Abstract

We describe a novel oscillator that converts continuous light energy into stable and spectrally pure microwave signals. This optoelectronic microwave oscillator consists of a pump laser and a feedback circuit including an intensity modulator, an optical fiber delay line, a photodetector, an amplifier, and a filter. We develop a quasi-linear theory and obtain expressions for the threshold condition, the amplitude, the frequency, the line width, and the spectral power density of the oscillation. We also present experimental data to compare with the theoretical results. Our findings indicate that the optoelectronic microwave oscillator can generate ultrastable, spectrally pure microwave reference signals up to 75 GHz with a phase noise lower than -140 dBc/Hz at 10 kHz.

© 1996 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. Marion and W. Hornyak, Physics for Science and Engineering (Saunders, Philadelphia, Pa., 1982), Chap. 15.
  2. B. van der Pol, “A theory of the amplitude of free and forced triode vibrations,” Radio Rev. 7, 701–754 (1920).
  3. B. van der Pol, “The nonlinear theory of electric oscillations,” Proc. IRE 22, 1051–1086 (1934).
    [CrossRef]
  4. O. Ishihara, T. Mori, H. Sawano, and M. Nakatani, “A highly stabilized GaAsFED oscillator using a dielectric resonator feedback circuit in 9–14 GHz,” IEEE Trans. Microwave Theory Tech. MTT-28, 817–824 (1980).
    [CrossRef]
  5. A. Siegman, Microwave Solid State Masers (McGraw-Hill, New York, 1964).
  6. A. Siegman, Lasers (University Science, Mill Valley, Calif., 1986), Chap. 11.
  7. A. Ballato, “Piezoelectric resonators,” in Design of Crystal and Other Harmonic Oscillators, B. Parzen, ed. (Wiley, New York, 1983), pp. 66–122.
  8. W. L. Smith, “Precision oscillators,” in Precision Frequency Control, E. A. Gerber and A. Ballato, eds. (Academic, New York, 1985), Vol. 2, pp. 45–98.
  9. J. K. Plourde and C. R. Ren, “Application of dielectric resonators,” IEEE Trans. Microwave Theory Tech. MTT-29, 754–769 (1981).
    [CrossRef]
  10. M. W. Lawrence, “Surface acoustic wave oscillators,” Wave Electron. 2, 199–218 (1976).
  11. X. S. Yao and L. Maleki, “High frequency optical subcarrier generator,” Electron. Lett. 30, 1525–1526 (1994); “Converting light into spectrally pure microwave oscillation,” Opt. Lett. 21, 483–485 (1996).
    [CrossRef] [PubMed]
  12. X. S. Yao and L. Maleki, “A novel photonic oscillator,” (Jet Propulsion Laboratory, Pasadena, Calif., 1995), pp. 32–42; obtainable at http://tda.jpl.nasa.gov/progress_report . Also in LEOS Summer Topical Meetings (Institute of Electrical and Electronics Engineers, Piscataway, N.J., 1995); pp. 17–18.
  13. M. Rodwell, J. E. Bowers, R. Pullela, K. Gilboney, J. Pusl, and D. Nguyen, “Electric and optoelectronic components for fiber transmission at bandwidths approaching 100 GHz,” in LEOS Summer Topical Meetings (Institute of Electrical and Electronics Engineers, Piscataway, N.J., 1995), pp. 21–22.
  14. K. Noguchi, H. Miyazawa, and O. Mitomi, “75 GHz broadband Ti:LiNbO3 optical modulator with ridge structure,” Electron. Lett. 30, 949–951 (1994).
    [CrossRef]
  15. A. Neyer and E. Voges, “Nonlinear electrooptic oscillator using an integrated interferometer,” Opt. Commun. 37, 169–174 (1980).
    [CrossRef]
  16. A. Neyer and E. Voges, “Dynamics of electrooptic bistable devices with delayed feedback,” IEEE J. Quantum Electron. QE-18, 2009–2015 (1982).
    [CrossRef]
  17. H. F. Schlaak and R. Th. Kersten, “Integrated optical oscillators and their applications to optical communication systems,” Opt. Commun. 36, 186–188 (1981).
    [CrossRef]
  18. H. M. Gibbs, F. A. Hopf, D. L. Kaplan, M. W. Derstine, and R. L. Shoemaker, “Periodic oscillation and chaos in optical bistability: possible guided wave all optical square-wave oscillators,” Proc. SPIE 317, 297–304 (1981).
    [CrossRef]
  19. E. Garmire, J. H. Marburger, S. D. Allen, and H. G. Winful, “Transient response of hybrid bistable optical devices,” Appl. Phys. Lett. 34, 374–376 (1979).
    [CrossRef]
  20. A. Neyer and E. Voges, “High-frequency electro-optic oscillator using an integrated interferometer,” Appl. Phys. Lett. 40, 6–8 (1982).
    [CrossRef]
  21. T. Aida and P. Davis, “Applicability of bifurcation to chaos: experimental demonstration of methods for switching among multistable modes in a nonlinear resonator,” in Nonlinear Dynamics in Optical Systems, N. B. Abraham, E. Garmire, and P. Mandel, eds., Vol. 7 of OSA Proceedings (Optical Society of America, Washington, D.C., 1990), pp. 540–544.
  22. M. F. Lewis, “Some aspects of saw oscillators,” in Proceedings of 1973 Ultrasonics Symposium (Institute of Electrical and Electronics Engineers, New York, 1973), pp. 344–347.
    [CrossRef]
  23. A. L. Schawlow and C. H. Townes, “Infrared and optical masers,” Phys. Rev. 112, 1940–1949 (1958).
    [CrossRef]
  24. R. L. Byer, “Diode laser-pumped solid-state lasers,” Science 239, 742–747 (1988).
    [CrossRef] [PubMed]
  25. L. S. Culter and C. L. Searle, “Some aspects of the theory and measurement of frequency fluctuations in frequency standards,” Proc. IEEE 54, 136–154 (1966).
    [CrossRef]
  26. A. Yariv, Introduction to Optical Electronics, 2nd ed. (Holt, Rinehart & Winston, New York, 1976), Chap. 10.
  27. X. S. Yao and L. Maleki, “Influence of an externally modulated photonic link on a microwave communications system,” (Jet Propulsion Laboratory, Pasadena, Calif., 1994), pp. 16–28; obtainable at http://tda.jpl.nasa.gov/progress_report .
  28. X. S. Yao and L. Maleki, “Field demonstration of X-band photonic antenna remoting in the deep space network,” , (Jet Propulsion Laboratory, Pasadena, Calif.1994), pp. 29–34; obtainable at http://tda.jpl.nasa.gov/progress_report .
  29. T. J. Kane, “Intensity noise in diode-pumped single-frequency Nd:YAG lasers and its control by electronic feedback,” IEEE Photonics Technol. Lett. 2, 244–245 (1990).
    [CrossRef]
  30. Hewlett-Packard, “Phase noise characterization of microwave oscillators—frequency discriminator method,” (Hewlett-Packard, Santa Clara, Calif.).
  31. M. F. Lewis, “Novel RF oscillator using optical components,” Electron. Lett. 28, 31–32 (1992).
    [CrossRef]
  32. X. S. Yao and G. Lutes, “A high speed photonic clock and carrier regenerator,” , (Jet Propulsion Laboratory, Pasadena, Calif., 1995), pp. 202–209; obtainable at http://tda.jpl.nasa.gov/progress_report .
  33. X. S. Yao, G. Lutes, L. Maleki, and S. Cao, “A novel photonic clock and carrier recovery device,” Proc. SPIE 2556, 118–127 (1995); X. S. Yao and G. Lutes, “A high-speed photonic clock and carrier recovery device,” IEEE Photon. Technol. Lett. 8, 688–690 (1996).
    [CrossRef]
  34. G. K. Gopalakrishnan, W. K. Burns, and C. H. Bulmer, “Microwave-optical mixing in LiNbO3 modulators,” IEEE Trans. Microwave Theory Tech. 41, 2383–2391 (1993).
    [CrossRef]
  35. H. Ogawa, D. Polifko, and S. Banba, “Millimeter-wave fiber optics systems for personal radio communication,” IEEE Trans. Microwave Theory Tech. 40, 2285–2293 (1992).
    [CrossRef]
  36. P. Herczfeld and A. Daryoush, “Fiber optic feed network for large aperture phased array antennas,” Microwave J. (August1987), pp. 160–166.

1995 (1)

X. S. Yao, G. Lutes, L. Maleki, and S. Cao, “A novel photonic clock and carrier recovery device,” Proc. SPIE 2556, 118–127 (1995); X. S. Yao and G. Lutes, “A high-speed photonic clock and carrier recovery device,” IEEE Photon. Technol. Lett. 8, 688–690 (1996).
[CrossRef]

1994 (2)

X. S. Yao and L. Maleki, “High frequency optical subcarrier generator,” Electron. Lett. 30, 1525–1526 (1994); “Converting light into spectrally pure microwave oscillation,” Opt. Lett. 21, 483–485 (1996).
[CrossRef] [PubMed]

K. Noguchi, H. Miyazawa, and O. Mitomi, “75 GHz broadband Ti:LiNbO3 optical modulator with ridge structure,” Electron. Lett. 30, 949–951 (1994).
[CrossRef]

1993 (1)

G. K. Gopalakrishnan, W. K. Burns, and C. H. Bulmer, “Microwave-optical mixing in LiNbO3 modulators,” IEEE Trans. Microwave Theory Tech. 41, 2383–2391 (1993).
[CrossRef]

1992 (2)

H. Ogawa, D. Polifko, and S. Banba, “Millimeter-wave fiber optics systems for personal radio communication,” IEEE Trans. Microwave Theory Tech. 40, 2285–2293 (1992).
[CrossRef]

M. F. Lewis, “Novel RF oscillator using optical components,” Electron. Lett. 28, 31–32 (1992).
[CrossRef]

1990 (1)

T. J. Kane, “Intensity noise in diode-pumped single-frequency Nd:YAG lasers and its control by electronic feedback,” IEEE Photonics Technol. Lett. 2, 244–245 (1990).
[CrossRef]

1988 (1)

R. L. Byer, “Diode laser-pumped solid-state lasers,” Science 239, 742–747 (1988).
[CrossRef] [PubMed]

1987 (1)

P. Herczfeld and A. Daryoush, “Fiber optic feed network for large aperture phased array antennas,” Microwave J. (August1987), pp. 160–166.

1982 (2)

A. Neyer and E. Voges, “High-frequency electro-optic oscillator using an integrated interferometer,” Appl. Phys. Lett. 40, 6–8 (1982).
[CrossRef]

A. Neyer and E. Voges, “Dynamics of electrooptic bistable devices with delayed feedback,” IEEE J. Quantum Electron. QE-18, 2009–2015 (1982).
[CrossRef]

1981 (3)

H. F. Schlaak and R. Th. Kersten, “Integrated optical oscillators and their applications to optical communication systems,” Opt. Commun. 36, 186–188 (1981).
[CrossRef]

H. M. Gibbs, F. A. Hopf, D. L. Kaplan, M. W. Derstine, and R. L. Shoemaker, “Periodic oscillation and chaos in optical bistability: possible guided wave all optical square-wave oscillators,” Proc. SPIE 317, 297–304 (1981).
[CrossRef]

