Abstract

We demonstrate a real-time femtosecond-laser-pulse analyzer by using a spectrally and temporally resolved upconversion technique (STRUT) for characterization of the phase and the intensity. The STRUT provides simple but reliable analysis of femtosecond pulses by employing a narrow-bandpass dielectric filter in one arm of a conventional single-shot upconversion autocorrelator and analyzing the spatiotemporal upconversion signal with a monochromator. The resulting spatiotemporal and spatiospectral image presents clear and complete information about femtosecond pulses produced by either oscillators or amplifiers. Characterization of 2-nJ, 60-fs Ti:sapphire oscillator pulses is achieved with 0.5 s data acquisition time and 0.2-s computational time.

© 1996 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. E. Rothenberg and D. Grischkowsky, “Measurement of optical phase with subpicosecond resolution by time-domain interferometry,” Opt. Lett. 1299–101 (1987).
    [CrossRef] [PubMed]
  2. K. Naganuma, K. Mogi, and H. Yamada, “General method for ultrashort light pulse chirp measurement,” IEEE J. Quantum Electron. 251225–1233 (1989).
    [CrossRef]
  3. J. L. A. Chilla and O. E. Martínez, “Direct measurement of the amplitude and the phase of femtosecond light pulses,” Opt. Lett. 1639–41 (1991).
    [CrossRef] [PubMed]
  4. J.-P. Foing, J.-P. Likforman, M. Joffre, and A. Migus, “Femtosecond pulse phase measurement by spectrally resolved up-conversion: application to continuum compression,” IEEE J. Quantum Electron. 282285–2290 (1992).
    [CrossRef]
  5. J.-K. Rhee, T. S. Sosnowski, T. B. Norris, J. A. Arns, and W. S. Colburn, “Chirped-pulse amplification of 85-fs pulses at 250 kHz by use of holographic transmission gratings,” Opt. Lett. 191550–1552 (1994).
    [CrossRef] [PubMed]
  6. J. Paye, M. Ramaswamy, J. G. Fujimoto, and E. P. Ippen, “Measurement of the amplitude and phase of ultrashort light pulses from spectrally resolved autocorrelation,” Opt. Lett. 181946–1948 (1993).
    [CrossRef] [PubMed]
  7. D. J. Kane and R. Trebino, “Single-shot measurement of the intensity and phase of an arbitrary ultrashort pulse by using frequency-resolved optical gating,” Opt. Lett. 18823–825 (1993); K. W. DeLong, R. Trebino, and D. J. Kane, “Comparison of ultrashort-pulse frequency-resolved-optical-gating traces for three common beam geometries,” J. Opt. Soc. Am. B 111595–1608 (1994).
    [CrossRef] [PubMed]
  8. B. S. Prade, J. M. Schins, E. T. J. Nibbering, M. A. Franco, and A. Mysyrowicz, “A simple method for the determination of the intensity and phase of ultrashort optical pulses,” Opt. Commun. 11379–84 (1994).
    [CrossRef]
  9. R. N. Gyuzalian, S. B. Sogomonian, and Z. G. Horvath, “Background-free measurement of time behavior of an individual picosecond laser pulse,” Opt. Commun. 29239–242 (1979).
    [CrossRef]
  10. D. E. Spence, P. N. Kean, and W. Sibbett, “60-fsec generation from a self-mode-locked Ti:sapphire laser,” Opt. Lett. 1642–44 (1991).
    [CrossRef] [PubMed]
  11. B. Proctor, E. Westwig, and F. Wise, “Characterization of a Kerr-lens mode-locked Ti:sapphire laser with positive group-velocity dispersion,” Opt. Lett. 181654–1656 (1993).
    [CrossRef] [PubMed]
  12. J. V. Rudd, G. Korn, S. Kane, J. Squier, G. Mourou, and P. Bado, “Chirped-pulse amplification of 55-fs pulses at a 1-kHz repetition rate in a Ti:Al2O3 regenerative amplifier,” Opt. Lett. 182044–2046 (1993).
    [CrossRef]

