Abstract

We propose and investigate theoretically a novel scheme for transient slowing and cooling of two-level quantum systems with narrow transition linewidths by a sequence of counterpropagating, short, linearly polarized laser pulses with special frequency chirping. Both internal degrees of freedom and the motion of the center of mass of quantum systems are considered quantum mechanically. Interaction with a large number of laser pulses during the decay time permits a drastic decrease in the cooling time of such systems.

© 1996 Optical Society of America

PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription