Abstract

The Pockels coefficients r33 of four dyes for electro-optic applications are reported, including ones with stilbene, butadiene, azo, and hexatriene linkages between the charge donors and acceptors, with the charge donor being the amino group and the acceptor groups being the nitro and dicyanovinyl groups. r33 are reported for dyes as guest–hosts in poly(methyl methacrylate) and 50/50 copolymers with methyl methacrylate. The largest r33 is observed for the copolymer containing the amino donor, hexatriene linkage, and the dicyanovinyl acceptor group with a value of r33 = 18 pm/V at 140 V/µm at a wavelength λ = 1.3 µm. We also find evidence that the dicyanovinyl hexatriene dyes in the copolymer are interacting with one another, causing a relative decrease in the copolymer’s electro-optic efficiency compared with its value as a guest–host in poly(methyl methacrylate). The Pockels coefficient is measured by the ellipsometric reflection technique. We derive approximate analytic equations to analyze the reflected intensity and verify the validity of these approximations when the analyzing wavelength is far from the absorption of the dye. We also derive an approximate analytic expression for the optical retardation as a function of the ratio of the off-diagonal to the diagonal components of the Pockels coefficients r13/r33 and also the finite birefringence of the poled film. We show that accurate knowledge of the ratio r13/r33 is critical to obtaining accurate values of r33.

© 1996 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. L. A. Hornak, ed., Polymers for Lightwave and Integrated Optics: Technology and Applications (Dekker, New York, 1992), Chaps. 11–17.
  2. R. N. DeMartino, D. E. Allen, R. Keosian, G. Khanarian, and D. R. Haas, Mater. Res. Soc. Symp. Proc. 228, 39 (1992).
    [CrossRef]
  3. K. D. Singer, M. G. Kuzyk, W. R. Holland, J. E. Sohn, S. J. Lalama, R. B. Comizzoli, H. E. Katz, and M. L. Schilling, Appl. Phys. Lett. 53, 1800 (1988).
    [CrossRef]
  4. A. Nahata, J. Shan, J. T. Yardley, and C. Wu, J. Opt. Soc. Am. B 10, 1553 (1993).
    [CrossRef]
  5. R. A. Norwood, M. G. Kuzyk, and R. A. Keosian, J. Appl. Phys. 75, 1869 (1994).
    [CrossRef]
  6. G. Khanarian, T. Che, R. DeMartino, D. Haas, T. Leslie, H. T. Man, M. Sansone, J. B. Stamatoff, C. C. Teng, and H. N. Yoon, Proc. SPIE 824, 72 (1988).
  7. C. C. Teng and H. T. Man, Appl. Phys. Lett. 56, 1734 (1990).
    [CrossRef]
  8. J. S. Schildkraut, Appl. Opt. 29, 2839 (1990).
    [CrossRef] [PubMed]
  9. Y. Levy, M. Dumont, E. Chastaing, P. Robin, P. A. Chollet, G. Gadret, and F. Kajzar, Mol. Cryst. Liq. Cryst. Sci. Technol. B 4, 1 (1993).
  10. D. Morichere, P. A. Chollet, W. Fleming, M. Jurich, B. A. Smith, and J. D. Swalen, J. Opt. Soc. Am. B 10, 1894 (1993).
    [CrossRef]
  11. P. A. Chollet, G. Gadret, F. Kajzar, and P. Raimond, Thin Solid Films 242, 132 (1994).
    [CrossRef]
  12. M. J. Sansone, G. Khanarian, and M. Kwaitek, J. Appl. Phys. 75, 1715 (1994).
    [CrossRef]
  13. A. Yariv and P. Yeh, Optical Waves In Crystals (Wiley, New York, 1984), Chap. 7.
  14. M. Born and E. Wolf, Principles Of Optics (PergamonOxford, 1980), p. 697.
  15. P. N. Prasad and D. J. Williams, Introduction to NonLinear Effects in Molecules and Polymers (Wiley, New York, 1991).
  16. C. H. Wang, J. Chem. Phys. 98, 3457 (1993).
    [CrossRef]