J. K. Plourde and C. R. Ren, “Application of dielectric resonators,” IEEE Trans. Microwave Theory Tech. MTT-29, 754–769 (1981).
[CrossRef]

1980 (2)

A. Neyer and E. Voges, “Nonlinear electrooptic oscillator using an integrated interferometer,” Opt. Commun. 37, 169–174 (1980).
[CrossRef]

O. Ishihara, T. Mori, H. Sawano, and M. Nakatani, “A highly stabilized GaAsFED oscillator using a dielectric resonator feedback circuit in 9–14 GHz,” IEEE Trans. Microwave Theory Tech. MTT-28, 817–824 (1980).
[CrossRef]

1979 (1)

E. Garmire, J. H. Marburger, S. D. Allen, and H. G. Winful, “Transient response of hybrid bistable optical devices,” Appl. Phys. Lett. 34, 374–376 (1979).
[CrossRef]

1976 (1)

M. W. Lawrence, “Surface acoustic wave oscillators,” Wave Electron. 2, 199–218 (1976).

1966 (1)

L. S. Culter and C. L. Searle, “Some aspects of the theory and measurement of frequency fluctuations in frequency standards,” Proc. IEEE 54, 136–154 (1966).
[CrossRef]

1958 (1)

A. L. Schawlow and C. H. Townes, “Infrared and optical masers,” Phys. Rev. 112, 1940–1949 (1958).
[CrossRef]

1934 (1)

B. van der Pol, “The nonlinear theory of electric oscillations,” Proc. IRE 22, 1051–1086 (1934).
[CrossRef]

1920 (1)

B. van der Pol, “A theory of the amplitude of free and forced triode vibrations,” Radio Rev. 7, 701–754 (1920).

Aida, T.

T. Aida and P. Davis, “Applicability of bifurcation to chaos: experimental demonstration of methods for switching among multistable modes in a nonlinear resonator,” in Nonlinear Dynamics in Optical Systems, N. B. Abraham, E. Garmire, and P. Mandel, eds., Vol. 7 of OSA Proceedings (Optical Society of America, Washington, D.C., 1990), pp. 540–544.

Allen, S. D.

E. Garmire, J. H. Marburger, S. D. Allen, and H. G. Winful, “Transient response of hybrid bistable optical devices,” Appl. Phys. Lett. 34, 374–376 (1979).
[CrossRef]

Ballato, A.

A. Ballato, “Piezoelectric resonators,” in Design of Crystal and Other Harmonic Oscillators, B. Parzen, ed. (Wiley, New York, 1983), pp. 66–122.

Banba, S.

H. Ogawa, D. Polifko, and S. Banba, “Millimeter-wave fiber optics systems for personal radio communication,” IEEE Trans. Microwave Theory Tech. 40, 2285–2293 (1992).
[CrossRef]

Bowers, J. E.

M. Rodwell, J. E. Bowers, R. Pullela, K. Gilboney, J. Pusl, and D. Nguyen, “Electric and optoelectronic components for fiber transmission at bandwidths approaching 100 GHz,” in LEOS Summer Topical Meetings (Institute of Electrical and Electronics Engineers, Piscataway, N.J., 1995), pp. 21–22.

Bulmer, C. H.

G. K. Gopalakrishnan, W. K. Burns, and C. H. Bulmer, “Microwave-optical mixing in LiNbO3 modulators,” IEEE Trans. Microwave Theory Tech. 41, 2383–2391 (1993).
[CrossRef]

Burns, W. K.

G. K. Gopalakrishnan, W. K. Burns, and C. H. Bulmer, “Microwave-optical mixing in LiNbO3 modulators,” IEEE Trans. Microwave Theory Tech. 41, 2383–2391 (1993).
[CrossRef]

Byer, R. L.

R. L. Byer, “Diode laser-pumped solid-state lasers,” Science 239, 742–747 (1988).
[CrossRef] [PubMed]

Cao, S.

X. S. Yao, G. Lutes, L. Maleki, and S. Cao, “A novel photonic clock and carrier recovery device,” Proc. SPIE 2556, 118–127 (1995); X. S. Yao and G. Lutes, “A high-speed photonic clock and carrier recovery device,” IEEE Photon. Technol. Lett. 8, 688–690 (1996).
[CrossRef]

Culter, L. S.

L. S. Culter and C. L. Searle, “Some aspects of the theory and measurement of frequency fluctuations in frequency standards,” Proc. IEEE 54, 136–154 (1966).
[CrossRef]

Daryoush, A.

P. Herczfeld and A. Daryoush, “Fiber optic feed network for large aperture phased array antennas,” Microwave J. (August1987), pp. 160–166.

Davis, P.

T. Aida and P. Davis, “Applicability of bifurcation to chaos: experimental demonstration of methods for switching among multistable modes in a nonlinear resonator,” in Nonlinear Dynamics in Optical Systems, N. B. Abraham, E. Garmire, and P. Mandel, eds., Vol. 7 of OSA Proceedings (Optical Society of America, Washington, D.C., 1990), pp. 540–544.

Derstine, M. W.

H. M. Gibbs, F. A. Hopf, D. L. Kaplan, M. W. Derstine, and R. L. Shoemaker, “Periodic oscillation and chaos in optical bistability: possible guided wave all optical square-wave oscillators,” Proc. SPIE 317, 297–304 (1981).
[CrossRef]

Garmire, E.

E. Garmire, J. H. Marburger, S. D. Allen, and H. G. Winful, “Transient response of hybrid bistable optical devices,” Appl. Phys. Lett. 34, 374–376 (1979).
[CrossRef]

Gibbs, H. M.

H. M. Gibbs, F. A. Hopf, D. L. Kaplan, M. W. Derstine, and R. L. Shoemaker, “Periodic oscillation and chaos in optical bistability: possible guided wave all optical square-wave oscillators,” Proc. SPIE 317, 297–304 (1981).
[CrossRef]

Gilboney, K.

