Abstract

Sub-Doppler lines of Cs2 were investigated with a Nd:YAG laser. Modulation transfer spectroscopy and FM spectroscopy were applied to yield error signals that were used for absolute stabilization of the laser frequency. The frequency stability was characterized with an I2-locked dual-wavelength Nd:YAG frequency reference. The root Allan variance of the beat frequency reached a minimum of 1.3 × 10−11 (beat frequency fluctuations of 3.65 kHz) for a measurement time of 20 s. Absolute frequencies of several Cs2 lines were determined with an accuracy of ∼1 MHz. Further improvement in sensitivity was demonstrated by insertion of the absorption cell into a Fabry–Perot cavity. While the laser was locked to the cavity, the cavity length was modulated and the transmitted probe beam was detected at the third harmonic of the modulation frequency.

© 1996 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Arie and R. L. Byer, “Laser heterodyne spectroscopy of 127I2 hyperfine structure near 532 nm,” J. Opt. Soc. Am. B 10, 1990–1997 (1993).
    [Crossref]
  2. M. L. Eickhoff and J. L. Hall, “New optical frequency standard at 532 nm,” IEEE Trans. Instrum. Meas. 44, 155–158 (1995).
    [Crossref]
  3. R. Heilmann and J. Kuschel, “Absolute frequency locking of diode-pumped Nd:YAG laser for application in free space optical communication,” Electron. Lett. 29, 810–811 (1993).
    [Crossref]
  4. R. D. Reasenberg, R. W. Babcock, J. F. Chandler, M. V. Gorenstein, J. P. Huchra, M. R. Pearlman, P. Bender, A. Buffington, B. Carney, J. A. Hughes, K. J. Johnson, B. F. Jones, and L. E. Matson, “Microarcsecond optical astrometry: an instrument and its astrophysical applications,” Astron. J. 96, 1731–1745 (1988).
    [Crossref]
  5. O. A. Orlov and V. I. Ustyugov, “Molecular cesium frequency reference for frequency stabilization of a 1.06 μ m Nd:YAG laser,” Sov. Tech. Phys. Lett. 12, 120–121 (1986).
  6. P. Fritschel and R. Weiss, “Frequency match of the Nd:YAG laser at 1.064 m with a line in CO2,” Appl. Opt. 31, 1910–1912 (1992).
    [Crossref] [PubMed]
  7. K. Nakagawa, T. Katsuda, A. S. Shelkovnikov, M. de Labachelerie, and M. Ohtsu, “Highly sensitive detection of molecular absorption using a high finesse cavity,” Opt. Commun. 107, 369–372 (1994).
    [Crossref]
  8. P. Jungner, S. Swartz, M. Eickhoff, J. Ye, and J. L. Hall, “Measurement of the absolute frequency of molecular Iodine transitions near 532 nm,” IEEE Trans. Instrum. Meas. 44, 151–154 (1995).
    [Crossref]
  9. A. Arie, M. L. Bortz, M. M. Fejer, and R. L. Byer, “Iodine spectroscopy and absolute frequency stabilization with the second harmonic of the 1319-nm Nd:YAG laser,” Opt. Lett. 18, 1757–1759 (1993).
    [Crossref] [PubMed]
  10. R. P. Benedict, D. L. Drummond, and L. A. Schlie, “Absorption spectra of the Cs2 molecule,” J. Chem. Phys. 66, 4600–4607 (1977).
    [Crossref]