1994 (3)

R. A. Norwood, M. G. Kuzyk, and R. A. Keosian, J. Appl. Phys. 75, 1869 (1994).
[CrossRef]

P. A. Chollet, G. Gadret, F. Kajzar, and P. Raimond, Thin Solid Films 242, 132 (1994).
[CrossRef]

M. J. Sansone, G. Khanarian, and M. Kwaitek, J. Appl. Phys. 75, 1715 (1994).
[CrossRef]

1993 (4)

C. H. Wang, J. Chem. Phys. 98, 3457 (1993).
[CrossRef]

A. Nahata, J. Shan, J. T. Yardley, and C. Wu, J. Opt. Soc. Am. B 10, 1553 (1993).
[CrossRef]

Y. Levy, M. Dumont, E. Chastaing, P. Robin, P. A. Chollet, G. Gadret, and F. Kajzar, Mol. Cryst. Liq. Cryst. Sci. Technol. B 4, 1 (1993).

D. Morichere, P. A. Chollet, W. Fleming, M. Jurich, B. A. Smith, and J. D. Swalen, J. Opt. Soc. Am. B 10, 1894 (1993).
[CrossRef]

1992 (1)

R. N. DeMartino, D. E. Allen, R. Keosian, G. Khanarian, and D. R. Haas, Mater. Res. Soc. Symp. Proc. 228, 39 (1992).
[CrossRef]

1990 (2)

C. C. Teng and H. T. Man, Appl. Phys. Lett. 56, 1734 (1990).
[CrossRef]

J. S. Schildkraut, Appl. Opt. 29, 2839 (1990).
[CrossRef] [PubMed]

1988 (2)

K. D. Singer, M. G. Kuzyk, W. R. Holland, J. E. Sohn, S. J. Lalama, R. B. Comizzoli, H. E. Katz, and M. L. Schilling, Appl. Phys. Lett. 53, 1800 (1988).
[CrossRef]

G. Khanarian, T. Che, R. DeMartino, D. Haas, T. Leslie, H. T. Man, M. Sansone, J. B. Stamatoff, C. C. Teng, and H. N. Yoon, Proc. SPIE 824, 72 (1988).

Allen, D. E.

R. N. DeMartino, D. E. Allen, R. Keosian, G. Khanarian, and D. R. Haas, Mater. Res. Soc. Symp. Proc. 228, 39 (1992).
[CrossRef]

Born, M.

M. Born and E. Wolf, Principles Of Optics (PergamonOxford, 1980), p. 697.

Chastaing, E.

Y. Levy, M. Dumont, E. Chastaing, P. Robin, P. A. Chollet, G. Gadret, and F. Kajzar, Mol. Cryst. Liq. Cryst. Sci. Technol. B 4, 1 (1993).

Che, T.

G. Khanarian, T. Che, R. DeMartino, D. Haas, T. Leslie, H. T. Man, M. Sansone, J. B. Stamatoff, C. C. Teng, and H. N. Yoon, Proc. SPIE 824, 72 (1988).

Chollet, P. A.

P. A. Chollet, G. Gadret, F. Kajzar, and P. Raimond, Thin Solid Films 242, 132 (1994).
[CrossRef]

Y. Levy, M. Dumont, E. Chastaing, P. Robin, P. A. Chollet, G. Gadret, and F. Kajzar, Mol. Cryst. Liq. Cryst. Sci. Technol. B 4, 1 (1993).

D. Morichere, P. A. Chollet, W. Fleming, M. Jurich, B. A. Smith, and J. D. Swalen, J. Opt. Soc. Am. B 10, 1894 (1993).
[CrossRef]

Comizzoli, R. B.

K. D. Singer, M. G. Kuzyk, W. R. Holland, J. E. Sohn, S. J. Lalama, R. B. Comizzoli, H. E. Katz, and M. L. Schilling, Appl. Phys. Lett. 53, 1800 (1988).
[CrossRef]

DeMartino, R.

