinyl benzoate copolymer with low loss and high bandwidth,” Appl. Phys. Lett. 57, 120 (1990).
[CrossRef]

Kubodera, K.

S. Matsumoto, K. Kubodera, T. Kurihara, and T. Kaino, “Nonlinear optical properties of an azo dye attached polymer,” Appl. Phys. Lett. 51, 1 (1987).
[CrossRef]

Kurihara, T.

S. Matsumoto, K. Kubodera, T. Kurihara, and T. Kaino, “Nonlinear optical properties of an azo dye attached polymer,” Appl. Phys. Lett. 51, 1 (1987).
[CrossRef]

Kuzyk, M. G.

LaMarche, R. E.

Li, Q.

Matsumoto, S.

S. Matsumoto, K. Kubodera, T. Kurihara, and T. Kaino, “Nonlinear optical properties of an azo dye attached polymer,” Appl. Phys. Lett. 51, 1 (1987).
[CrossRef]

Matsumoto, T.

M. Jinno and T. Matsumoto, “Ultrafast, low power, and highly stable all-optical switching in an all polarization maintaining fiber Sagnac interferometer, IEEE Photon. Technol. Lett. 2, 349 (1990).
[CrossRef]

Moore, R. C.

Nara, S.

Nihei, E.

Y. Ohtsuka, E. Nihei, and Y. Koike, “Graded-index optical fibers of methyl methacrylate–vinyl benzoate copolymer with low loss and high bandwidth,” Appl. Phys. Lett. 57, 120 (1990).
[CrossRef]

Ohtsuka, Y.

Y. Ohtsuka, E. Nihei, and Y. Koike, “Graded-index optical fibers of methyl methacrylate–vinyl benzoate copolymer with low loss and high bandwidth,” Appl. Phys. Lett. 57, 120 (1990).
[CrossRef]

Oikawa, S.

Paek, U. C.

M. G. Kuzyk, U. C. Paek, and C. W. Dirk, “Guest-host polymer fibers for nonlinear optics,” Appl. Phys. Lett. 59, 902 (1991).
[CrossRef]

Presby, H. M.

Skumanich, A.

A. Skumanich, M. Jurich, and J. D. Swalen, “Absorption and scattering in nonlinear optical polymeric systems,” Appl. Phys. Lett. 62, 446 (1993).
[CrossRef]

Swalen, J. D.

A. Skumanich, M. Jurich, and J. D. Swalen, “Absorption and scattering in nonlinear optical polymeric systems,” Appl. Phys. Lett. 62, 446 (1993).
[CrossRef]

Thakur, M.

Whitaker, N. A.

Whitaker, N. H.

Appl. Opt. (1)

Appl. Phys. Lett. (4)

Y. Ohtsuka, E. Nihei, and Y. Koike, “Graded-index optical fibers of methyl methacrylate–vinyl benzoate copolymer with low loss and high bandwidth,” Appl. Phys. Lett. 57, 120 (1990).
[CrossRef]

S. Matsumoto, K. Kubodera, T. Kurihara, and T. Kaino, “Nonlinear optical properties of an azo dye attached polymer,” Appl. Phys. Lett. 51, 1 (1987).
[CrossRef]

M. G. Kuzyk, U. C. Paek, and C. W. Dirk, “Guest-host polymer fibers for nonlinear optics,” Appl. Phys. Lett. 59, 902 (1991).
[CrossRef]

A. Skumanich, M. Jurich, and J. D. Swalen, “Absorption and scattering in nonlinear optical polymeric systems,” Appl. Phys. Lett. 62, 446 (1993).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

M. Jinno and T. Matsumoto, “Ultrafast, low power, and highly stable all-optical switching in an all polarization maintaining fiber Sagnac interferometer, IEEE Photon. Technol. Lett. 2, 349 (1990).
[CrossRef]

J. Opt. Soc. Am. B (1)

Opt. Lett. (4)

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (15)

Fig. 1
Fig. 1

Dyes used as dopants in the core material: PSQ, HSQ, TSQ, BSQ, PYSQ, ISQ, DR1, HCD1, HCD2.

Fig. 2
Fig. 2

Monomer in a polymerization test tube and a core preform after it is broken out of the test tube.

Fig. 3
Fig. 3

Fiber-drawing tower.

Fig. 4
Fig. 4

Temperature profile and oven cross section.

Fig. 5
Fig. 5

Core fiber diameter as a function of its length for various drawing parameters. The preform feed speed was (a) 160 µm/s, (b) 75 µm/s, (c) 37 µm/s, and (d) 11 µm/s. The take-up speed was 3.33 cm/s in all cases. The points represent the data, and the solid lines represent the diameters predicted by conservation of volume.

Fig. 6
Fig. 6

Fiber-preform assembly process.

Fig. 7
Fig. 7

Grooved half-rounds, pulled core preform, a core fiber in one of the half-rounds, the final preform, a dual-core preform with a cross-sectional slice beneath it, and the remains of a preform after drawing.

Fig. 8
Fig. 8

Squeezing assembly with a core preform and a groove mold.

Fig. 9
Fig. 9

Cross section of a fiber preform. The solid curve represents the refractive index of the cross section; the dashed curve represents the intensity distribution of the light in the fiber. The dye dopant elevates the refractive index of the core above that of the cladding.

Fig. 10
Fig. 10

Mode imaging system.

Fig. 11
Fig. 11

Image of fiber end when guiding 1.3-µm light in the core.

Fig. 12
Fig. 12

Cross section of light intensity (points) and fit to theory for a single-mode guide (curve).

Fig. 13
Fig. 13

Absorbance in a multimode fiber as a function of length for two separate ISQ/PMMA [(a) and (b)] and two separate TSQ/PMMA [(c) and (d)] multimode fibers. Doping levels are ∼0.1% by weight. Loss is given by a straight-line fit. All samples fall within the 0.3-dB/cm range, consistent with neat PMMA at 1.3 µm.

Fig. 14
Fig. 14

Experimental setup to measure the degree of depolarization in the fiber.

Fig. 15
Fig. 15

Polar plot of intensity at the detector as a function of analyzer angle (points). The solid curve represents the theory for no depolarization.

Tables (1)

Tables Icon

Table 1 Losses of Fibers

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

dD=vfvd1/2.

Metrics