M. Rodwell, J. E. Bowers, R. Pullela, K. Gilboney, J. Pusl, and D. Nguyen, “Electric and optoelectronic components for fiber transmission at bandwidths approaching 100 GHz,” in LEOS Summer Topical Meetings (Institute of Electrical and Electronics Engineers, Piscataway, N.J., 1995), pp. 21–22.

Gopalakrishnan, G. K.

G. K. Gopalakrishnan, W. K. Burns, and C. H. Bulmer, “Microwave-optical mixing in LiNbO3 modulators,” IEEE Trans. Microwave Theory Tech. 41, 2383–2391 (1993).
[CrossRef]

Herczfeld, P.

P. Herczfeld and A. Daryoush, “Fiber optic feed network for large aperture phased array antennas,” Microwave J. (August1987), pp. 160–166.

Hopf, F. A.

H. M. Gibbs, F. A. Hopf, D. L. Kaplan, M. W. Derstine, and R. L. Shoemaker, “Periodic oscillation and chaos in optical bistability: possible guided wave all optical square-wave oscillators,” Proc. SPIE 317, 297–304 (1981).
[CrossRef]

Hornyak, W.

J. Marion and W. Hornyak, Physics for Science and Engineering (Saunders, Philadelphia, Pa., 1982), Chap. 15.

Ishihara, O.

O. Ishihara, T. Mori, H. Sawano, and M. Nakatani, “A highly stabilized GaAsFED oscillator using a dielectric resonator feedback circuit in 9–14 GHz,” IEEE Trans. Microwave Theory Tech. MTT-28, 817–824 (1980).
[CrossRef]

Kane, T. J.

T. J. Kane, “Intensity noise in diode-pumped single-frequency Nd:YAG lasers and its control by electronic feedback,” IEEE Photonics Technol. Lett. 2, 244–245 (1990).
[CrossRef]

Kaplan, D. L.

H. M. Gibbs, F. A. Hopf, D. L. Kaplan, M. W. Derstine, and R. L. Shoemaker, “Periodic oscillation and chaos in optical bistability: possible guided wave all optical square-wave oscillators,” Proc. SPIE 317, 297–304 (1981).
[CrossRef]

Kersten, R. Th.

H. F. Schlaak and R. Th. Kersten, “Integrated optical oscillators and their applications to optical communication systems,” Opt. Commun. 36, 186–188 (1981).
[CrossRef]

Lawrence, M. W.

M. W. Lawrence, “Surface acoustic wave oscillators,” Wave Electron. 2, 199–218 (1976).

Lewis, M. F.

M. F. Lewis, “Novel RF oscillator using optical components,” Electron. Lett. 28, 31–32 (1992).
[CrossRef]

M. F. Lewis, “Some aspects of saw oscillators,” in Proceedings of 1973 Ultrasonics Symposium (Institute of Electrical and Electronics Engineers, New York, 1973), pp. 344–347.
[CrossRef]

Lutes, G.

X. S. Yao, G. Lutes, L. Maleki, and S. Cao, “A novel photonic clock and carrier recovery device,” Proc. SPIE 2556, 118–127 (1995); X. S. Yao and G. Lutes, “A high-speed photonic clock and carrier recovery device,” IEEE Photon. Technol. Lett. 8, 688–690 (1996).
[CrossRef]

X. S. Yao and G. Lutes, “A high speed photonic clock and carrier regenerator,” , (Jet Propulsion Laboratory, Pasadena, Calif., 1995), pp. 202–209; obtainable at http://tda.jpl.nasa.gov/progress_report .

Maleki, L.

X. S. Yao, G. Lutes, L. Maleki, and S. Cao, “A novel photonic clock and carrier recovery device,” Proc. SPIE 2556, 118–127 (1995); X. S. Yao and G. Lutes, “A high-speed photonic clock and carrier recovery device,” IEEE Photon. Technol. Lett. 8, 688–690 (1996).
[CrossRef]

X. S. Yao and L. Maleki, “High frequency optical subcarrier generator,” Electron. Lett. 30, 1525–1526 (1994); “Converting light into spectrally pure microwave oscillation,” Opt. Lett. 21, 483–485 (1996).
[CrossRef] [PubMed]

X. S. Yao and L. Maleki, “Field demonstration of X-band photonic antenna remoting in the deep space network,” , (Jet Propulsion Laboratory, Pasadena, Calif.1994), pp. 29–34; obtainable at http://tda.jpl.nasa.gov/progress_report .

X. S. Yao and L. Maleki, “A novel photonic oscillator,” (Jet Propulsion Laboratory, Pasadena, Calif., 1995), pp. 32–42; obtainable at http://tda.jpl.nasa.gov/progress_report . Also in LEOS Summer Topical Meetings (Institute of Electrical and Electronics Engineers, Piscataway, N.J., 1995); pp. 17–18.

X. S. Yao and L. Maleki, “Influence of an externally modulated photonic link on a microwave communications system,” (Jet Propulsion Laboratory, Pasadena, Calif., 1994), pp. 16–28; obtainable at http://tda.jpl.nasa.gov/progress_report .

Marburger, J. H.

E. Garmire, J. H. Marburger, S. D. Allen, and H. G. Winful, “Transient response of hybrid bistable optical devices,” Appl. Phys. Lett. 34, 374–376 (1979).
[CrossRef]

Marion, J.

J. Marion and W. Hornyak, Physics for Science and Engineering (Saunders, Philadelphia, Pa., 1982), Chap. 15.

Mitomi, O.

K. Noguchi, H. Miyazawa, and O. Mitomi, “75 GHz broadband Ti:LiNbO3 optical modulator with ridge structure,” Electron. Lett. 30, 949–951 (1994).
[CrossRef]

Miyazawa, H.

