Abstract

We report on both polar and nonpolar light-induced orientation of a polyimide of high glass transition temperature (Tg ≈ 210 °C) with nonlinear optical azo dye molecules in the side chain. This photoinduced orientation is shown to occur at room temperature, i.e., at least 190 °C below the Tg value of the polymer, which indicates that the photoisomerization-induced movement of the nonlinear optical chromophores induces, in turn, a movement of the polyimide main chain. This allows for an efficient orientation of the dye molecules in spite of the stiffness of the polyimide main chain. A nonpolar orientation is induced by polarized light irradiation alone, whereas polar orientation is achieved by application of a dc field during the photoisomerization process. Further light irradiation in the absence of a dc field destroys the previously induced stable polar order. A detailed theoretical study of this light-induced depoling process is also presented.

© 1996 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. M. Burland, R. D. Miller, and C. A. Walsh, “Second-order nonlinearity in poled-polymer systems,” Chem. Rev. 94, 31 (1994).
    [CrossRef]
  2. T. Todorov, L. Nikolova, and N. Tomova, “Polarization holography. 1. A new high-efficiency organic material with reversible photo-induced birefringence,” Appl. Opt. 23, 4309 (1984).
    [CrossRef] [PubMed]
  3. Z. Sekkat, M. Büchel, H. Orendi, H. Menzel, and W. Knoll, “Photoinduced alignment of azobenzene moities in the side chains of polyglutamate films,” Chem. Phys. Lett. 220, 497 (1994).
    [CrossRef]
  4. Z. Sekkat and M. Dumont, “Photoinduced orientation of azo dyes in polymeric films. Characterization of molecular angular mobility,” Synth. Met. 54, 373 (1993).
    [CrossRef]
  5. Y. Shi, W. H. Steier, L. Yu, M. Shen, and L. R. Dalton, “Large photoinduced birefringence in an optically nonlinear polyester polymer,” Appl. Phys. Lett. 59, 2935 (1991).
    [CrossRef]
  6. T. Seki, M. Skuragi, Y. Kawanishi, Y. Suzuki, T. Tamaki, R. Fukuda, and K. Ichimura, “Command surfaces of Langmuir–Blodgett films. Photoregulation of liquid crystal alignment by molecularly tailored surface azobenzene layers,” Langmuir 9, 211 (1993).
    [CrossRef]
  7. M. Sawodny, A. Schmidt, M. Stamm, W. Knoll, C. Urban, and H. Ringsdorf, “Photoreactive Langmuir–Blodgett–Kuhn multilayer assemblies from functionalized liquid crystalline side chain polymers. I. Homopolymers containing azobenzene chromophores,” Polym. Adv. Technol. 2, 127 (1991).
    [CrossRef]
  8. Z. Sekkat, “Création d’anisotropie et d’effets non linéaires du second ordre par photoisomérisation de dérivés de l’azobenzène dans des films de polymères,” Ph.D. dissertation (Paris-Sud University, Paris, 1992).
  9. Z. Sekkat and M. Dumont, “Photoassisted poling of azo dye doped polymeric films at room temperature,” Appl. Phys. B 54, 486 (1992); “Poling of polymer films by photoisomerization of azo dye chromophores,” Mol. Cryst. Liq. Cryst. Sci. Tech. B 2, 359 (1992).
    [CrossRef]
  10. Z. Sekkat, C.-S. Kang, E. F. Aust, G. Wegner, and W. Knoll, “Room-temperature photoinduced poling and thermal poling of a rigid main chain polymer with polar azo dyes in the side chain,” Chem. Mater. 7, 142 (1995).
    [CrossRef]
  11. S. Barry and D. Soane, “Poling of polymeric thin films at ambient temperatures for second-harmonic generation,” Appl. Phys. Lett. 58, 1134 (1991).
    [CrossRef]
  12. F. Charra, F. Kajzar, J. M. Nunzi, P. Raimond, and E. Idiart, “Light-induced second harmonic generation in azo dye polymers,” Opt. Lett. 12, 941 (1993).
    [CrossRef]
  13. C.-S. Kang, H.-J. Winkelhahn, M. Schultze, D. Neher, and G. Wegner, “Synthesis and properties of aromatic main chain polyesters having disperse-red-1 nonlinear optical chromophores in the side chain,” Chem. Mater. 6, 2159 (1994).
    [CrossRef]
  14. T. Verbiest, D. M. Burland, M. C. Jurich, V. Y. Lee, R. D. Miller, and W. Volksen, “Exceptionally thermally stable polyimides for second-order nonlinear optical applications,” Science 268, 1604 (1995).
    [CrossRef] [PubMed]
  15. R. D. Miller, D. M. Burland, M. C. Jurich, V. Y. Lee, C. R. Moylan, R. J. Tweig, J. Thackara, T. Verbiest, W. Volksen, and C. A. Walsh, “High temperature nonlinear polyimides for χ(2) applications,” in Polymers for Second-Order Nonlinear Optics, G. Lindsay and K. D. Singer, eds., ACS Symposium Series 601 (American Chemical Society, Washington, D. C., 1995), Chap. 10, pp. 130–146.
    [CrossRef]
  16. Z. Sekkat, E. F. Aust, and W. Knoll, “Photoinduced poling of polar azo dyes in polymeric films. Toward second-order applications,” in Polymers for Second-Order Nonlinear Optics, G. Lindsay and K. D. Singer, eds., ACS Symposium Series 601 (American Chemical Society, Washington, D. C., 1995), Chap. 19, pp. 255–274.
    [CrossRef]
  17. H. Rau, “Photoisomerization of azobenzenes,” in Photochemistry and Photophysics, F. J. Rabeck, ed. (CRC, Boca Raton, Fla., 1990), Vol. 2, Chap. 4, pp. 119–141. This paper contains a large bibliography on photoisomerization.
  18. Z. Sekkat and W. Knoll, “Creation of second-order nonlinear optical effects by photoisomerization of polar azo dyes in polymeric films: theoretical study of steady-state and transient properties,” J. Opt. Soc. Am. B 12, 1855 (1995).
    [CrossRef]
  19. K. W. Beeson, P. M. Ferm, K. A. Horn, M. J. McFarland, A. Nahata, J. Shan, C. Wu, and J. T. Yardley, “Loss measurements in electro-optic polymer waveguides,” Proc. SPIE 1775, 133 (1992).
    [CrossRef]
  20. P. A. Chollet, G. Gadret, F. Kajzar, and P. Raimond, “Electro-optic organic thin films in waveguided devices,” Proc. SPIE 1775, 121 (1992).
    [CrossRef]
  21. R. Loucif-Saibi, K. Nakatani, J. A. Delaire, M. Dumont, and Z. Sekkat, “Photoisomerization and second-harmonic generation in disperse red one-doped and -functionalized poly(methyl methacrylate) films,” Chem. Mater. 5, 229 (1993).
    [CrossRef]
  22. Z. Sekkat and W. Knoll, “Stationary state and dynamics of birefringence and nonlinear optical properties induced by electric field poling in polymeric films,” Ber. Bunsenges. Phys. Chem. 98, 1231 (1994).
    [CrossRef]
  23. M. G. Kuzyk, K. D. Singer, H. E. Zahn, and L. A. King, “Second-order nonlinear-optical tensor properties of poled films under stress,” J. Opt. Soc. Am. B 6, 742 (1989).
    [CrossRef]
  24. S. J. Lalama and A. F. Garito, “Origin of the nonlinear second-order optical susceptibilities of organic systems,” Phys. Rev. A 20, 1179 (1979).
    [CrossRef]
  25. R. E. Robertson, “Effect of free volume fluctuations on polymer relaxation in the glassy state,” J. Polym. Sci. Polym. Symp. 1, 173 (1978).

1995 (3)

Z. Sekkat, C.-S. Kang, E. F. Aust, G. Wegner, and W. Knoll, “Room-temperature photoinduced poling and thermal poling of a rigid main chain polymer with polar azo dyes in the side chain,” Chem. Mater. 7, 142 (1995).
[CrossRef]

T. Verbiest, D. M. Burland, M. C. Jurich, V. Y. Lee, R. D. Miller, and W. Volksen, “Exceptionally thermally stable polyimides for second-order nonlinear optical applications,” Science 268, 1604 (1995).
[CrossRef] [PubMed]

Z. Sekkat and W. Knoll, “Creation of second-order nonlinear optical effects by photoisomerization of polar azo dyes in polymeric films: theoretical study of steady-state and transient properties,” J. Opt. Soc. Am. B 12, 1855 (1995).
[CrossRef]

1994 (4)

C.-S. Kang, H.-J. Winkelhahn, M. Schultze, D. Neher, and G. Wegner, “Synthesis and properties of aromatic main chain polyesters having disperse-red-1 nonlinear optical chromophores in the side chain,” Chem. Mater. 6, 2159 (1994).
[CrossRef]

D. M. Burland, R. D. Miller, and C. A. Walsh, “Second-order nonlinearity in poled-polymer systems,” Chem. Rev. 94, 31 (1994).
[CrossRef]

Z. Sekkat, M. Büchel, H. Orendi, H. Menzel, and W. Knoll, “Photoinduced alignment of azobenzene moities in the side chains of polyglutamate films,” Chem. Phys. Lett. 220, 497 (1994).
[CrossRef]

Z. Sekkat and W. Knoll, “Stationary state and dynamics of birefringence and nonlinear optical properties induced by electric field poling in polymeric films,” Ber. Bunsenges. Phys. Chem. 98, 1231 (1994).
[CrossRef]

1993 (4)

Z. Sekkat and M. Dumont, “Photoinduced orientation of azo dyes in polymeric films. Characterization of molecular angular mobility,” Synth. Met. 54, 373 (1993).
[CrossRef]

T. Seki, M. Skuragi, Y. Kawanishi, Y. Suzuki, T. Tamaki, R. Fukuda, and K. Ichimura, “Command surfaces of Langmuir–Blodgett films. Photoregulation of liquid crystal alignment by molecularly tailored surface azobenzene layers,” Langmuir 9, 211 (1993).
[CrossRef]

R. Loucif-Saibi, K. Nakatani, J. A. Delaire, M. Dumont, and Z. Sekkat, “Photoisomerization and second-harmonic generation in disperse red one-doped and -functionalized poly(methyl methacrylate) films,” Chem. Mater. 5, 229 (1993).
[CrossRef]

F. Charra, F. Kajzar, J. M. Nunzi, P. Raimond, and E. Idiart, “Light-induced second harmonic generation in azo dye polymers,” Opt. Lett. 12, 941 (1993).
[CrossRef]

1992 (3)

Z. Sekkat and M. Dumont, “Photoassisted poling of azo dye doped polymeric films at room temperature,” Appl. Phys. B 54, 486 (1992); “Poling of polymer films by photoisomerization of azo dye chromophores,” Mol. Cryst. Liq. Cryst. Sci. Tech. B 2, 359 (1992).
[CrossRef]

K. W. Beeson, P. M. Ferm, K. A. Horn, M. J. McFarland, A. Nahata, J. Shan, C. Wu, and J. T. Yardley, “Loss measurements in electro-optic polymer waveguides,” Proc. SPIE 1775, 133 (1992).
[CrossRef]

P. A. Chollet, G. Gadret, F. Kajzar, and P. Raimond, “Electro-optic organic thin films in waveguided devices,” Proc. SPIE 1775, 121 (1992).
[CrossRef]

1991 (3)

M. Sawodny, A. Schmidt, M. Stamm, W. Knoll, C. Urban, and H. Ringsdorf, “Photoreactive Langmuir–Blodgett–Kuhn multilayer assemblies from functionalized liquid crystalline side chain polymers. I. Homopolymers containing azobenzene chromophores,” Polym. Adv. Technol. 2, 127 (1991).
[CrossRef]

S. Barry and D. Soane, “Poling of polymeric thin films at ambient temperatures for second-harmonic generation,” Appl. Phys. Lett. 58, 1134 (1991).
[CrossRef]

Y. Shi, W. H. Steier, L. Yu, M. Shen, and L. R. Dalton, “Large photoinduced birefringence in an optically nonlinear polyester polymer,” Appl. Phys. Lett. 59, 2935 (1991).
[CrossRef]

1989 (1)

1984 (1)

1979 (1)

S. J. Lalama and A. F. Garito, “Origin of the nonlinear second-order optical susceptibilities of organic systems,” Phys. Rev. A 20, 1179 (1979).
[CrossRef]

1978 (1)

R. E. Robertson, “Effect of free volume fluctuations on polymer relaxation in the glassy state,” J. Polym. Sci. Polym. Symp. 1, 173 (1978).

Aust, E. F.

Z. Sekkat, C.-S. Kang, E. F. Aust, G. Wegner, and W. Knoll, “Room-temperature photoinduced poling and thermal poling of a rigid main chain polymer with polar azo dyes in the side chain,” Chem. Mater. 7, 142 (1995).
[CrossRef]

Z. Sekkat, E. F. Aust, and W. Knoll, “Photoinduced poling of polar azo dyes in polymeric films. Toward second-order applications,” in Polymers for Second-Order Nonlinear Optics, G. Lindsay and K. D. Singer, eds., ACS Symposium Series 601 (American Chemical Society, Washington, D. C., 1995), Chap. 19, pp. 255–274.
[CrossRef]

Barry, S.

S. Barry and D. Soane, “Poling of polymeric thin films at ambient temperatures for second-harmonic generation,” Appl. Phys. Lett. 58, 1134 (1991).
[CrossRef]

Beeson, K. W.

K. W. Beeson, P. M. Ferm, K. A. Horn, M. J. McFarland, A. Nahata, J. Shan, C. Wu, and J. T. Yardley, “Loss measurements in electro-optic polymer waveguides,” Proc. SPIE 1775, 133 (1992).
[CrossRef]

Büchel, M.

Z. Sekkat, M. Büchel, H. Orendi, H. Menzel, and W. Knoll, “Photoinduced alignment of azobenzene moities in the side chains of polyglutamate films,” Chem. Phys. Lett. 220, 497 (1994).
[CrossRef]

Burland, D. M.

T. Verbiest, D. M. Burland, M. C. Jurich, V. Y. Lee, R. D. Miller, and W. Volksen, “Exceptionally thermally stable polyimides for second-order nonlinear optical applications,” Science 268, 1604 (1995).
[CrossRef] [PubMed]

D. M. Burland, R. D. Miller, and C. A. Walsh, “Second-order nonlinearity in poled-polymer systems,” Chem. Rev. 94, 31 (1994).
[CrossRef]

R. D. Miller, D. M. Burland, M. C. Jurich, V. Y. Lee, C. R. Moylan, R. J. Tweig, J. Thackara, T. Verbiest, W. Volksen, and C. A. Walsh, “High temperature nonlinear polyimides for χ(2) applications,” in Polymers for Second-Order Nonlinear Optics, G. Lindsay and K. D. Singer, eds., ACS Symposium Series 601 (American Chemical Society, Washington, D. C., 1995), Chap. 10, pp. 130–146.
[CrossRef]

Charra, F.

Chollet, P. A.

P. A. Chollet, G. Gadret, F. Kajzar, and P. Raimond, “Electro-optic organic thin films in waveguided devices,” Proc. SPIE 1775, 121 (1992).
[CrossRef]

Dalton, L. R.

Y. Shi, W. H. Steier, L. Yu, M. Shen, and L. R. Dalton, “Large photoinduced birefringence in an optically nonlinear polyester polymer,” Appl. Phys. Lett. 59, 2935 (1991).
[CrossRef]

Delaire, J. A.

R. Loucif-Saibi, K. Nakatani, J. A. Delaire, M. Dumont, and Z. Sekkat, “Photoisomerization and second-harmonic generation in disperse red one-doped and -functionalized poly(methyl methacrylate) films,” Chem. Mater. 5, 229 (1993).
[CrossRef]

Dumont, M.

R. Loucif-Saibi, K. Nakatani, J. A. Delaire, M. Dumont, and Z. Sekkat, “Photoisomerization and second-harmonic generation in disperse red one-doped and -functionalized poly(methyl methacrylate) films,” Chem. Mater. 5, 229 (1993).
[CrossRef]

Z. Sekkat and M. Dumont, “Photoinduced orientation of azo dyes in polymeric films. Characterization of molecular angular mobility,” Synth. Met. 54, 373 (1993).
[CrossRef]

Z. Sekkat and M. Dumont, “Photoassisted poling of azo dye doped polymeric films at room temperature,” Appl. Phys. B 54, 486 (1992); “Poling of polymer films by photoisomerization of azo dye chromophores,” Mol. Cryst. Liq. Cryst. Sci. Tech. B 2, 359 (1992).
[CrossRef]

Ferm, P. M.

K. W. Beeson, P. M. Ferm, K. A. Horn, M. J. McFarland, A. Nahata, J. Shan, C. Wu, and J. T. Yardley, “Loss measurements in electro-optic polymer waveguides,” Proc. SPIE 1775, 133 (1992).
[CrossRef]

Fukuda, R.

T. Seki, M. Skuragi, Y. Kawanishi, Y. Suzuki, T. Tamaki, R. Fukuda, and K. Ichimura, “Command surfaces of Langmuir–Blodgett films. Photoregulation of liquid crystal alignment by molecularly tailored surface azobenzene layers,” Langmuir 9, 211 (1993).
[CrossRef]

Gadret, G.

P. A. Chollet, G. Gadret, F. Kajzar, and P. Raimond, “Electro-optic organic thin films in waveguided devices,” Proc. SPIE 1775, 121 (1992).
[CrossRef]

Garito, A. F.

S. J. Lalama and A. F. Garito, “Origin of the nonlinear second-order optical susceptibilities of organic systems,” Phys. Rev. A 20, 1179 (1979).
[CrossRef]

Horn, K. A.

K. W. Beeson, P. M. Ferm, K. A. Horn, M. J. McFarland, A. Nahata, J. Shan, C. Wu, and J. T. Yardley, “Loss measurements in electro-optic polymer waveguides,” Proc. SPIE 1775, 133 (1992).
[CrossRef]

Ichimura, K.

T. Seki, M. Skuragi, Y. Kawanishi, Y. Suzuki, T. Tamaki, R. Fukuda, and K. Ichimura, “Command surfaces of Langmuir–Blodgett films. Photoregulation of liquid crystal alignment by molecularly tailored surface azobenzene layers,” Langmuir 9, 211 (1993).
[CrossRef]

Idiart, E.

Jurich, M. C.

T. Verbiest, D. M. Burland, M. C. Jurich, V. Y. Lee, R. D. Miller, and W. Volksen, “Exceptionally thermally stable polyimides for second-order nonlinear optical applications,” Science 268, 1604 (1995).
[CrossRef] [PubMed]

R. D. Miller, D. M. Burland, M. C. Jurich, V. Y. Lee, C. R. Moylan, R. J. Tweig, J. Thackara, T. Verbiest, W. Volksen, and C. A. Walsh, “High temperature nonlinear polyimides for χ(2) applications,” in Polymers for Second-Order Nonlinear Optics, G. Lindsay and K. D. Singer, eds., ACS Symposium Series 601 (American Chemical Society, Washington, D. C., 1995), Chap. 10, pp. 130–146.
[CrossRef]

Kajzar, F.

F. Charra, F. Kajzar, J. M. Nunzi, P. Raimond, and E. Idiart, “Light-induced second harmonic generation in azo dye polymers,” Opt. Lett. 12, 941 (1993).
[CrossRef]

P. A. Chollet, G. Gadret, F. Kajzar, and P. Raimond, “Electro-optic organic thin films in waveguided devices,” Proc. SPIE 1775, 121 (1992).
[CrossRef]

Kang, C.-S.

Z. Sekkat, C.-S. Kang, E. F. Aust, G. Wegner, and W. Knoll, “Room-temperature photoinduced poling and thermal poling of a rigid main chain polymer with polar azo dyes in the side chain,” Chem. Mater. 7, 142 (1995).
[CrossRef]

C.-S. Kang, H.-J. Winkelhahn, M. Schultze, D. Neher, and G. Wegner, “Synthesis and properties of aromatic main chain polyesters having disperse-red-1 nonlinear optical chromophores in the side chain,” Chem. Mater. 6, 2159 (1994).
[CrossRef]

Kawanishi, Y.

T. Seki, M. Skuragi, Y. Kawanishi, Y. Suzuki, T. Tamaki, R. Fukuda, and K. Ichimura, “Command surfaces of Langmuir–Blodgett films. Photoregulation of liquid crystal alignment by molecularly tailored surface azobenzene layers,” Langmuir 9, 211 (1993).
[CrossRef]

King, L. A.

Knoll, W.

Z. Sekkat and W. Knoll, “Creation of second-order nonlinear optical effects by photoisomerization of polar azo dyes in polymeric films: theoretical study of steady-state and transient properties,” J. Opt. Soc. Am. B 12, 1855 (1995).
[CrossRef]

Z. Sekkat, C.-S. Kang, E. F. Aust, G. Wegner, and W. Knoll, “Room-temperature photoinduced poling and thermal poling of a rigid main chain polymer with polar azo dyes in the side chain,” Chem. Mater. 7, 142 (1995).
[CrossRef]

Z. Sekkat, M. Büchel, H. Orendi, H. Menzel, and W. Knoll, “Photoinduced alignment of azobenzene moities in the side chains of polyglutamate films,” Chem. Phys. Lett. 220, 497 (1994).
[CrossRef]

Z. Sekkat and W. Knoll, “Stationary state and dynamics of birefringence and nonlinear optical properties induced by electric field poling in polymeric films,” Ber. Bunsenges. Phys. Chem. 98, 1231 (1994).
[CrossRef]

M. Sawodny, A. Schmidt, M. Stamm, W. Knoll, C. Urban, and H. Ringsdorf, “Photoreactive Langmuir–Blodgett–Kuhn multilayer assemblies from functionalized liquid crystalline side chain polymers. I. Homopolymers containing azobenzene chromophores,” Polym. Adv. Technol. 2, 127 (1991).
[CrossRef]

Z. Sekkat, E. F. Aust, and W. Knoll, “Photoinduced poling of polar azo dyes in polymeric films. Toward second-order applications,” in Polymers for Second-Order Nonlinear Optics, G. Lindsay and K. D. Singer, eds., ACS Symposium Series 601 (American Chemical Society, Washington, D. C., 1995), Chap. 19, pp. 255–274.
[CrossRef]

Kuzyk, M. G.

Lalama, S. J.

S. J. Lalama and A. F. Garito, “Origin of the nonlinear second-order optical susceptibilities of organic systems,” Phys. Rev. A 20, 1179 (1979).
[CrossRef]

Lee, V. Y.

T. Verbiest, D. M. Burland, M. C. Jurich, V. Y. Lee, R. D. Miller, and W. Volksen, “Exceptionally thermally stable polyimides for second-order nonlinear optical applications,” Science 268, 1604 (1995).
[CrossRef] [PubMed]

R. D. Miller, D. M. Burland, M. C. Jurich, V. Y. Lee, C. R. Moylan, R. J. Tweig, J. Thackara, T. Verbiest, W. Volksen, and C. A. Walsh, “High temperature nonlinear polyimides for χ(2) applications,” in Polymers for Second-Order Nonlinear Optics, G. Lindsay and K. D. Singer, eds., ACS Symposium Series 601 (American Chemical Society, Washington, D. C., 1995), Chap. 10, pp. 130–146.
[CrossRef]

Loucif-Saibi, R.

R. Loucif-Saibi, K. Nakatani, J. A. Delaire, M. Dumont, and Z. Sekkat, “Photoisomerization and second-harmonic generation in disperse red one-doped and -functionalized poly(methyl methacrylate) films,” Chem. Mater. 5, 229 (1993).
[CrossRef]

McFarland, M. J.

K. W. Beeson, P. M. Ferm, K. A. Horn, M. J. McFarland, A. Nahata, J. Shan, C. Wu, and J. T. Yardley, “Loss measurements in electro-optic polymer waveguides,” Proc. SPIE 1775, 133 (1992).
[CrossRef]

Menzel, H.

Z. Sekkat, M. Büchel, H. Orendi, H. Menzel, and W. Knoll, “Photoinduced alignment of azobenzene moities in the side chains of polyglutamate films,” Chem. Phys. Lett. 220, 497 (1994).
[CrossRef]

Miller, R. D.

T. Verbiest, D. M. Burland, M. C. Jurich, V. Y. Lee, R. D. Miller, and W. Volksen, “Exceptionally thermally stable polyimides for second-order nonlinear optical applications,” Science 268, 1604 (1995).
[CrossRef] [PubMed]

D. M. Burland, R. D. Miller, and C. A. Walsh, “Second-order nonlinearity in poled-polymer systems,” Chem. Rev. 94, 31 (1994).
[CrossRef]

R. D. Miller, D. M. Burland, M. C. Jurich, V. Y. Lee, C. R. Moylan, R. J. Tweig, J. Thackara, T. Verbiest, W. Volksen, and C. A. Walsh, “High temperature nonlinear polyimides for χ(2) applications,” in Polymers for Second-Order Nonlinear Optics, G. Lindsay and K. D. Singer, eds., ACS Symposium Series 601 (American Chemical Society, Washington, D. C., 1995), Chap. 10, pp. 130–146.
[CrossRef]

Moylan, C. R.

R. D. Miller, D. M. Burland, M. C. Jurich, V. Y. Lee, C. R. Moylan, R. J. Tweig, J. Thackara, T. Verbiest, W. Volksen, and C. A. Walsh, “High temperature nonlinear polyimides for χ(2) applications,” in Polymers for Second-Order Nonlinear Optics, G. Lindsay and K. D. Singer, eds., ACS Symposium Series 601 (American Chemical Society, Washington, D. C., 1995), Chap. 10, pp. 130–146.
[CrossRef]

Nahata, A.

K. W. Beeson, P. M. Ferm, K. A. Horn, M. J. McFarland, A. Nahata, J. Shan, C. Wu, and J. T. Yardley, “Loss measurements in electro-optic polymer waveguides,” Proc. SPIE 1775, 133 (1992).
[CrossRef]

Nakatani, K.

R. Loucif-Saibi, K. Nakatani, J. A. Delaire, M. Dumont, and Z. Sekkat, “Photoisomerization and second-harmonic generation in disperse red one-doped and -functionalized poly(methyl methacrylate) films,” Chem. Mater. 5, 229 (1993).
[CrossRef]

Neher, D.

C.-S. Kang, H.-J. Winkelhahn, M. Schultze, D. Neher, and G. Wegner, “Synthesis and properties of aromatic main chain polyesters having disperse-red-1 nonlinear optical chromophores in the side chain,” Chem. Mater. 6, 2159 (1994).
[CrossRef]

Nikolova, L.

Nunzi, J. M.

Orendi, H.

Z. Sekkat, M. Büchel, H. Orendi, H. Menzel, and W. Knoll, “Photoinduced alignment of azobenzene moities in the side chains of polyglutamate films,” Chem. Phys. Lett. 220, 497 (1994).
[CrossRef]

Raimond, P.

F. Charra, F. Kajzar, J. M. Nunzi, P. Raimond, and E. Idiart, “Light-induced second harmonic generation in azo dye polymers,” Opt. Lett. 12, 941 (1993).
[CrossRef]

P. A. Chollet, G. Gadret, F. Kajzar, and P. Raimond, “Electro-optic organic thin films in waveguided devices,” Proc. SPIE 1775, 121 (1992).
[CrossRef]

Rau, H.

H. Rau, “Photoisomerization of azobenzenes,” in Photochemistry and Photophysics, F. J. Rabeck, ed. (CRC, Boca Raton, Fla., 1990), Vol. 2, Chap. 4, pp. 119–141. This paper contains a large bibliography on photoisomerization.

Ringsdorf, H.

M. Sawodny, A. Schmidt, M. Stamm, W. Knoll, C. Urban, and H. Ringsdorf, “Photoreactive Langmuir–Blodgett–Kuhn multilayer assemblies from functionalized liquid crystalline side chain polymers. I. Homopolymers containing azobenzene chromophores,” Polym. Adv. Technol. 2, 127 (1991).
[CrossRef]

Robertson, R. E.

R. E. Robertson, “Effect of free volume fluctuations on polymer relaxation in the glassy state,” J. Polym. Sci. Polym. Symp. 1, 173 (1978).

Sawodny, M.

M. Sawodny, A. Schmidt, M. Stamm, W. Knoll, C. Urban, and H. Ringsdorf, “Photoreactive Langmuir–Blodgett–Kuhn multilayer assemblies from functionalized liquid crystalline side chain polymers. I. Homopolymers containing azobenzene chromophores,” Polym. Adv. Technol. 2, 127 (1991).
[CrossRef]

Schmidt, A.

M. Sawodny, A. Schmidt, M. Stamm, W. Knoll, C. Urban, and H. Ringsdorf, “Photoreactive Langmuir–Blodgett–Kuhn multilayer assemblies from functionalized liquid crystalline side chain polymers. I. Homopolymers containing azobenzene chromophores,” Polym. Adv. Technol. 2, 127 (1991).
[CrossRef]

Schultze, M.

C.-S. Kang, H.-J. Winkelhahn, M. Schultze, D. Neher, and G. Wegner, “Synthesis and properties of aromatic main chain polyesters having disperse-red-1 nonlinear optical chromophores in the side chain,” Chem. Mater. 6, 2159 (1994).
[CrossRef]

Seki, T.

T. Seki, M. Skuragi, Y. Kawanishi, Y. Suzuki, T. Tamaki, R. Fukuda, and K. Ichimura, “Command surfaces of Langmuir–Blodgett films. Photoregulation of liquid crystal alignment by molecularly tailored surface azobenzene layers,” Langmuir 9, 211 (1993).
[CrossRef]

Sekkat, Z.

Z. Sekkat, C.-S. Kang, E. F. Aust, G. Wegner, and W. Knoll, “Room-temperature photoinduced poling and thermal poling of a rigid main chain polymer with polar azo dyes in the side chain,” Chem. Mater. 7, 142 (1995).
[CrossRef]

Z. Sekkat and W. Knoll, “Creation of second-order nonlinear optical effects by photoisomerization of polar azo dyes in polymeric films: theoretical study of steady-state and transient properties,” J. Opt. Soc. Am. B 12, 1855 (1995).
[CrossRef]

Z. Sekkat, M. Büchel, H. Orendi, H. Menzel, and W. Knoll, “Photoinduced alignment of azobenzene moities in the side chains of polyglutamate films,” Chem. Phys. Lett. 220, 497 (1994).
[CrossRef]

Z. Sekkat and W. Knoll, “Stationary state and dynamics of birefringence and nonlinear optical properties induced by electric field poling in polymeric films,” Ber. Bunsenges. Phys. Chem. 98, 1231 (1994).
[CrossRef]

R. Loucif-Saibi, K. Nakatani, J. A. Delaire, M. Dumont, and Z. Sekkat, “Photoisomerization and second-harmonic generation in disperse red one-doped and -functionalized poly(methyl methacrylate) films,” Chem. Mater. 5, 229 (1993).
[CrossRef]

Z. Sekkat and M. Dumont, “Photoinduced orientation of azo dyes in polymeric films. Characterization of molecular angular mobility,” Synth. Met. 54, 373 (1993).
[CrossRef]

Z. Sekkat and M. Dumont, “Photoassisted poling of azo dye doped polymeric films at room temperature,” Appl. Phys. B 54, 486 (1992); “Poling of polymer films by photoisomerization of azo dye chromophores,” Mol. Cryst. Liq. Cryst. Sci. Tech. B 2, 359 (1992).
[CrossRef]

Z. Sekkat, “Création d’anisotropie et d’effets non linéaires du second ordre par photoisomérisation de dérivés de l’azobenzène dans des films de polymères,” Ph.D. dissertation (Paris-Sud University, Paris, 1992).

Z. Sekkat, E. F. Aust, and W. Knoll, “Photoinduced poling of polar azo dyes in polymeric films. Toward second-order applications,” in Polymers for Second-Order Nonlinear Optics, G. Lindsay and K. D. Singer, eds., ACS Symposium Series 601 (American Chemical Society, Washington, D. C., 1995), Chap. 19, pp. 255–274.
[CrossRef]

Shan, J.

K. W. Beeson, P. M. Ferm, K. A. Horn, M. J. McFarland, A. Nahata, J. Shan, C. Wu, and J. T. Yardley, “Loss measurements in electro-optic polymer waveguides,” Proc. SPIE 1775, 133 (1992).
[CrossRef]

Shen, M.

Y. Shi, W. H. Steier, L. Yu, M. Shen, and L. R. Dalton, “Large photoinduced birefringence in an optically nonlinear polyester polymer,” Appl. Phys. Lett. 59, 2935 (1991).
[CrossRef]

Shi, Y.

Y. Shi, W. H. Steier, L. Yu, M. Shen, and L. R. Dalton, “Large photoinduced birefringence in an optically nonlinear polyester polymer,” Appl. Phys. Lett. 59, 2935 (1991).
[CrossRef]

Singer, K. D.

Skuragi, M.

T. Seki, M. Skuragi, Y. Kawanishi, Y. Suzuki, T. Tamaki, R. Fukuda, and K. Ichimura, “Command surfaces of Langmuir–Blodgett films. Photoregulation of liquid crystal alignment by molecularly tailored surface azobenzene layers,” Langmuir 9, 211 (1993).
[CrossRef]

Soane, D.

S. Barry and D. Soane, “Poling of polymeric thin films at ambient temperatures for second-harmonic generation,” Appl. Phys. Lett. 58, 1134 (1991).
[CrossRef]

Stamm, M.