  11. A. A. Mak, S. G. Muravitsky, O. A. Orlov, and V. I. Ustyugov, “New laser for interferometry with long-term frequency stabilization at 1.06 μ m onto molecular cesium standard,” in Interferometry ’89, Z. Jaroszewicz and M. Pluta, eds., Proc. SPIE1121, 478–484 (1989).
    [Crossref]
  12. K. Wallmeroth and R. Letterer, “Cesium frequency standard for lasers at λ = 1.06 μ m,” Opt. Lett. 15, 812–813 (1990).
    [Crossref] [PubMed]
  13. A. Arie, P. C. Pastor, F. S. Pavone, and M. Inguscio, “Diode laser sub-Doppler spectroscopy of 133Cs2 around the 1083 nm 4He transitions,” Opt. Commun. 117, 78–82 (1995).
    [Crossref]
  14. G. C. Bjorklund, “Frequency-modulation spectroscopy: a new method for measuring weak absorptions and dispersions,” Opt. Lett. 5, 15–17 (1980); J. L. Hall, L. Hollberg, T. Baer, and H. G. Robinson, “Optical heterodyne saturation spectroscopy,” Appl. Phys. Lett. 39, 680–682 (1981).
    [Crossref] [PubMed]
  15. M. Ducloy and D. Bloch, “Theory of degenerate four-wave mixing in resonant Doppler-broadened media. II. Doppler-free heterodyne spectroscopy via collinear four-wave mixing in two- and three-level systems,” J. Phys. 43, 57–65 (1982); R. K. Raj, D. Bloch, J. J. Snyder, G. Camy, and M. Ducloy, “High-frequency optically heterodyned saturation spectroscopy via resonant degenerate four-wave mixing,” Phys. Rev. Lett. 44, 1251–1254 (1980); J. H. Shirley, “Modulation transfer processes in optical heterodyne saturation spectroscopy,” Opt. Lett. 7, 537–539 (1982).
    [Crossref] [PubMed]
  16. A. Arie and E. Inbar, “Laser spectroscopy of molecular cesium near 1064 nm enhanced by a Fabry–Perot cavity,” Opt. Lett. 20, 88–90 (1995).
    [Crossref] [PubMed]
  17. Lightwave Electronics, San Antonio Road, Mountain View, Calif. 94043.
  18. Optics For Research, Caldwell, N.J. 07006.
  19. J. J. Snyder, R. K. Raj, D. Block, and M. Ducloy, “High-sensitivity nonlinear spectroscopy using a frequency-offset pump,” Opt. Lett. 5, 163–165 (1980).
    [Crossref] [PubMed]
  20. Burleigh Instruments, Inc., Burleigh Park, Fishers, N.Y. 14453.
  21. E. W. Washburn, ed., International Critical Tables of Numerical Data, Physics, Chemistry and Technology (McGraw-Hill, New York, 1928).
  22. Stanford Research Systems, Sunnyvale, Calif. 94089.
  23. A. N. Nesmyanov, The Vapor Pressure of the Chemical Elements (USSR Academy of Sciences, Moscow, 1961).
  24. M. de Labachelerie, K. Nakagawa, Y. Awaji, and M. Ohtsu, “High frequency stability at 1.5 μ m using Doppler-free molecular lines,” Opt. Lett. 20, 572–574 (1995).
    [Crossref]
  25. R. W. P. Drever, J. L. Hall, F. V. Kowalsky, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, “Laser phase and frequency stabilization using an optical resonator,” Appl. Phys. B 31, 97–105 (1983).
    [Crossref]
  26. See, for example, K. S. Repasky, L. E. Watson, and J. L. Carlsten, “High finesse interferometers,” Appl. Opt. 34, 2615–2618 (1995).
    [Crossref] [PubMed]
  27. J. A. Harrison, M. Zahedi, and J. W. Nibler, “Use of seeded Nd:YAG lasers for high resolution spectroscopy,” Opt. Lett. 18, 149–151 (1993).
    [Crossref] [PubMed]

1995 (6)

M. L. Eickhoff and J. L. Hall, “New optical frequency standard at 532 nm,” IEEE Trans. Instrum. Meas. 44, 155–158 (1995).
[Crossref]

P. Jungner, S. Swartz, M. Eickhoff, J. Ye, and J. L. Hall, “Measurement of the absolute frequency of molecular Iodine transitions near 532 nm,” IEEE Trans. Instrum. Meas. 44, 151–154 (1995).
[Crossref]

A. Arie, P. C. Pastor, F. S. Pavone, and M. Inguscio, “Diode laser sub-Doppler spectroscopy of 133Cs2 around the 1083 nm 4He transitions,” Opt. Commun. 117, 78–82 (1995).
[Crossref]

A. Arie and E. Inbar, “Laser spectroscopy of molecular cesium near 1064 nm enhanced by a Fabry–Perot cavity,” Opt. Lett. 20, 88–90 (1995).
[Crossref] [PubMed]

M. de Labachelerie, K. Nakagawa, Y. Awaji, and M. Ohtsu, “High frequency stability at 1.5 μ m using Doppler-free molecular lines,” Opt. Lett. 20, 572–574 (1995).
[Crossref]

See, for example, K. S. Repasky, L. E. Watson, and J. L. Carlsten, “High finesse interferometers,” Appl. Opt. 34, 2615–2618 (1995).
[Crossref] [PubMed]

1994 (1)

K. Nakagawa, T. Katsuda, A. S. Shelkovnikov, M. de Labachelerie, and M. Ohtsu, “Highly sensitive detection of molecular absorption using a high finesse cavity,” Opt. Commun. 107, 369–372 (1994).
[Crossref]

1993 (4)

1992 (1)

1990 (1)

1988 (1)

R. D. Reasenberg, R. W. Babcock, J. F. Chandler, M. V. Gorenstein, J. P. Huchra, M. R. Pearlman, P. Bender, A. Buffington, B. Carney, J. A. Hughes, K. J. Johnson, B. F. Jones, and L. E. Matson, “Microarcsecond optical astrometry: an instrument and its astrophysical applications,” Astron. J. 96, 1731–1745 (1988).
[Crossref]

1986 (1)

O. A. Orlov and V. I. Ustyugov, “Molecular cesium frequency reference for frequency stabilization of a 1.06 μ m Nd:YAG laser,” Sov. Tech. Phys. Lett. 12, 120–121 (1986).

1983 (1)

R. W. P. Drever, J. L. Hall, F. V. Kowalsky, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, “Laser phase and frequency stabilization using an optical resonator,” Appl. Phys. B 31, 97–105 (1983).
[Crossref]

1982 (1)

M. Ducloy and D. Bloch, “Theory of degenerate four-wave mixing in resonant Doppler-broadened media. II. Doppler-free heterodyne spectroscopy via collinear four-wave mixing in two- and three-level systems,” J. Phys. 43, 57–65 (1982); R. K. Raj, D. Bloch, J. J. Snyder, G. Camy, and M. Ducloy, “High-frequency optically heterodyned saturation spectroscopy via resonant degenerate four-wave mixing,” Phys. Rev. Lett. 44, 1251–1254 (1980); J. H. Shirley, “Modulation transfer processes in optical heterodyne saturation spectroscopy,” Opt. Lett. 7, 537–539 (1982).
[Crossref] [PubMed]

1980 (2)

1977 (1)

R. P. Benedict, D. L. Drummond, and L. A. Schlie, “Absorption spectra of the Cs2 molecule,” J. Chem. Phys. 66, 4600–4607 (1977).
[Crossref]

Arie, A.

Awaji, Y.

Babcock, R. W.

R. D. Reasenberg, R. W. Babcock, J. F. Chandler, M. V. Gorenstein, J. P. Huchra, M. R. Pearlman, P. Bender, A. Buffington, B. Carney, J. A. Hughes, K. J. Johnson, B. F. Jones, and L. E. Matson, “Microarcsecond optical astrometry: an instrument and its astrophysical applications,” Astron. J. 96, 1731–1745 (1988).
[Crossref]

Bender, P.

R. D. Reasenberg, R. W. Babcock, J. F. Chandler, M. V. Gorenstein, J. P. Huchra, M. R. Pearlman, P. Bender, A. Buffington, B. Carney, J. A. Hughes, K. J. Johnson, B. F. Jones, and L. E. Matson, “Microarcsecond optical astrometry: an instrument and its astrophysical applications,” Astron. J. 96, 1731–1745 (1988).
[Crossref]

Benedict, R. P.

R. P. Benedict, D. L. Drummond, and L. A. Schlie, “Absorption spectra of the Cs2 molecule,” J. Chem. Phys. 66, 4600–4607 (1977).
[Crossref]

Bjorklund, G. C.

Bloch, D.

M. Ducloy and D. Bloch, “Theory of degenerate four-wave mixing in resonant Doppler-broadened media. II. Doppler-free heterodyne spectroscopy via collinear four-wave mixing in two- and three-level systems,” J. Phys. 43, 57–65 (1982); R. K. Raj, D. Bloch, J. J. Snyder, G. Camy, and M. Ducloy, “High-frequency optically heterodyned saturation spectroscopy via resonant degenerate four-wave mixing,” Phys. Rev. Lett. 44, 1251–1254 (1980); J. H. Shirley, “Modulation transfer processes in optical heterodyne saturation spectroscopy,” Opt. Lett. 7, 537–539 (1982).
[Crossref] [PubMed]

Block, D.