1994 (2)

B. S. Prade, J. M. Schins, E. T. J. Nibbering, M. A. Franco, and A. Mysyrowicz, “A simple method for the determination of the intensity and phase of ultrashort optical pulses,” Opt. Commun. 11379–84 (1994).
[CrossRef]

J.-K. Rhee, T. S. Sosnowski, T. B. Norris, J. A. Arns, and W. S. Colburn, “Chirped-pulse amplification of 85-fs pulses at 250 kHz by use of holographic transmission gratings,” Opt. Lett. 191550–1552 (1994).
[CrossRef] [PubMed]

1993 (4)

1992 (1)

J.-P. Foing, J.-P. Likforman, M. Joffre, and A. Migus, “Femtosecond pulse phase measurement by spectrally resolved up-conversion: application to continuum compression,” IEEE J. Quantum Electron. 282285–2290 (1992).
[CrossRef]

1991 (2)

1989 (1)

K. Naganuma, K. Mogi, and H. Yamada, “General method for ultrashort light pulse chirp measurement,” IEEE J. Quantum Electron. 251225–1233 (1989).
[CrossRef]

1987 (1)

1979 (1)

R. N. Gyuzalian, S. B. Sogomonian, and Z. G. Horvath, “Background-free measurement of time behavior of an individual picosecond laser pulse,” Opt. Commun. 29239–242 (1979).
[CrossRef]

Arns, J. A.

Bado, P.

Chilla, J. L. A.

Colburn, W. S.

Foing, J.-P.

J.-P. Foing, J.-P. Likforman, M. Joffre, and A. Migus, “Femtosecond pulse phase measurement by spectrally resolved up-conversion: application to continuum compression,” IEEE J. Quantum Electron. 282285–2290 (1992).
[CrossRef]

Franco, M. A.

B. S. Prade, J. M. Schins, E. T. J. Nibbering, M. A. Franco, and A. Mysyrowicz, “A simple method for the determination of the intensity and phase of ultrashort optical pulses,” Opt. Commun. 11379–84 (1994).
[CrossRef]

Fujimoto, J. G.

Grischkowsky, D.

Gyuzalian, R. N.

R. N. Gyuzalian, S. B. Sogomonian, and Z. G. Horvath, “Background-free measurement of time behavior of an individual picosecond laser pulse,” Opt. Commun. 29239–242 (1979).
[CrossRef]

Horvath, Z. G.

R. N. Gyuzalian, S. B. Sogomonian, and Z. G. Horvath, “Background-free measurement of time behavior of an individual picosecond laser pulse,” Opt. Commun. 29239–242 (1979).
[CrossRef]

Ippen, E. P.

Joffre, M.

J.-P. Foing, J.-P. Likforman, M. Joffre, and A. Migus, “Femtosecond pulse phase measurement by spectrally resolved up-conversion: application to continuum compression,” IEEE J. Quantum Electron. 282285–2290 (1992).
[CrossRef]

Kane, D. J.

Kane, S.

Kean, P. N.

Korn, G.

Likforman, J.-P.

J.-P. Foing, J.-P. Likforman, M. Joffre, and A. Migus, “Femtosecond pulse phase measurement by spectrally resolved up-conversion: application to continuum compression,” IEEE J. Quantum Electron. 282285–2290 (1992).
[CrossRef]

Martínez, O. E.

Migus, A.

J.-P. Foing, J.-P. Likforman, M. Joffre, and A. Migus, “Femtosecond pulse phase measurement by spectrally resolved up-conversion: application to continuum compression,” IEEE J. Quantum Electron. 282285–2290 (1992).
[CrossRef]

Mogi, K.