G. Khanarian, T. Che, R. DeMartino, D. Haas, T. Leslie, H. T. Man, M. Sansone, J. B. Stamatoff, C. C. Teng, and H. N. Yoon, Proc. SPIE 824, 72 (1988).

DeMartino, R. N.

R. N. DeMartino, D. E. Allen, R. Keosian, G. Khanarian, and D. R. Haas, Mater. Res. Soc. Symp. Proc. 228, 39 (1992).
[CrossRef]

Dumont, M.

Y. Levy, M. Dumont, E. Chastaing, P. Robin, P. A. Chollet, G. Gadret, and F. Kajzar, Mol. Cryst. Liq. Cryst. Sci. Technol. B 4, 1 (1993).

Fleming, W.

Gadret, G.

P. A. Chollet, G. Gadret, F. Kajzar, and P. Raimond, Thin Solid Films 242, 132 (1994).
[CrossRef]

Y. Levy, M. Dumont, E. Chastaing, P. Robin, P. A. Chollet, G. Gadret, and F. Kajzar, Mol. Cryst. Liq. Cryst. Sci. Technol. B 4, 1 (1993).

Haas, D.

G. Khanarian, T. Che, R. DeMartino, D. Haas, T. Leslie, H. T. Man, M. Sansone, J. B. Stamatoff, C. C. Teng, and H. N. Yoon, Proc. SPIE 824, 72 (1988).

Haas, D. R.

R. N. DeMartino, D. E. Allen, R. Keosian, G. Khanarian, and D. R. Haas, Mater. Res. Soc. Symp. Proc. 228, 39 (1992).
[CrossRef]

Holland, W. R.

K. D. Singer, M. G. Kuzyk, W. R. Holland, J. E. Sohn, S. J. Lalama, R. B. Comizzoli, H. E. Katz, and M. L. Schilling, Appl. Phys. Lett. 53, 1800 (1988).
[CrossRef]

Jurich, M.

Kajzar, F.

P. A. Chollet, G. Gadret, F. Kajzar, and P. Raimond, Thin Solid Films 242, 132 (1994).
[CrossRef]

Y. Levy, M. Dumont, E. Chastaing, P. Robin, P. A. Chollet, G. Gadret, and F. Kajzar, Mol. Cryst. Liq. Cryst. Sci. Technol. B 4, 1 (1993).

Katz, H. E.

K. D. Singer, M. G. Kuzyk, W. R. Holland, J. E. Sohn, S. J. Lalama, R. B. Comizzoli, H. E. Katz, and M. L. Schilling, Appl. Phys. Lett. 53, 1800 (1988).
[CrossRef]

Keosian, R.

R. N. DeMartino, D. E. Allen, R. Keosian, G. Khanarian, and D. R. Haas, Mater. Res. Soc. Symp. Proc. 228, 39 (1992).
[CrossRef]

Keosian, R. A.

R. A. Norwood, M. G. Kuzyk, and R. A. Keosian, J. Appl. Phys. 75, 1869 (1994).
[CrossRef]

Khanarian, G.

M. J. Sansone, G. Khanarian, and M. Kwaitek, J. Appl. Phys. 75, 1715 (1994).
[CrossRef]

R. N. DeMartino, D. E. Allen, R. Keosian, G. Khanarian, and D. R. Haas, Mater. Res. Soc. Symp. Proc. 228, 39 (1992).
[CrossRef]

G. Khanarian, T. Che, R. DeMartino, D. Haas, T. Leslie, H. T. Man, M. Sansone, J. B. Stamatoff, C. C. Teng, and H. N. Yoon, Proc. SPIE 824, 72 (1988).

Kuzyk, M. G.

R. A. Norwood, M. G. Kuzyk, and R. A. Keosian, J. Appl. Phys. 75, 1869 (1994).
[CrossRef]

K. D. Singer, M. G. Kuzyk, W. R. Holland, J. E. Sohn, S. J. Lalama, R. B. Comizzoli, H. E. Katz, and M. L. Schilling, Appl. Phys. Lett. 53, 1800 (1988).
[CrossRef]

Kwaitek, M.