Bortz, M. L.

Buffington, A.

R. D. Reasenberg, R. W. Babcock, J. F. Chandler, M. V. Gorenstein, J. P. Huchra, M. R. Pearlman, P. Bender, A. Buffington, B. Carney, J. A. Hughes, K. J. Johnson, B. F. Jones, and L. E. Matson, “Microarcsecond optical astrometry: an instrument and its astrophysical applications,” Astron. J. 96, 1731–1745 (1988).
[Crossref]

Byer, R. L.

Carlsten, J. L.

Carney, B.

R. D. Reasenberg, R. W. Babcock, J. F. Chandler, M. V. Gorenstein, J. P. Huchra, M. R. Pearlman, P. Bender, A. Buffington, B. Carney, J. A. Hughes, K. J. Johnson, B. F. Jones, and L. E. Matson, “Microarcsecond optical astrometry: an instrument and its astrophysical applications,” Astron. J. 96, 1731–1745 (1988).
[Crossref]

Chandler, J. F.

R. D. Reasenberg, R. W. Babcock, J. F. Chandler, M. V. Gorenstein, J. P. Huchra, M. R. Pearlman, P. Bender, A. Buffington, B. Carney, J. A. Hughes, K. J. Johnson, B. F. Jones, and L. E. Matson, “Microarcsecond optical astrometry: an instrument and its astrophysical applications,” Astron. J. 96, 1731–1745 (1988).
[Crossref]

de Labachelerie, M.

M. de Labachelerie, K. Nakagawa, Y. Awaji, and M. Ohtsu, “High frequency stability at 1.5 μ m using Doppler-free molecular lines,” Opt. Lett. 20, 572–574 (1995).
[Crossref]

K. Nakagawa, T. Katsuda, A. S. Shelkovnikov, M. de Labachelerie, and M. Ohtsu, “Highly sensitive detection of molecular absorption using a high finesse cavity,” Opt. Commun. 107, 369–372 (1994).
[Crossref]

Drever, R. W. P.

R. W. P. Drever, J. L. Hall, F. V. Kowalsky, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, “Laser phase and frequency stabilization using an optical resonator,” Appl. Phys. B 31, 97–105 (1983).
[Crossref]

Drummond, D. L.

R. P. Benedict, D. L. Drummond, and L. A. Schlie, “Absorption spectra of the Cs2 molecule,” J. Chem. Phys. 66, 4600–4607 (1977).
[Crossref]

Ducloy, M.

M. Ducloy and D. Bloch, “Theory of degenerate four-wave mixing in resonant Doppler-broadened media. II. Doppler-free heterodyne spectroscopy via collinear four-wave mixing in two- and three-level systems,” J. Phys. 43, 57–65 (1982); R. K. Raj, D. Bloch, J. J. Snyder, G. Camy, and M. Ducloy, “High-frequency optically heterodyned saturation spectroscopy via resonant degenerate four-wave mixing,” Phys. Rev. Lett. 44, 1251–1254 (1980); J. H. Shirley, “Modulation transfer processes in optical heterodyne saturation spectroscopy,” Opt. Lett. 7, 537–539 (1982).
[Crossref] [PubMed]

J. J. Snyder, R. K. Raj, D. Block, and M. Ducloy, “High-sensitivity nonlinear spectroscopy using a frequency-offset pump,” Opt. Lett. 5, 163–165 (1980).
[Crossref] [PubMed]

Eickhoff, M.

P. Jungner, S. Swartz, M. Eickhoff, J. Ye, and J. L. Hall, “Measurement of the absolute frequency of molecular Iodine transitions near 532 nm,” IEEE Trans. Instrum. Meas. 44, 151–154 (1995).
[Crossref]

Eickhoff, M. L.

M. L. Eickhoff and J. L. Hall, “New optical frequency standard at 532 nm,” IEEE Trans. Instrum. Meas. 44, 155–158 (1995).
[Crossref]

Fejer, M. M.

Ford, G. M.