K. Naganuma, K. Mogi, and H. Yamada, “General method for ultrashort light pulse chirp measurement,” IEEE J. Quantum Electron. 251225–1233 (1989).
[CrossRef]

Mourou, G.

Mysyrowicz, A.

B. S. Prade, J. M. Schins, E. T. J. Nibbering, M. A. Franco, and A. Mysyrowicz, “A simple method for the determination of the intensity and phase of ultrashort optical pulses,” Opt. Commun. 11379–84 (1994).
[CrossRef]

Naganuma, K.

K. Naganuma, K. Mogi, and H. Yamada, “General method for ultrashort light pulse chirp measurement,” IEEE J. Quantum Electron. 251225–1233 (1989).
[CrossRef]

Nibbering, E. T. J.

B. S. Prade, J. M. Schins, E. T. J. Nibbering, M. A. Franco, and A. Mysyrowicz, “A simple method for the determination of the intensity and phase of ultrashort optical pulses,” Opt. Commun. 11379–84 (1994).
[CrossRef]

Norris, T. B.

Paye, J.

Prade, B. S.

B. S. Prade, J. M. Schins, E. T. J. Nibbering, M. A. Franco, and A. Mysyrowicz, “A simple method for the determination of the intensity and phase of ultrashort optical pulses,” Opt. Commun. 11379–84 (1994).
[CrossRef]

Proctor, B.

Ramaswamy, M.

Rhee, J.-K.

Rothenberg, J. E.

Rudd, J. V.

Schins, J. M.

B. S. Prade, J. M. Schins, E. T. J. Nibbering, M. A. Franco, and A. Mysyrowicz, “A simple method for the determination of the intensity and phase of ultrashort optical pulses,” Opt. Commun. 11379–84 (1994).
[CrossRef]

Sibbett, W.

Sogomonian, S. B.

R. N. Gyuzalian, S. B. Sogomonian, and Z. G. Horvath, “Background-free measurement of time behavior of an individual picosecond laser pulse,” Opt. Commun. 29239–242 (1979).
[CrossRef]

Sosnowski, T. S.

Spence, D. E.

Squier, J.

Trebino, R.

Westwig, E.

Wise, F.

Yamada, H.

K. Naganuma, K. Mogi, and H. Yamada, “General method for ultrashort light pulse chirp measurement,” IEEE J. Quantum Electron. 251225–1233 (1989).
[CrossRef]

IEEE J. Quantum Electron. (2)

K. Naganuma, K. Mogi, and H. Yamada, “General method for ultrashort light pulse chirp measurement,” IEEE J. Quantum Electron. 251225–1233 (1989).
[CrossRef]

J.-P. Foing, J.-P. Likforman, M. Joffre, and A. Migus, “Femtosecond pulse phase measurement by spectrally resolved up-conversion: application to continuum compression,” IEEE J. Quantum Electron. 282285–2290 (1992).
[CrossRef]

Opt. Commun. (2)

B. S. Prade, J. M. Schins, E. T. J. Nibbering, M. A. Franco, and A. Mysyrowicz, “A simple method for the determination of the intensity and phase of ultrashort optical pulses,” Opt. Commun. 11379–84 (1994).
[CrossRef]

R. N. Gyuzalian, S. B. Sogomonian, and Z. G. Horvath, “Background-free measurement of time behavior of an individual picosecond laser pulse,” Opt. Commun. 29239–242 (1979).
[CrossRef]

Opt. Lett. (8)

J. E. Rothenberg and D. Grischkowsky, “Measurement of optical phase with subpicosecond resolution by time-domain interferometry,” Opt. Lett. 1299–101 (1987).
[CrossRef] [PubMed]

D. E. Spence, P. N. Kean, and W. Sibbett, “60-fsec generation from a self-mode-locked Ti:sapphire laser,” Opt. Lett. 1642–44 (1991).
[CrossRef] [PubMed]