K. Noguchi, H. Miyazawa, and O. Mitomi, “75 GHz broadband Ti:LiNbO3 optical modulator with ridge structure,” Electron. Lett. 30, 949–951 (1994).
[CrossRef]

Mori, T.

O. Ishihara, T. Mori, H. Sawano, and M. Nakatani, “A highly stabilized GaAsFED oscillator using a dielectric resonator feedback circuit in 9–14 GHz,” IEEE Trans. Microwave Theory Tech. MTT-28, 817–824 (1980).
[CrossRef]

Nakatani, M.

O. Ishihara, T. Mori, H. Sawano, and M. Nakatani, “A highly stabilized GaAsFED oscillator using a dielectric resonator feedback circuit in 9–14 GHz,” IEEE Trans. Microwave Theory Tech. MTT-28, 817–824 (1980).
[CrossRef]

Neyer, A.

A. Neyer and E. Voges, “Dynamics of electrooptic bistable devices with delayed feedback,” IEEE J. Quantum Electron. QE-18, 2009–2015 (1982).
[CrossRef]

A. Neyer and E. Voges, “High-frequency electro-optic oscillator using an integrated interferometer,” Appl. Phys. Lett. 40, 6–8 (1982).
[CrossRef]

A. Neyer and E. Voges, “Nonlinear electrooptic oscillator using an integrated interferometer,” Opt. Commun. 37, 169–174 (1980).
[CrossRef]

Nguyen, D.

M. Rodwell, J. E. Bowers, R. Pullela, K. Gilboney, J. Pusl, and D. Nguyen, “Electric and optoelectronic components for fiber transmission at bandwidths approaching 100 GHz,” in LEOS Summer Topical Meetings (Institute of Electrical and Electronics Engineers, Piscataway, N.J., 1995), pp. 21–22.

Noguchi, K.

K. Noguchi, H. Miyazawa, and O. Mitomi, “75 GHz broadband Ti:LiNbO3 optical modulator with ridge structure,” Electron. Lett. 30, 949–951 (1994).
[CrossRef]

Ogawa, H.

H. Ogawa, D. Polifko, and S. Banba, “Millimeter-wave fiber optics systems for personal radio communication,” IEEE Trans. Microwave Theory Tech. 40, 2285–2293 (1992).
[CrossRef]

Plourde, J. K.

J. K. Plourde and C. R. Ren, “Application of dielectric resonators,” IEEE Trans. Microwave Theory Tech. MTT-29, 754–769 (1981).
[CrossRef]

Polifko, D.

H. Ogawa, D. Polifko, and S. Banba, “Millimeter-wave fiber optics systems for personal radio communication,” IEEE Trans. Microwave Theory Tech. 40, 2285–2293 (1992).
[CrossRef]

Pullela, R.

M. Rodwell, J. E. Bowers, R. Pullela, K. Gilboney, J. Pusl, and D. Nguyen, “Electric and optoelectronic components for fiber transmission at bandwidths approaching 100 GHz,” in LEOS Summer Topical Meetings (Institute of Electrical and Electronics Engineers, Piscataway, N.J., 1995), pp. 21–22.

Pusl, J.

M. Rodwell, J. E. Bowers, R. Pullela, K. Gilboney, J. Pusl, and D. Nguyen, “Electric and optoelectronic components for fiber transmission at bandwidths approaching 100 GHz,” in LEOS Summer Topical Meetings (Institute of Electrical and Electronics Engineers, Piscataway, N.J., 1995), pp. 21–22.

Ren, C. R.

J. K. Plourde and C. R. Ren, “Application of dielectric resonators,” IEEE Trans. Microwave Theory Tech. MTT-29, 754–769 (1981).
[CrossRef]

Rodwell, M.

M. Rodwell, J. E. Bowers, R. Pullela, K. Gilboney, J. Pusl, and D. Nguyen, “Electric and optoelectronic components for fiber transmission at bandwidths approaching 100 GHz,” in LEOS Summer Topical Meetings (Institute of Electrical and Electronics Engineers, Piscataway, N.J., 1995), pp. 21–22.

Sawano, H.

O. Ishihara, T. Mori, H. Sawano, and M. Nakatani, “A highly stabilized GaAsFED oscillator using a dielectric resonator feedback circuit in 9–14 GHz,” IEEE Trans. Microwave Theory Tech. MTT-28, 817–824 (1980).
[CrossRef]

Schawlow, A. L.

A. L. Schawlow and C. H. Townes, “Infrared and optical masers,” Phys. Rev. 112, 1940–1949 (1958).
[CrossRef]

Schlaak, H. F.

H. F. Schlaak and R. Th. Kersten, “Integrated optical oscillators and their applications to optical communication systems,” Opt. Commun. 36, 186–188 (1981).
[CrossRef]

Searle, C. L.

L. S. Culter and C. L. Searle, “Some aspects of the theory and measurement of frequency fluctuations in frequency standards,” Proc. IEEE 54, 136–154 (1966).
[CrossRef]

Shoemaker, R. L.

H. M. Gibbs, F. A. Hopf, D. L. Kaplan, M. W. Derstine, and R. L. Shoemaker, “Periodic oscillation and chaos in optical bistability: possible guided wave all optical square-wave oscillators,” Proc. SPIE 317, 297–304 (1981).
[CrossRef]

Siegman, A.

A. Siegman, Lasers (University Science, Mill Valley, Calif., 1986), Chap. 11.

A. Siegman, Microwave Solid State Masers (McGraw-Hill, New York, 1964).

Smith, W. L.

W. L. Smith, “Precision oscillators,” in Precision Frequency Control, E. A. Gerber and A. Ballato, eds. (Academic, New York, 1985), Vol. 2, pp. 45–98.

Townes, C. H.

A. L. Schawlow and C. H. Townes, “Infrared and optical masers,” Phys. Rev. 112, 1940–1949 (1958).
[CrossRef]

van der Pol, B.

B. van der Pol, “The nonlinear theory of electric oscillations,” Proc. IRE 22, 1051–1086 (1934).
[CrossRef]

B. van der Pol, “A theory of the amplitude of free and forced triode vibrations,” Radio Rev. 7, 701–754 (1920).

Voges, E.

A. Neyer and E. Voges, “High-frequency electro-optic oscillator using an integrated interferometer,” Appl. Phys. Lett. 40, 6–8 (1982).
[CrossRef]

A. Neyer and E. Voges, “Dynamics of electrooptic bistable devices with delayed feedback,” IEEE J. Quantum Electron. QE-18, 2009–2015 (1982).
[CrossRef]

A. Neyer and E. Voges, “Nonlinear electrooptic oscillator using an integrated interferometer,” Opt. Commun. 37, 169–174 (1980).
[CrossRef]

Winful, H. G.

E. Garmire, J. H. Marburger, S. D. Allen, and H. G. Winful, “Transient response of hybrid bistable optical devices,” Appl. Phys. Lett. 34, 374–376 (1979).
[CrossRef]

Yao, X. S.

X. S. Yao, G. Lutes, L. Maleki, and S. Cao, “A novel photonic clock and carrier recovery device,” Proc. SPIE 2556, 118–127 (1995); X. S. Yao and G. Lutes, “A high-speed photonic clock and carrier recovery device,” IEEE Photon. Technol. Lett. 8, 688–690 (1996).
[CrossRef]

X. S. Yao and L. Maleki, “High frequency optical subcarrier generator,” Electron. Lett. 30, 1525–1526 (1994); “Converting light into spectrally pure microwave oscillation,” Opt. Lett. 21, 483–485 (1996).
[CrossRef] [PubMed]

X. S. Yao and L. Maleki, “Field demonstration of X-band photonic antenna remoting in the deep space network,” , (Jet Propulsion Laboratory, Pasadena, Calif.1994), pp. 29–34; obtainable at http://tda.jpl.nasa.gov/progress_report .

X. S. Yao and G. Lutes, “A high speed photonic clock and carrier regenerator,” , (Jet Propulsion Laboratory, Pasadena, Calif., 1995), pp. 202–209; obtainable at http://tda.jpl.nasa.gov/progress_report .

X. S. Yao and L. Maleki, “A novel photonic oscillator,” (Jet Propulsion Laboratory, Pasadena, Calif., 1995), pp. 32–42; obtainable at http://tda.jpl.nasa.gov/progress_report . Also in LEOS Summer Topical Meetings (Institute of Electrical and Electronics Engineers, Piscataway, N.J., 1995); pp. 17–18.

X. S. Yao and L. Maleki, “Influence of an externally modulated photonic link on a microwave communications system,” (Jet Propulsion Laboratory, Pasadena, Calif., 1994), pp. 16–28; obtainable at http://tda.jpl.nasa.gov/progress_report .

Yariv, A.

A. Yariv, Introduction to Optical Electronics, 2nd ed. (Holt, Rinehart & Winston, New York, 1976), Chap. 10.

Appl. Phys. Lett. (2)

E. Garmire, J. H. Marburger, S. D. Allen, and H. G. Winful, “Transient response of hybrid bistable optical devices,” Appl. Phys. Lett. 34, 374–376 (1979).
[CrossRef]

A. Neyer and E. Voges, “High-frequency electro-optic oscillator using an integrated interferometer,” Appl. Phys. Lett. 40, 6–8 (1982).
[CrossRef]

Electron. Lett. (3)

X. S. Yao and L. Maleki, “High frequency optical subcarrier generator,” Electron. Lett. 30, 1525–1526 (1994); “Converting light into spectrally pure microwave oscillation,” Opt. Lett. 21, 483–485 (1996).
[CrossRef] [PubMed]

K. Noguchi, H. Miyazawa, and O. Mitomi, “75 GHz broadband Ti:LiNbO3 optical modulator with ridge structure,” Electron. Lett. 30, 949–951 (1994).
[CrossRef]

M. F. Lewis, “Novel RF oscillator using optical components,” Electron. Lett. 28, 31–32 (1992).
[CrossRef]

IEEE J. Quantum Electron. (1)

A. Neyer and E. Voges, “Dynamics of electrooptic bistable devices with delayed feedback,” IEEE J. Quantum Electron. QE-18, 2009–2015 (1982).
[CrossRef]

IEEE Photonics Technol. Lett. (1)

T. J. Kane, “Intensity noise in diode-pumped single-frequency Nd:YAG lasers and its control by electronic feedback,” IEEE Photonics Technol. Lett. 2, 244–245 (1990).
[CrossRef]

IEEE Trans. Microwave Theory Tech. (4)

G. K. Gopalakrishnan, W. K. Burns, and C. H. Bulmer, “Microwave-optical mixing in LiNbO3 modulators,” IEEE Trans. Microwave Theory Tech. 41, 2383–2391 (1993).
[CrossRef]

H. Ogawa, D. Polifko, and S. Banba, “Millimeter-wave fiber optics systems for personal radio communication,” IEEE Trans. Microwave Theory Tech. 40, 2285–2293 (1992).
[CrossRef]

O. Ishihara, T. Mori, H. Sawano, and M. Nakatani, “A highly stabilized GaAsFED oscillator using a dielectric resonator feedback circuit in 9–14 GHz,” IEEE Trans. Microwave Theory Tech. MTT-28, 817–824 (1980).
[CrossRef]

J. K. Plourde and C. R. Ren, “Application of dielectric resonators,” IEEE Trans. Microwave Theory Tech. MTT-29, 754–769 (1981).
[CrossRef]

Microwave J. (1)

P. Herczfeld and A. Daryoush, “Fiber optic feed network for large aperture phased array antennas,” Microwave J. (August1987), pp. 160–166.