R. W. P. Drever, J. L. Hall, F. V. Kowalsky, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, “Laser phase and frequency stabilization using an optical resonator,” Appl. Phys. B 31, 97–105 (1983).
[Crossref]

Fritschel, P.

Gorenstein, M. V.

R. D. Reasenberg, R. W. Babcock, J. F. Chandler, M. V. Gorenstein, J. P. Huchra, M. R. Pearlman, P. Bender, A. Buffington, B. Carney, J. A. Hughes, K. J. Johnson, B. F. Jones, and L. E. Matson, “Microarcsecond optical astrometry: an instrument and its astrophysical applications,” Astron. J. 96, 1731–1745 (1988).
[Crossref]

Hall, J. L.

M. L. Eickhoff and J. L. Hall, “New optical frequency standard at 532 nm,” IEEE Trans. Instrum. Meas. 44, 155–158 (1995).
[Crossref]

P. Jungner, S. Swartz, M. Eickhoff, J. Ye, and J. L. Hall, “Measurement of the absolute frequency of molecular Iodine transitions near 532 nm,” IEEE Trans. Instrum. Meas. 44, 151–154 (1995).
[Crossref]

R. W. P. Drever, J. L. Hall, F. V. Kowalsky, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, “Laser phase and frequency stabilization using an optical resonator,” Appl. Phys. B 31, 97–105 (1983).
[Crossref]

Harrison, J. A.

Heilmann, R.

R. Heilmann and J. Kuschel, “Absolute frequency locking of diode-pumped Nd:YAG laser for application in free space optical communication,” Electron. Lett. 29, 810–811 (1993).
[Crossref]

Hough, J.

R. W. P. Drever, J. L. Hall, F. V. Kowalsky, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, “Laser phase and frequency stabilization using an optical resonator,” Appl. Phys. B 31, 97–105 (1983).
[Crossref]

Huchra, J. P.

R. D. Reasenberg, R. W. Babcock, J. F. Chandler, M. V. Gorenstein, J. P. Huchra, M. R. Pearlman, P. Bender, A. Buffington, B. Carney, J. A. Hughes, K. J. Johnson, B. F. Jones, and L. E. Matson, “Microarcsecond optical astrometry: an instrument and its astrophysical applications,” Astron. J. 96, 1731–1745 (1988).
[Crossref]

Hughes, J. A.

R. D. Reasenberg, R. W. Babcock, J. F. Chandler, M. V. Gorenstein, J. P. Huchra, M. R. Pearlman, P. Bender, A. Buffington, B. Carney, J. A. Hughes, K. J. Johnson, B. F. Jones, and L. E. Matson, “Microarcsecond optical astrometry: an instrument and its astrophysical applications,” Astron. J. 96, 1731–1745 (1988).
[Crossref]

Inbar, E.

Inguscio, M.

A. Arie, P. C. Pastor, F. S. Pavone, and M. Inguscio, “Diode laser sub-Doppler spectroscopy of 133Cs2 around the 1083 nm 4He transitions,” Opt. Commun. 117, 78–82 (1995).
[Crossref]

Johnson, K. J.

R. D. Reasenberg, R. W. Babcock, J. F. Chandler, M. V. Gorenstein, J. P. Huchra, M. R. Pearlman, P. Bender, A. Buffington, B. Carney, J. A. Hughes, K. J. Johnson, B. F. Jones, and L. E. Matson, “Microarcsecond optical astrometry: an instrument and its astrophysical applications,” Astron. J. 96, 1731–1745 (1988).
[Crossref]

Jones, B. F.

R. D. Reasenberg, R. W. Babcock, J. F. Chandler, M. V. Gorenstein, J. P. Huchra, M. R. Pearlman, P. Bender, A. Buffington, B. Carney, J. A. Hughes, K. J. Johnson, B. F. Jones, and L. E. Matson, “Microarcsecond optical astrometry: an instrument and its astrophysical applications,” Astron. J. 96, 1731–1745 (1988).
[Crossref]

Jungner, P.

P. Jungner, S. Swartz, M. Eickhoff, J. Ye, and J. L. Hall, “Measurement of the absolute frequency of molecular Iodine transitions near 532 nm,” IEEE Trans. Instrum. Meas. 44, 151–154 (1995).
[Crossref]

Katsuda, T.