M. Sawodny, A. Schmidt, M. Stamm, W. Knoll, C. Urban, and H. Ringsdorf, “Photoreactive Langmuir–Blodgett–Kuhn multilayer assemblies from functionalized liquid crystalline side chain polymers. I. Homopolymers containing azobenzene chromophores,” Polym. Adv. Technol. 2, 127 (1991).
[CrossRef]

Steier, W. H.

Y. Shi, W. H. Steier, L. Yu, M. Shen, and L. R. Dalton, “Large photoinduced birefringence in an optically nonlinear polyester polymer,” Appl. Phys. Lett. 59, 2935 (1991).
[CrossRef]

Suzuki, Y.

T. Seki, M. Skuragi, Y. Kawanishi, Y. Suzuki, T. Tamaki, R. Fukuda, and K. Ichimura, “Command surfaces of Langmuir–Blodgett films. Photoregulation of liquid crystal alignment by molecularly tailored surface azobenzene layers,” Langmuir 9, 211 (1993).
[CrossRef]

Tamaki, T.

T. Seki, M. Skuragi, Y. Kawanishi, Y. Suzuki, T. Tamaki, R. Fukuda, and K. Ichimura, “Command surfaces of Langmuir–Blodgett films. Photoregulation of liquid crystal alignment by molecularly tailored surface azobenzene layers,” Langmuir 9, 211 (1993).
[CrossRef]

Thackara, J.

R. D. Miller, D. M. Burland, M. C. Jurich, V. Y. Lee, C. R. Moylan, R. J. Tweig, J. Thackara, T. Verbiest, W. Volksen, and C. A. Walsh, “High temperature nonlinear polyimides for χ(2) applications,” in Polymers for Second-Order Nonlinear Optics, G. Lindsay and K. D. Singer, eds., ACS Symposium Series 601 (American Chemical Society, Washington, D. C., 1995), Chap. 10, pp. 130–146.
[CrossRef]

Todorov, T.

Tomova, N.

Tweig, R. J.

R. D. Miller, D. M. Burland, M. C. Jurich, V. Y. Lee, C. R. Moylan, R. J. Tweig, J. Thackara, T. Verbiest, W. Volksen, and C. A. Walsh, “High temperature nonlinear polyimides for χ(2) applications,” in Polymers for Second-Order Nonlinear Optics, G. Lindsay and K. D. Singer, eds., ACS Symposium Series 601 (American Chemical Society, Washington, D. C., 1995), Chap. 10, pp. 130–146.
[CrossRef]

Urban, C.

M. Sawodny, A. Schmidt, M. Stamm, W. Knoll, C. Urban, and H. Ringsdorf, “Photoreactive Langmuir–Blodgett–Kuhn multilayer assemblies from functionalized liquid crystalline side chain polymers. I. Homopolymers containing azobenzene chromophores,” Polym. Adv. Technol. 2, 127 (1991).
[CrossRef]

Verbiest, T.

T. Verbiest, D. M. Burland, M. C. Jurich, V. Y. Lee, R. D. Miller, and W. Volksen, “Exceptionally thermally stable polyimides for second-order nonlinear optical applications,” Science 268, 1604 (1995).
[CrossRef] [PubMed]

R. D. Miller, D. M. Burland, M. C. Jurich, V. Y. Lee, C. R. Moylan, R. J. Tweig, J. Thackara, T. Verbiest, W. Volksen, and C. A. Walsh, “High temperature nonlinear polyimides for χ(2) applications,” in Polymers for Second-Order Nonlinear Optics, G. Lindsay and K. D. Singer, eds., ACS Symposium Series 601 (American Chemical Society, Washington, D. C., 1995), Chap. 10, pp. 130–146.
[CrossRef]

Volksen, W.

T. Verbiest, D. M. Burland, M. C. Jurich, V. Y. Lee, R. D. Miller, and W. Volksen, “Exceptionally thermally stable polyimides for second-order nonlinear optical applications,” Science 268, 1604 (1995).
[CrossRef] [PubMed]

R. D. Miller, D. M. Burland, M. C. Jurich, V. Y. Lee, C. R. Moylan, R. J. Tweig, J. Thackara, T. Verbiest, W. Volksen, and C. A. Walsh, “High temperature nonlinear polyimides for χ(2) applications,” in Polymers for Second-Order Nonlinear Optics, G. Lindsay and K. D. Singer, eds., ACS Symposium Series 601 (American Chemical Society, Washington, D. C., 1995), Chap. 10, pp. 130–146.
[CrossRef]

Walsh, C. A.

D. M. Burland, R. D. Miller, and C. A. Walsh, “Second-order nonlinearity in poled-polymer systems,” Chem. Rev. 94, 31 (1994).
[CrossRef]

R. D. Miller, D. M. Burland, M. C. Jurich, V. Y. Lee, C. R. Moylan, R. J. Tweig, J. Thackara, T. Verbiest, W. Volksen, and C. A. Walsh, “High temperature nonlinear polyimides for χ(2) applications,” in Polymers for Second-Order Nonlinear Optics, G. Lindsay and K. D. Singer, eds., ACS Symposium Series 601 (American Chemical Society, Washington, D. C., 1995), Chap. 10, pp. 130–146.
[CrossRef]

Wegner, G.

Z. Sekkat, C.-S. Kang, E. F. Aust, G. Wegner, and W. Knoll, “Room-temperature photoinduced poling and thermal poling of a rigid main chain polymer with polar azo dyes in the side chain,” Chem. Mater. 7, 142 (1995).
[CrossRef]

C.-S. Kang, H.-J. Winkelhahn, M. Schultze, D. Neher, and G. Wegner, “Synthesis and properties of aromatic main chain polyesters having disperse-red-1 nonlinear optical chromophores in the side chain,” Chem. Mater. 6, 2159 (1994).
[CrossRef]

Winkelhahn, H.-J.

C.-S. Kang, H.-J. Winkelhahn, M. Schultze, D. Neher, and G. Wegner, “Synthesis and properties of aromatic main chain polyesters having disperse-red-1 nonlinear optical chromophores in the side chain,” Chem. Mater. 6, 2159 (1994).
[CrossRef]

Wu, C.

K. W. Beeson, P. M. Ferm, K. A. Horn, M. J. McFarland, A. Nahata, J. Shan, C. Wu, and J. T. Yardley, “Loss measurements in electro-optic polymer waveguides,” Proc. SPIE 1775, 133 (1992).
[CrossRef]

Yardley, J. T.

K. W. Beeson, P. M. Ferm, K. A. Horn, M. J. McFarland, A. Nahata, J. Shan, C. Wu, and J. T. Yardley, “Loss measurements in electro-optic polymer waveguides,” Proc. SPIE 1775, 133 (1992).
[CrossRef]

Yu, L.

Y. Shi, W. H. Steier, L. Yu, M. Shen, and L. R. Dalton, “Large photoinduced birefringence in an optically nonlinear polyester polymer,” Appl. Phys. Lett. 59, 2935 (1991).
[CrossRef]

Zahn, H. E.