M. J. Sansone, G. Khanarian, and M. Kwaitek, J. Appl. Phys. 75, 1715 (1994).
[CrossRef]

Lalama, S. J.

K. D. Singer, M. G. Kuzyk, W. R. Holland, J. E. Sohn, S. J. Lalama, R. B. Comizzoli, H. E. Katz, and M. L. Schilling, Appl. Phys. Lett. 53, 1800 (1988).
[CrossRef]

Leslie, T.

G. Khanarian, T. Che, R. DeMartino, D. Haas, T. Leslie, H. T. Man, M. Sansone, J. B. Stamatoff, C. C. Teng, and H. N. Yoon, Proc. SPIE 824, 72 (1988).

Levy, Y.

Y. Levy, M. Dumont, E. Chastaing, P. Robin, P. A. Chollet, G. Gadret, and F. Kajzar, Mol. Cryst. Liq. Cryst. Sci. Technol. B 4, 1 (1993).

Man, H. T.

C. C. Teng and H. T. Man, Appl. Phys. Lett. 56, 1734 (1990).
[CrossRef]

G. Khanarian, T. Che, R. DeMartino, D. Haas, T. Leslie, H. T. Man, M. Sansone, J. B. Stamatoff, C. C. Teng, and H. N. Yoon, Proc. SPIE 824, 72 (1988).

Morichere, D.

Nahata, A.

Norwood, R. A.

R. A. Norwood, M. G. Kuzyk, and R. A. Keosian, J. Appl. Phys. 75, 1869 (1994).
[CrossRef]

Prasad, P. N.

P. N. Prasad and D. J. Williams, Introduction to NonLinear Effects in Molecules and Polymers (Wiley, New York, 1991).

Raimond, P.

P. A. Chollet, G. Gadret, F. Kajzar, and P. Raimond, Thin Solid Films 242, 132 (1994).
[CrossRef]

Robin, P.

Y. Levy, M. Dumont, E. Chastaing, P. Robin, P. A. Chollet, G. Gadret, and F. Kajzar, Mol. Cryst. Liq. Cryst. Sci. Technol. B 4, 1 (1993).

Sansone, M.

G. Khanarian, T. Che, R. DeMartino, D. Haas, T. Leslie, H. T. Man, M. Sansone, J. B. Stamatoff, C. C. Teng, and H. N. Yoon, Proc. SPIE 824, 72 (1988).

Sansone, M. J.

M. J. Sansone, G. Khanarian, and M. Kwaitek, J. Appl. Phys. 75, 1715 (1994).
[CrossRef]

Schildkraut, J. S.

Schilling, M. L.

K. D. Singer, M. G. Kuzyk, W. R. Holland, J. E. Sohn, S. J. Lalama, R. B. Comizzoli, H. E. Katz, and M. L. Schilling, Appl. Phys. Lett. 53, 1800 (1988).
[CrossRef]

Shan, J.

Singer, K. D.

K. D. Singer, M. G. Kuzyk, W. R. Holland, J. E. Sohn, S. J. Lalama, R. B. Comizzoli, H. E. Katz, and M. L. Schilling, Appl. Phys. Lett. 53, 1800 (1988).
[CrossRef]

Smith, B. A.

Sohn, J. E.

K. D. Singer, M. G. Kuzyk, W. R. Holland, J. E. Sohn, S. J. Lalama, R. B. Comizzoli, H. E. Katz, and M. L. Schilling, Appl. Phys. Lett. 53, 1800 (1988).
[CrossRef]

Stamatoff, J. B.

G. Khanarian, T. Che, R. DeMartino, D. Haas, T. Leslie, H. T. Man, M. Sansone, J. B. Stamatoff, C. C. Teng, and H. N. Yoon, Proc. SPIE 824, 72 (1988).

Swalen, J. D.

Teng, C. C.