K. Nakagawa, T. Katsuda, A. S. Shelkovnikov, M. de Labachelerie, and M. Ohtsu, “Highly sensitive detection of molecular absorption using a high finesse cavity,” Opt. Commun. 107, 369–372 (1994).
[Crossref]

Kowalsky, F. V.

R. W. P. Drever, J. L. Hall, F. V. Kowalsky, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, “Laser phase and frequency stabilization using an optical resonator,” Appl. Phys. B 31, 97–105 (1983).
[Crossref]

Kuschel, J.

R. Heilmann and J. Kuschel, “Absolute frequency locking of diode-pumped Nd:YAG laser for application in free space optical communication,” Electron. Lett. 29, 810–811 (1993).
[Crossref]

Letterer, R.

Mak, A. A.

A. A. Mak, S. G. Muravitsky, O. A. Orlov, and V. I. Ustyugov, “New laser for interferometry with long-term frequency stabilization at 1.06 μ m onto molecular cesium standard,” in Interferometry ’89, Z. Jaroszewicz and M. Pluta, eds., Proc. SPIE1121, 478–484 (1989).
[Crossref]

Matson, L. E.

R. D. Reasenberg, R. W. Babcock, J. F. Chandler, M. V. Gorenstein, J. P. Huchra, M. R. Pearlman, P. Bender, A. Buffington, B. Carney, J. A. Hughes, K. J. Johnson, B. F. Jones, and L. E. Matson, “Microarcsecond optical astrometry: an instrument and its astrophysical applications,” Astron. J. 96, 1731–1745 (1988).
[Crossref]

Munley, A. J.

R. W. P. Drever, J. L. Hall, F. V. Kowalsky, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, “Laser phase and frequency stabilization using an optical resonator,” Appl. Phys. B 31, 97–105 (1983).
[Crossref]

Muravitsky, S. G.

A. A. Mak, S. G. Muravitsky, O. A. Orlov, and V. I. Ustyugov, “New laser for interferometry with long-term frequency stabilization at 1.06 μ m onto molecular cesium standard,” in Interferometry ’89, Z. Jaroszewicz and M. Pluta, eds., Proc. SPIE1121, 478–484 (1989).
[Crossref]

Nakagawa, K.

M. de Labachelerie, K. Nakagawa, Y. Awaji, and M. Ohtsu, “High frequency stability at 1.5 μ m using Doppler-free molecular lines,” Opt. Lett. 20, 572–574 (1995).
[Crossref]

K. Nakagawa, T. Katsuda, A. S. Shelkovnikov, M. de Labachelerie, and M. Ohtsu, “Highly sensitive detection of molecular absorption using a high finesse cavity,” Opt. Commun. 107, 369–372 (1994).
[Crossref]

Nesmyanov, A. N.

A. N. Nesmyanov, The Vapor Pressure of the Chemical Elements (USSR Academy of Sciences, Moscow, 1961).

Nibler, J. W.

Ohtsu, M.

M. de Labachelerie, K. Nakagawa, Y. Awaji, and M. Ohtsu, “High frequency stability at 1.5 μ m using Doppler-free molecular lines,” Opt. Lett. 20, 572–574 (1995).
[Crossref]

K. Nakagawa, T. Katsuda, A. S. Shelkovnikov, M. de Labachelerie, and M. Ohtsu, “Highly sensitive detection of molecular absorption using a high finesse cavity,” Opt. Commun. 107, 369–372 (1994).
[Crossref]

Orlov, O. A.

O. A. Orlov and V. I. Ustyugov, “Molecular cesium frequency reference for frequency stabilization of a 1.06 μ m Nd:YAG laser,” Sov. Tech. Phys. Lett. 12, 120–121 (1986).

A. A. Mak, S. G. Muravitsky, O. A. Orlov, and V. I. Ustyugov, “New laser for interferometry with long-term frequency stabilization at 1.06 μ m onto molecular cesium standard,” in Interferometry ’89, Z. Jaroszewicz and M. Pluta, eds., Proc. SPIE1121, 478–484 (1989).
[Crossref]

Pastor, P. C.