Appl. Opt. (1)

Appl. Phys. B (1)

Z. Sekkat and M. Dumont, “Photoassisted poling of azo dye doped polymeric films at room temperature,” Appl. Phys. B 54, 486 (1992); “Poling of polymer films by photoisomerization of azo dye chromophores,” Mol. Cryst. Liq. Cryst. Sci. Tech. B 2, 359 (1992).
[CrossRef]

Appl. Phys. Lett. (2)

Y. Shi, W. H. Steier, L. Yu, M. Shen, and L. R. Dalton, “Large photoinduced birefringence in an optically nonlinear polyester polymer,” Appl. Phys. Lett. 59, 2935 (1991).
[CrossRef]

S. Barry and D. Soane, “Poling of polymeric thin films at ambient temperatures for second-harmonic generation,” Appl. Phys. Lett. 58, 1134 (1991).
[CrossRef]

Ber. Bunsenges. Phys. Chem. (1)

Z. Sekkat and W. Knoll, “Stationary state and dynamics of birefringence and nonlinear optical properties induced by electric field poling in polymeric films,” Ber. Bunsenges. Phys. Chem. 98, 1231 (1994).
[CrossRef]

Chem. Mater. (3)

R. Loucif-Saibi, K. Nakatani, J. A. Delaire, M. Dumont, and Z. Sekkat, “Photoisomerization and second-harmonic generation in disperse red one-doped and -functionalized poly(methyl methacrylate) films,” Chem. Mater. 5, 229 (1993).
[CrossRef]

C.-S. Kang, H.-J. Winkelhahn, M. Schultze, D. Neher, and G. Wegner, “Synthesis and properties of aromatic main chain polyesters having disperse-red-1 nonlinear optical chromophores in the side chain,” Chem. Mater. 6, 2159 (1994).
[CrossRef]

Z. Sekkat, C.-S. Kang, E. F. Aust, G. Wegner, and W. Knoll, “Room-temperature photoinduced poling and thermal poling of a rigid main chain polymer with polar azo dyes in the side chain,” Chem. Mater. 7, 142 (1995).
[CrossRef]

Chem. Phys. Lett. (1)

Z. Sekkat, M. Büchel, H. Orendi, H. Menzel, and W. Knoll, “Photoinduced alignment of azobenzene moities in the side chains of polyglutamate films,” Chem. Phys. Lett. 220, 497 (1994).
[CrossRef]

Chem. Rev. (1)

D. M. Burland, R. D. Miller, and C. A. Walsh, “Second-order nonlinearity in poled-polymer systems,” Chem. Rev. 94, 31 (1994).
[CrossRef]

J. Opt. Soc. Am. B (2)

J. Polym. Sci. Polym. Symp. (1)

R. E. Robertson, “Effect of free volume fluctuations on polymer relaxation in the glassy state,” J. Polym. Sci. Polym. Symp. 1, 173 (1978).

Langmuir (1)

T. Seki, M. Skuragi, Y. Kawanishi, Y. Suzuki, T. Tamaki, R. Fukuda, and K. Ichimura, “Command surfaces of Langmuir–Blodgett films. Photoregulation of liquid crystal alignment by molecularly tailored surface azobenzene layers,” Langmuir 9, 211 (1993).
[CrossRef]

Opt. Lett. (1)

Phys. Rev. A (1)

S. J. Lalama and A. F. Garito, “Origin of the nonlinear second-order optical susceptibilities of organic systems,” Phys. Rev. A 20, 1179 (1979).
[CrossRef]

Polym. Adv. Technol. (1)

M. Sawodny, A. Schmidt, M. Stamm, W. Knoll, C. Urban, and H. Ringsdorf, “Photoreactive Langmuir–Blodgett–Kuhn multilayer assemblies from functionalized liquid crystalline side chain polymers. I. Homopolymers containing azobenzene chromophores,” Polym. Adv. Technol. 2, 127 (1991).
[CrossRef]

Proc. SPIE (2)

K. W. Beeson, P. M. Ferm, K. A. Horn, M. J. McFarland, A. Nahata, J. Shan, C. Wu, and J. T. Yardley, “Loss measurements in electro-optic polymer waveguides,” Proc. SPIE 1775, 133 (1992).
[CrossRef]

P. A. Chollet, G. Gadret, F. Kajzar, and P. Raimond, “Electro-optic organic thin films in waveguided devices,” Proc. SPIE 1775, 121 (1992).
[CrossRef]

Science (1)

T. Verbiest, D. M. Burland, M. C. Jurich, V. Y. Lee, R. D. Miller, and W. Volksen, “Exceptionally thermally stable polyimides for second-order nonlinear optical applications,” Science 268, 1604 (1995).
[CrossRef] [PubMed]

Synth. Met. (1)

Z. Sekkat and M. Dumont, “Photoinduced orientation of azo dyes in polymeric films. Characterization of molecular angular mobility,” Synth. Met. 54, 373 (1993).
[CrossRef]

Other (4)

Z. Sekkat, “Création d’anisotropie et d’effets non linéaires du second ordre par photoisomérisation de dérivés de l’azobenzène dans des films de polymères,” Ph.D. dissertation (Paris-Sud University, Paris, 1992).

R. D. Miller, D. M. Burland, M. C. Jurich, V. Y. Lee, C. R. Moylan, R. J. Tweig, J. Thackara, T. Verbiest, W. Volksen, and C. A. Walsh, “High temperature nonlinear polyimides for χ(2) applications,” in Polymers for Second-Order Nonlinear Optics, G. Lindsay and K. D. Singer, eds., ACS Symposium Series 601 (American Chemical Society, Washington, D. C., 1995), Chap. 10, pp. 130–146.
[CrossRef]

Z. Sekkat, E. F. Aust, and W. Knoll, “Photoinduced poling of polar azo dyes in polymeric films. Toward second-order applications,” in Polymers for Second-Order Nonlinear Optics, G. Lindsay and K. D. Singer, eds., ACS Symposium Series 601 (American Chemical Society, Washington, D. C., 1995), Chap. 19, pp. 255–274.
[CrossRef]

H. Rau, “Photoisomerization of azobenzenes,” in Photochemistry and Photophysics, F. J. Rabeck, ed. (CRC, Boca Raton, Fla., 1990), Vol. 2, Chap. 4, pp. 119–141. This paper contains a large bibliography on photoisomerization.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1
Fig. 1

Chemical structure of the DR1-polyimide.

Fig. 2
Fig. 2

Setup for the excitation of guided waves in thin films. Modes are excited at the (external) angle θ.

Fig. 3
Fig. 3

Waveguide spectroscopy experimental arrangement in the ATR–Kretschmann setup. The probe is a 632.8-nm He–Ne laser beam, and the reflectivity of the sample is recorded as a function of the incidence angle. The irradiating pump (green light from a frequency-doubled 532-nm diode laser) beam direction of propagation is perpendicular to the plane of the sample.