C. C. Teng and H. T. Man, Appl. Phys. Lett. 56, 1734 (1990).
[CrossRef]

G. Khanarian, T. Che, R. DeMartino, D. Haas, T. Leslie, H. T. Man, M. Sansone, J. B. Stamatoff, C. C. Teng, and H. N. Yoon, Proc. SPIE 824, 72 (1988).

Wang, C. H.

C. H. Wang, J. Chem. Phys. 98, 3457 (1993).
[CrossRef]

Williams, D. J.

P. N. Prasad and D. J. Williams, Introduction to NonLinear Effects in Molecules and Polymers (Wiley, New York, 1991).

Wolf, E.

M. Born and E. Wolf, Principles Of Optics (PergamonOxford, 1980), p. 697.

Wu, C.

Yardley, J. T.

Yariv, A.

A. Yariv and P. Yeh, Optical Waves In Crystals (Wiley, New York, 1984), Chap. 7.

Yeh, P.

A. Yariv and P. Yeh, Optical Waves In Crystals (Wiley, New York, 1984), Chap. 7.

Yoon, H. N.

G. Khanarian, T. Che, R. DeMartino, D. Haas, T. Leslie, H. T. Man, M. Sansone, J. B. Stamatoff, C. C. Teng, and H. N. Yoon, Proc. SPIE 824, 72 (1988).

Appl. Opt. (1)

Appl. Phys. Lett. (2)

K. D. Singer, M. G. Kuzyk, W. R. Holland, J. E. Sohn, S. J. Lalama, R. B. Comizzoli, H. E. Katz, and M. L. Schilling, Appl. Phys. Lett. 53, 1800 (1988).
[CrossRef]

C. C. Teng and H. T. Man, Appl. Phys. Lett. 56, 1734 (1990).
[CrossRef]

J. Appl. Phys. (2)

M. J. Sansone, G. Khanarian, and M. Kwaitek, J. Appl. Phys. 75, 1715 (1994).
[CrossRef]

R. A. Norwood, M. G. Kuzyk, and R. A. Keosian, J. Appl. Phys. 75, 1869 (1994).
[CrossRef]

J. Chem. Phys. (1)

C. H. Wang, J. Chem. Phys. 98, 3457 (1993).
[CrossRef]

J. Opt. Soc. Am. B (2)

Mater. Res. Soc. Symp. Proc. (1)

R. N. DeMartino, D. E. Allen, R. Keosian, G. Khanarian, and D. R. Haas, Mater. Res. Soc. Symp. Proc. 228, 39 (1992).
[CrossRef]

Mol. Cryst. Liq. Cryst. Sci. Technol. B (1)

Y. Levy, M. Dumont, E. Chastaing, P. Robin, P. A. Chollet, G. Gadret, and F. Kajzar, Mol. Cryst. Liq. Cryst. Sci. Technol. B 4, 1 (1993).

Proc. SPIE (1)

G. Khanarian, T. Che, R. DeMartino, D. Haas, T. Leslie, H. T. Man, M. Sansone, J. B. Stamatoff, C. C. Teng, and H. N. Yoon, Proc. SPIE 824, 72 (1988).

Thin Solid Films (1)

P. A. Chollet, G. Gadret, F. Kajzar, and P. Raimond, Thin Solid Films 242, 132 (1994).
[CrossRef]

Other (4)

A. Yariv and P. Yeh, Optical Waves In Crystals (Wiley, New York, 1984), Chap. 7.

M. Born and E. Wolf, Principles Of Optics (PergamonOxford, 1980), p. 697.

P. N. Prasad and D. J. Williams, Introduction to NonLinear Effects in Molecules and Polymers (Wiley, New York, 1991).

L. A. Hornak, ed., Polymers for Lightwave and Integrated Optics: Technology and Applications (Dekker, New York, 1992), Chaps. 11–17.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

Schematic of reflection from an EO film.

Fig. 2
Fig. 2

cw and modulated intensity versus compensator retardation: The amplitudes are equal at s1 and s2, corresponding to compensator retardations of π/2 and 3π/2.