Opt. Commun. (2)

H. F. Schlaak and R. Th. Kersten, “Integrated optical oscillators and their applications to optical communication systems,” Opt. Commun. 36, 186–188 (1981).
[CrossRef]

A. Neyer and E. Voges, “Nonlinear electrooptic oscillator using an integrated interferometer,” Opt. Commun. 37, 169–174 (1980).
[CrossRef]

Phys. Rev. (1)

A. L. Schawlow and C. H. Townes, “Infrared and optical masers,” Phys. Rev. 112, 1940–1949 (1958).
[CrossRef]

Proc. IEEE (1)

L. S. Culter and C. L. Searle, “Some aspects of the theory and measurement of frequency fluctuations in frequency standards,” Proc. IEEE 54, 136–154 (1966).
[CrossRef]

Proc. IRE (1)

B. van der Pol, “The nonlinear theory of electric oscillations,” Proc. IRE 22, 1051–1086 (1934).
[CrossRef]

Proc. SPIE (2)

X. S. Yao, G. Lutes, L. Maleki, and S. Cao, “A novel photonic clock and carrier recovery device,” Proc. SPIE 2556, 118–127 (1995); X. S. Yao and G. Lutes, “A high-speed photonic clock and carrier recovery device,” IEEE Photon. Technol. Lett. 8, 688–690 (1996).
[CrossRef]

H. M. Gibbs, F. A. Hopf, D. L. Kaplan, M. W. Derstine, and R. L. Shoemaker, “Periodic oscillation and chaos in optical bistability: possible guided wave all optical square-wave oscillators,” Proc. SPIE 317, 297–304 (1981).
[CrossRef]

Radio Rev. (1)

B. van der Pol, “A theory of the amplitude of free and forced triode vibrations,” Radio Rev. 7, 701–754 (1920).

Science (1)

R. L. Byer, “Diode laser-pumped solid-state lasers,” Science 239, 742–747 (1988).
[CrossRef] [PubMed]

Wave Electron. (1)

M. W. Lawrence, “Surface acoustic wave oscillators,” Wave Electron. 2, 199–218 (1976).

Other (14)

J. Marion and W. Hornyak, Physics for Science and Engineering (Saunders, Philadelphia, Pa., 1982), Chap. 15.

A. Siegman, Microwave Solid State Masers (McGraw-Hill, New York, 1964).

A. Siegman, Lasers (University Science, Mill Valley, Calif., 1986), Chap. 11.

A. Ballato, “Piezoelectric resonators,” in Design of Crystal and Other Harmonic Oscillators, B. Parzen, ed. (Wiley, New York, 1983), pp. 66–122.

W. L. Smith, “Precision oscillators,” in Precision Frequency Control, E. A. Gerber and A. Ballato, eds. (Academic, New York, 1985), Vol. 2, pp. 45–98.

X. S. Yao and L. Maleki, “A novel photonic oscillator,” (Jet Propulsion Laboratory, Pasadena, Calif., 1995), pp. 32–42; obtainable at http://tda.jpl.nasa.gov/progress_report . Also in LEOS Summer Topical Meetings (Institute of Electrical and Electronics Engineers, Piscataway, N.J., 1995); pp. 17–18.

M. Rodwell, J. E. Bowers, R. Pullela, K. Gilboney, J. Pusl, and D. Nguyen, “Electric and optoelectronic components for fiber transmission at bandwidths approaching 100 GHz,” in LEOS Summer Topical Meetings (Institute of Electrical and Electronics Engineers, Piscataway, N.J., 1995), pp. 21–22.

T. Aida and P. Davis, “Applicability of bifurcation to chaos: experimental demonstration of methods for switching among multistable modes in a nonlinear resonator,” in Nonlinear Dynamics in Optical Systems, N. B. Abraham, E. Garmire, and P. Mandel, eds., Vol. 7 of OSA Proceedings (Optical Society of America, Washington, D.C., 1990), pp. 540–544.

M. F. Lewis, “Some aspects of saw oscillators,” in Proceedings of 1973 Ultrasonics Symposium (Institute of Electrical and Electronics Engineers, New York, 1973), pp. 344–347.
[CrossRef]

A. Yariv, Introduction to Optical Electronics, 2nd ed. (Holt, Rinehart & Winston, New York, 1976), Chap. 10.

X. S. Yao and L. Maleki, “Influence of an externally modulated photonic link on a microwave communications system,” (Jet Propulsion Laboratory, Pasadena, Calif., 1994), pp. 16–28; obtainable at http://tda.jpl.nasa.gov/progress_report .

X. S. Yao and L. Maleki, “Field demonstration of X-band photonic antenna remoting in the deep space network,” , (Jet Propulsion Laboratory, Pasadena, Calif.1994), pp. 29–34; obtainable at http://tda.jpl.nasa.gov/progress_report .

Hewlett-Packard, “Phase noise characterization of microwave oscillators—frequency discriminator method,” (Hewlett-Packard, Santa Clara, Calif.).

X. S. Yao and G. Lutes, “A high speed photonic clock and carrier regenerator,” , (Jet Propulsion Laboratory, Pasadena, Calif., 1995), pp. 202–209; obtainable at http://tda.jpl.nasa.gov/progress_report .

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Comparison of (a) a van der Pol oscillator with (b) an optoelectronic microwave oscillator (OEO).