A. Arie, P. C. Pastor, F. S. Pavone, and M. Inguscio, “Diode laser sub-Doppler spectroscopy of 133Cs2 around the 1083 nm 4He transitions,” Opt. Commun. 117, 78–82 (1995).
[Crossref]

Pavone, F. S.

A. Arie, P. C. Pastor, F. S. Pavone, and M. Inguscio, “Diode laser sub-Doppler spectroscopy of 133Cs2 around the 1083 nm 4He transitions,” Opt. Commun. 117, 78–82 (1995).
[Crossref]

Pearlman, M. R.

R. D. Reasenberg, R. W. Babcock, J. F. Chandler, M. V. Gorenstein, J. P. Huchra, M. R. Pearlman, P. Bender, A. Buffington, B. Carney, J. A. Hughes, K. J. Johnson, B. F. Jones, and L. E. Matson, “Microarcsecond optical astrometry: an instrument and its astrophysical applications,” Astron. J. 96, 1731–1745 (1988).
[Crossref]

Raj, R. K.

Reasenberg, R. D.

R. D. Reasenberg, R. W. Babcock, J. F. Chandler, M. V. Gorenstein, J. P. Huchra, M. R. Pearlman, P. Bender, A. Buffington, B. Carney, J. A. Hughes, K. J. Johnson, B. F. Jones, and L. E. Matson, “Microarcsecond optical astrometry: an instrument and its astrophysical applications,” Astron. J. 96, 1731–1745 (1988).
[Crossref]

Repasky, K. S.

Schlie, L. A.

R. P. Benedict, D. L. Drummond, and L. A. Schlie, “Absorption spectra of the Cs2 molecule,” J. Chem. Phys. 66, 4600–4607 (1977).
[Crossref]

Shelkovnikov, A. S.

K. Nakagawa, T. Katsuda, A. S. Shelkovnikov, M. de Labachelerie, and M. Ohtsu, “Highly sensitive detection of molecular absorption using a high finesse cavity,” Opt. Commun. 107, 369–372 (1994).
[Crossref]

Snyder, J. J.

Swartz, S.

P. Jungner, S. Swartz, M. Eickhoff, J. Ye, and J. L. Hall, “Measurement of the absolute frequency of molecular Iodine transitions near 532 nm,” IEEE Trans. Instrum. Meas. 44, 151–154 (1995).
[Crossref]

Ustyugov, V. I.

O. A. Orlov and V. I. Ustyugov, “Molecular cesium frequency reference for frequency stabilization of a 1.06 μ m Nd:YAG laser,” Sov. Tech. Phys. Lett. 12, 120–121 (1986).

A. A. Mak, S. G. Muravitsky, O. A. Orlov, and V. I. Ustyugov, “New laser for interferometry with long-term frequency stabilization at 1.06 μ m onto molecular cesium standard,” in Interferometry ’89, Z. Jaroszewicz and M. Pluta, eds., Proc. SPIE1121, 478–484 (1989).
[Crossref]

Wallmeroth, K.

Ward, H.

R. W. P. Drever, J. L. Hall, F. V. Kowalsky, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, “Laser phase and frequency stabilization using an optical resonator,” Appl. Phys. B 31, 97–105 (1983).
[Crossref]

Watson, L. E.

Weiss, R.

Ye, J.

P. Jungner, S. Swartz, M. Eickhoff, J. Ye, and J. L. Hall, “Measurement of the absolute frequency of molecular Iodine transitions near 532 nm,” IEEE Trans. Instrum. Meas. 44, 151–154 (1995).
[Crossref]

Zahedi, M.

Appl. Opt. (2)

Appl. Phys. B (1)

R. W. P. Drever, J. L. Hall, F. V. Kowalsky, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, “Laser phase and frequency stabilization using an optical resonator,” Appl. Phys. B 31, 97–105 (1983).
[Crossref]

Astron. J. (1)

R. D. Reasenberg, R. W. Babcock, J. F. Chandler, M. V. Gorenstein, J. P. Huchra, M. R. Pearlman, P. Bender, A. Buffington, B. Carney, J. A. Hughes, K. J. Johnson, B. F. Jones, and L. E. Matson, “Microarcsecond optical astrometry: an instrument and its astrophysical applications,” Astron. J. 96, 1731–1745 (1988).
[Crossref]

Electron. Lett. (1)