Fig. 4
Fig. 4

Evolution of the angular position of a TM mode at a large incidence angle in the DR1–polyimide polymer under linearly polarized green-light irradiation. This curve represents the evolution of the index of refraction in the direction perpendicular to the polarization of the irradiating beam, e.g., Δn. The moments at which the irradiating light are turned on and off are indicated by arrows.

Fig. 5
Fig. 5

(a) UV–visible absorption spectra of the DR1–polyimide layer before (1) and after 5 min (2, 3) of linearly polarized green-light (532-nm) irradiation. The probe light was also linearly polarized, and spectra were obtained for both parallel, Abs (3), and perpendicular, Abs (2), orientations. Identical spectra were obtained for both Abs and Abs prior to UV irradiation. For reasons of clarity, therefore, only Abs (1), is shown. (b) Dependence of the absorbance of linearly polarized probe light at 488 nm (filled circles) on the angle Ψ between the probe and the irradiation lights’ polarization. The theoretical fits are a law in cos2 Ψ, and are indicated by the solid curve.

Fig. 6
Fig. 6

(a) transcis isomerization of azobenzenes. (b) Simplified model of the molecular states. Only two excited states are represented, but each may represent a set of actual levels17: We assume only that the lifetime of all these levels is short. σt and σc are the cross sections for absorption of one photon by a molecule in the trans or the cis state, respectively. γ0 is the thermal relaxation rate. ϕct and ϕtc are the quantum yields of photoisomerization; they represent the probability per absorbed photon of the photochemical conversion.

Fig. 7
Fig. 7

(a) UV–visible absorption spectra of the DR1–polyimide layer recorded immediately after 2.5 min (1, 2) of linearly polarized green-light (532-nm) irradiation. The sample was then kept in a dark environment for 15 h before rerecording of the absorption spectra (3, 4). The probe light was also linearly polarized, and spectra were obtained for both parallel, Abs (1, 3), and perpendicular, Abs (2, 4), orientations. Before the irradiation the sample was in-plane isotropic (spectra not shown). (b) Same as (a), except that the polarization of the irradiating light has been rotated through 90 degrees. Abs and Abs correspond to the same orientations as in (a), e.g., parallel and perpendicular to the vertical direction. Spectra 1 and 2 correspond to the sample, with initial dichroism induced by vertical irradiating-light polarization, and spectra 3 and 4 correspond to the sample after 3 min of horizontal irradiating-light polarization.

Fig. 8
Fig. 8

(a) Evolution of the Pockels coefficient of a DR1–polyimide film from ATR electro-optic modulation. The sudden jump up and down of the signal when the dc field E0 is switched on and off originates from the third-order nonlinearity χ(3) [electric-field-induced Pockels effect (EFIPE)]. The moments at which the dc field and the irradiating light are turned on and off are indicated by arrows. When the irradiating light is turned on, r33 increases as a consequence of the polar orientation of the NLO chromophores at least 190 °C below the Tg of this DR1-polyimide polymer. (b) Circularly polarized light irradiation without the dc field destroys a previously induced polar order; here r33 is normalized by its value prior to irradiation.

Fig. 9
Fig. 9

(a) Onset of the usual thermal relaxation that occurs without the need for photoisomerization (I=0 or τp=) if the mobility of the trans molecules is appreciable (τtd = 1). Onset of photoinduced depoling when the pumping light beam is turned on (τp = 0.5) with a greatly reduced trans mobility (τtd = 100), (b) with (α=1), and (c) without (α=0) cistrans back photoisomerization. The inset shows the numerical values of the physical parameters that appear in the following order: (τp, τcd, τtd, Ptc, Pct, Q, erc, ert, α). These parameters are defined in the text. The time t and the time constants are normalized by the cis lifetime; T1 and C1 (solid curves) characterize the polar order of the trans and the cis molecular distributions, respectively. χ333(2) (dashed curve) is the normalized component along the 3 axis of the second-order susceptibility of the whole molecular angular distribution.

Fig. 10
Fig. 10

Effect of the cis diffusion time (τcd) and the pump light intensity, which is correlated to the pumping time (τp), on the onset of photoinduced molecular depoling. (a) (τcd = 0.2, τp = 0.5); (b) (τcd = 0.2, τp = 2). The explanation of the insets is given in the caption to Fig. 9.

Fig. 11
Fig. 11

Onset of photoinduced depoling without retention of molecular orientation memory during the transcis direct photoisomerization, for two different geometries of light polarization correlated with the molecular anisotropy: (a) (Ptc = 0, ert,c = 1), and (b) (Ptc = 0, ert,c = -0.5). The explanation of the insets is given in the caption to Fig. 9.

Fig. 12
Fig. 12

Evolution of the polar order when the irradiating-light beam is switched off at the steady state of the PID process, with and without retention of molecular orientation memory during the cistrans thermal isomerization: (a) (Q = 0) and (b) (Q = 0.8), respectively. The numbers in the inset are numerical values of physical parameters that appear in the following order: (τcd, τtd, Q, g). T1, C1, and χ333(2) are as explained for Fig. 9.

Equations (10)

Equations on this page are rendered with MathJax. Learn more.

2nzΔnz(Ω)=2χ333(2)(E0+E1 cos Ωt)+3χ3333(3)(E0+E1 cos Ωt)2=(2χ333(2)+6χ3333(3)E0)E1 cos Ωt+(3/2)χ3333(3)E12 cos 2 Ωt+unmodulated terms.
nt=12π n=0 2n+12TnPn(cos θ), nc=12π k=0 2k+12CkPk(cos θ).
Tn=0πnt(θ)Pn(cos θ)sin θ dθ, Cn=0πnc(θ)Pn(cos θ)sin θ dθ,
dT1dt=-aT1+bC1, dC1dt=cT1-dC1,
a=1/τtd+(1+4ert/5)σtϕtc/τp, b=Q/τc+(1+4erc/5)Pctσcϕct/τp, c=(1+4ert/5)Ptcσtϕtc/τp, d=1/τcd+1/τc+(1+4erc/5)σcϕct/τp,
T1(t)=T1(0)δ2δ2-δ1 exp(-λ1t)-δ1δ2-δ1×exp(-λ2t), C1(t)=δ2δ1δ2-δ1T1(0)[exp(-λ1t)-exp(-λ2t)],
λ1,2=(a+dΔ)/2, Δ=(a+d)2-4(ad-bc), δ1,2=(a-λ1,2)/c.
χ333(2)(t)=3χ113(2)(t)=35[βzzzt,*T1(t)+βzzzc,*C1(t)],
C1=C10 exp(-γ1t), T1=T10 exp(-γ2t)+γ0QC10γ2-γ1[exp(-γ1t)-exp(-γ2t)],
γ1=1/τc+1/τcd, γ2=1/τtd.

Metrics