Fig. 3
Fig. 3

cw and modulated intensity versus compensator retardation: The amplitudes at s1 and s2 are not equal.

Fig. 4
Fig. 4

Normalized modulated intensity without an analyzer versus normalized asymmetry of modulated intensity with an analyzer: verification of Eq. (6).

Fig. 5
Fig. 5

Deviation function D versus angle of incidence for different values of α. The refractive indices used in the calculation are those of DANS polymer poled at 160 V/µm.

Fig. 6
Fig. 6

Molecular structures of the dyes and polymers used in this study.

Fig. 7
Fig. 7

Absorption spectra of 12% w/w guest host of DCVHT in PMMA before and after drying at 120 °C in an oven.

Fig. 8
Fig. 8

Absorption at λmax = 515 nm versus concentration of DCVHT in PMMA.

Fig. 9
Fig. 9

r33 versus poling field for the four dyes as 12% w/w guest–hosts in PMMA.

Fig. 10
Fig. 10

r33 versus poling field for the four copolymers shown in Fig. 6.

Tables (1)

Tables Icon

Table 1 Pockels Constants r33 (pm/V) of 3%, 6%, and 12% w/w Dye in PMMA as Guest–Hosta and Dye/MMA 50/50 Copolymers at λ=1.3 µm and a Poling Electric Field of 100 V/µm

Equations (27)

Equations on this page are rendered with MathJax. Learn more.

I=Imax sin2(ϕ/2),
ϕ=ϕeo+ϕcomp.
1Imax dImoddV=sin(ϕcomp)2 dϕeodV+sin2(ϕcomp/2)Imax dImaxdV.
1Imax dmoddVs1=12 1Imax dImaxdV+dϕeodV,
1Imax dImoddVs2=12 1Imax dImaxdV-dϕeodV.
dϕeodV=1Imax dImoddVs1+dImoddVs2.
1Imax dImaxdV=1Imax dImoddVs1-dImoddVs2.
ne=nes-12nes3r33V/d,
no=nos-12nos3r13V/d,
α=χzxx2χzzz2=nos4r13nes4r33,
dϕeodV=2πr33(αnes2-nos2)λ sin2 θ(nos2-sin2 θ)1/2D(α,θ),
Dα,θ=1+nes2-nos22nos2-sin2 θ αnes2αnes2-nos2-sin2 θnes2-3nes2-nos22 sin2 θ8nos2-sin2 θ2+.
dϕeodV=2πn2[r31-r33]λ×sin2 θ(n2-sin2 θ)1/2,
Eo,e=rgp+rpm exp(-iϕo,e),
I=1/4[Eo(Eo)*+Ee(Ee)*-exp(iϕcomp)Eo(Ee)*-exp(-iϕcomp)Ee(Eo)*],
I=1/44rpmorpme sin2ϕeo+ϕcomp2+rpmo-rpme2+2rgporpmo cos ϕo+2rgperpme cos ϕe-2rgporpme×cosϕcomp+ϕe-2rgperpmo cos ϕcomp-ϕo+4rgporpme sin2ϕcomp2+rgpo-rgpe2.
I=Imax sin2(ϕ/2),
ϕ=ϕeo+ϕcomp.
ϕeo=4πdλ [ne(θe)cos θe-no cos θo].
sin θ=no sin θo,sin θ=ne(θe)sin θe.
neθe=1sin2 θene2+cos2 θeno21/2.
neθecos θe=no2-no2ne2 sin2 θ1/2,
no cos θo=no2-sin2 θ.
ϕeo=4πdλ x sin2 θ2no2-sin2 θ1/2-x2 sin4 θ8no2-sin2 θ3/2+.
dϕeodV=2πr33(αnes2-nos2)λ sin2 θ(nos2-sin2 θ)1/2D(α,θ),
Dα,θ=1+nes2-nos22nos2-sin2 θ αnes2αnes2-nos2-sin2 θnes2-3nes2-nos22 sin2 θ8nos2-sin2 θ2+
α=χzxx2χzzz2=nos4r13nes4r33.

Metrics