D. J. Kane and R. Trebino, “Single-shot measurement of the intensity and phase of an arbitrary ultrashort pulse by using frequency-resolved optical gating,” Opt. Lett. 18823–825 (1993); K. W. DeLong, R. Trebino, and D. J. Kane, “Comparison of ultrashort-pulse frequency-resolved-optical-gating traces for three common beam geometries,” J. Opt. Soc. Am. B 111595–1608 (1994).
[CrossRef] [PubMed]

B. Proctor, E. Westwig, and F. Wise, “Characterization of a Kerr-lens mode-locked Ti:sapphire laser with positive group-velocity dispersion,” Opt. Lett. 181654–1656 (1993).
[CrossRef] [PubMed]

J. Paye, M. Ramaswamy, J. G. Fujimoto, and E. P. Ippen, “Measurement of the amplitude and phase of ultrashort light pulses from spectrally resolved autocorrelation,” Opt. Lett. 181946–1948 (1993).
[CrossRef] [PubMed]

J.-K. Rhee, T. S. Sosnowski, T. B. Norris, J. A. Arns, and W. S. Colburn, “Chirped-pulse amplification of 85-fs pulses at 250 kHz by use of holographic transmission gratings,” Opt. Lett. 191550–1552 (1994).
[CrossRef] [PubMed]

J. L. A. Chilla and O. E. Martínez, “Direct measurement of the amplitude and the phase of femtosecond light pulses,” Opt. Lett. 1639–41 (1991).
[CrossRef] [PubMed]

J. V. Rudd, G. Korn, S. Kane, J. Squier, G. Mourou, and P. Bado, “Chirped-pulse amplification of 55-fs pulses at a 1-kHz repetition rate in a Ti:Al2O3 regenerative amplifier,” Opt. Lett. 182044–2046 (1993).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Schematic of the experimental setup of a real-time single-shot STRUT. The o-ray axis of the BBO crystal was aligned to be parallel to the cylindrical line focus. M and BS represent a mirror and a beam splitter, respectively.

Fig. 2
Fig. 2

Numerical simulation results of the Lorentzian-filter STRUT for (a) transform-limited, (b) negative SOD, and (c) positive TOD cases. Plots (a1)–(c1) show the STRUT images. Plots (a2)–(c2) show the extracted phase from the STRUT images (solid curves), the actual phase (dotted curves), and the intensity (dashed curves) in the fundamental frequency domain. Plots (a3)–(c3) compare the corresponding extracted (solid curves) and actual (dotted curves) temporal intensity profiles.

Fig. 3
Fig. 3

Numerical simulation results of a rectangular-filter STRUT. Simulation conditions and labeling are the same as in Fig. 2.

Fig. 4
Fig. 4

Experimental data of the single-shot STRUT for (a) nearly transform-limited, (b) negative SOD, and (c) positive TOD cases. Plots (a1)–(c1) present the STRUT images, plots (a2)–(c2) display the spectral phase (solid curves) and intensity (dashed curves) extracted from the images, and plots (a3)–(c3) show the corresponding temporal intensity profiles. For cases (a) and (b) a self-mode-locked Ti:sapphire oscillator is used, and for case (c) a Ti:sapphire regenerative chirped-pulse amplifier is used.

Fig. 5
Fig. 5

Comparison of phase measurements by the STRUT and the FROG techniques for (a) positive SOD and (b) negative SOD.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

Eup(τ,δ)-dδEr(δ)exp(iδτ)Et(δ-δ),
F(δ)=11-iδ/Δ,
Er(δ)A(0)exp[iϕ(0)+iϕ(0)δ]1-iδ/Δ,
Et(δ-δ)A(δ)exp[iϕ(δ)-iϕ(δ)δ],
Eup(τ,δ)Et(0)Et(δ)-dδ11-iδ/Δ×exp{iδ[τ-ϕ(δ)]}
Et(δ)Θ[ϕ(δ)-τ]exp{-Δ[ϕ(δ)-τ]},

Metrics