Fig. 2
Fig. 2

Detailed construction of an OEO. Optical injection and RF injection ports are supplied for synchronizing the oscillator with an external reference by either optical injection locking or electrical injection locking.12 The bias port and the fiber stretcher can be used to fine tune the oscillation frequency.12 Noise in the oscillator can be viewed as being injected from the input of the amplifier.

Fig. 3
Fig. 3

Illustration of the oscillator’s output spectra below and above the threshold.

Fig. 4
Fig. 4

Normalized oscillation amplitude of an OEO as a function of small-signal gain GS. (a) Theoretical calculation with Eqs. (17a), (17b), and (17c). (b) Experimental data and curve fitting to Eqs. (17b) and (17c).

Fig. 5
Fig. 5

Calculations of an OEO’s input-noise-to-signal ratio. (a) Input-noise-to-signal ratio as a function of small-signal gain |GS|, showing a minimum value at |GS|=1.5. (b) Input-noise-to-signal ratio as a function of photocurrent for different values of the laser’s RIN noise. In the calculation the noise factor of the RF amplifier is assumed to be 2, and |GS| is fixed at 1.5.

Fig. 6
Fig. 6

Experimental setups: (a) for measuring the oscillation amplitude of an OEO as a function of the small-signal gain; (b) for measuring the phase noise of an OEO with the frequency-discrimination method.

Fig. 7
Fig. 7

Single-sideband phase noise of an OEO measured at 800 MHz. (a) Measured phase-noise spectra at different loop delays and their fits to Eq. (29b). The corresponding loop delays for curves 1–5 are listed adjacent to each curve, and the corresponding oscillation powers are 16.33, 16, 15.67, 15.67, and 13.33 dBm, respectively. Curve fitting yields the following phase-noise relations as a function of frequency offset f: -28.7 - 20 log(f), -34.84 - 20 log(f), -38.14 - 20 log(f), -40.61 - 20 log(f), and -50.45-20 log(f). (b) Phase noise at a 30-kHz offset from the center frequency as a function of loop delay. Data points were extracted from curves 1–5 of (a) and were corrected to account for oscillation power differences.

Fig. 8
Fig. 8

Single-sideband phase-noise measurements of the OEO at different oscillation frequencies. (a) Phase-noise spectra. (b) Phase noise at a 10-kHz offset frequency as a function of oscillation frequency, extracted from (a). The loop delay for the measurements is 0.28 µs.

Fig. 9
Fig. 9

Single-sideband phase-noise spectra as a function of oscillation power measured at 800 MHz. (a) Experimental data. (b) The fit to Eq. (29b). (c) Phase noise at a 10-kHz offset as a function of oscillation power extracted from (b).

Equations (42)

Equations on this page are rendered with MathJax. Learn more.

P(t)=(αPo/2)1-η sin πVin(t)/Vπ+VB/Vπ,
Vout(t)=ρP(t)RGA=Vph1-η sin πVin(t)/Vπ+VB/Vπ,
Vph=(αPoρ/2)RGA=IphRGA,
GSdVoutdVinVin=0=-ηπVphVπcosπVBVπ
Vph=Vπ/πη|cos(πVB/Vπ)|.
Vph=Vπ/π.
Vin(t)=Vo sin(ωt+β),
Voutt=Vph1-η sinπVBVπJoπVoVπ+2m=1J2mπVoVπcos2mωt+2mβ-2η cosπVBVπm=0J2m+1πVoVπ×sin2m+1ωt+2m+1β.
Voutt=GVoVint,
GVo=GS2VππVoJ1πVoVπ.
GVo=GS1-12πVo2Vπ2+112πVo2Vπ4.
F˜ω=Fωexpiϕω,
V˜outt=F˜ωGVoV˜inω,t,
V˜inω, t=V˜inωexpiωt,
V˜nω, t=F˜ωGVoV˜n-1ω, t-τ,
V˜ω, t=GAV˜inωn=0F˜ωGVoexpiωt-nτ=GAV˜in expiωt1-F˜ωGVoexp-iωτ.
Pω=|V˜ω, t|22R=GA2|V˜inω|2/2R1+|FωGVo|2-2Fω|GVo|cosωτ+ϕω+ϕo,
ωkτ+ϕωk+ϕo=2kπ, k=0, 1, 2,,
J1πVoscVπ=12|GS|πVoscVπ.
Vosc=22Vππ 1-1|GS| third-order expansion,
Vosc=23Vππ1-13 4|GS|-11/2 fifth-order expansion.
foscfk=k+1/2/τ for GVosc<0,
foscfk=k/τ for GVosc>0,
τ=τ+dϕωdωω=ωosc.
ρNωΔf=|V¯inω|22R,
SRFf=PfΔfPosc=ρNGA2/Posc1+|FfGVosc|2-2Ff|GVosc|cos2πfτ,
-SRFfdf-1/2τ1/2τSRFfdf=1,
1-|GVosc|221-|GVosc|=ρNGA2τPosc.
SRFf=δ2-δ/τ-21-δ/τ cos2πfτ,
δρNGA2/Posc.
SRFf=δδ/2τ2+2π2τf2.
ΔfFWHM=12πδτ2=12πGA2ρNτ2Posc.
Δνlaser=12πρsτlaser2 Plaser,
Q=foscΔfFWHM=QD τδ,
QD=2πfoscτ.
SRFf=4τ2δ, |f|ΔfFWHM/2,
SRFf=δ2π2τf2, |f|ΔfFWHM/2.
ρN=4kBTNF+2eIphR+NRINIph2R,
δ=|GS|21-1/|GS| 4kTNF+2eIphR+NRINIph2R4η2 cos2πVB/VπIph2R.
δmin=4kTNF+2eIphR+NRINIph2R16/27Iph2R,
Vosc=22Vπ/π/30.52Vπ,
Posc=4Vπ2/3π2R=10Pm1dB/3,

Metrics