R. Heilmann and J. Kuschel, “Absolute frequency locking of diode-pumped Nd:YAG laser for application in free space optical communication,” Electron. Lett. 29, 810–811 (1993).
[Crossref]

IEEE Trans. Instrum. Meas. (2)

M. L. Eickhoff and J. L. Hall, “New optical frequency standard at 532 nm,” IEEE Trans. Instrum. Meas. 44, 155–158 (1995).
[Crossref]

P. Jungner, S. Swartz, M. Eickhoff, J. Ye, and J. L. Hall, “Measurement of the absolute frequency of molecular Iodine transitions near 532 nm,” IEEE Trans. Instrum. Meas. 44, 151–154 (1995).
[Crossref]

J. Chem. Phys. (1)

R. P. Benedict, D. L. Drummond, and L. A. Schlie, “Absorption spectra of the Cs2 molecule,” J. Chem. Phys. 66, 4600–4607 (1977).
[Crossref]

J. Opt. Soc. Am. B (1)

J. Phys. (1)

M. Ducloy and D. Bloch, “Theory of degenerate four-wave mixing in resonant Doppler-broadened media. II. Doppler-free heterodyne spectroscopy via collinear four-wave mixing in two- and three-level systems,” J. Phys. 43, 57–65 (1982); R. K. Raj, D. Bloch, J. J. Snyder, G. Camy, and M. Ducloy, “High-frequency optically heterodyned saturation spectroscopy via resonant degenerate four-wave mixing,” Phys. Rev. Lett. 44, 1251–1254 (1980); J. H. Shirley, “Modulation transfer processes in optical heterodyne saturation spectroscopy,” Opt. Lett. 7, 537–539 (1982).
[Crossref] [PubMed]

Opt. Commun. (2)

K. Nakagawa, T. Katsuda, A. S. Shelkovnikov, M. de Labachelerie, and M. Ohtsu, “Highly sensitive detection of molecular absorption using a high finesse cavity,” Opt. Commun. 107, 369–372 (1994).
[Crossref]

A. Arie, P. C. Pastor, F. S. Pavone, and M. Inguscio, “Diode laser sub-Doppler spectroscopy of 133Cs2 around the 1083 nm 4He transitions,” Opt. Commun. 117, 78–82 (1995).
[Crossref]

Opt. Lett. (7)

Sov. Tech. Phys. Lett. (1)

O. A. Orlov and V. I. Ustyugov, “Molecular cesium frequency reference for frequency stabilization of a 1.06 μ m Nd:YAG laser,” Sov. Tech. Phys. Lett. 12, 120–121 (1986).

Other (7)

A. A. Mak, S. G. Muravitsky, O. A. Orlov, and V. I. Ustyugov, “New laser for interferometry with long-term frequency stabilization at 1.06 μ m onto molecular cesium standard,” in Interferometry ’89, Z. Jaroszewicz and M. Pluta, eds., Proc. SPIE1121, 478–484 (1989).
[Crossref]

Lightwave Electronics, San Antonio Road, Mountain View, Calif. 94043.

Optics For Research, Caldwell, N.J. 07006.

Burleigh Instruments, Inc., Burleigh Park, Fishers, N.Y. 14453.

E. W. Washburn, ed., International Critical Tables of Numerical Data, Physics, Chemistry and Technology (McGraw-Hill, New York, 1928).

Stanford Research Systems, Sunnyvale, Calif. 94089.

A. N. Nesmyanov, The Vapor Pressure of the Chemical Elements (USSR Academy of Sciences, Moscow, 1961).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Experimental setup for cesium spectroscopy by the modulation transfer technique: EOM, electro-optic modulator; AOM, acousto-optic modulator.

Fig. 2
Fig. 2

(a) Cs2 spectrum within the tuning range of the Nd:YAG laser, obtained by modulation transfer spectroscopy. The separation between the Fabry–Perot markers is 300 MHz. The cell temperature is 220 °C. Line numbers are taken from Ref. 11. (b) Expanded scan of line −26(11).

Fig. 3
Fig. 3

Experimental setup for locking the Nd:YAG laser to Cs2 by FM spectroscopy: EOM, electro-optic modulator; AOM, acousto-optic modulator; PZT, piezoelectric transducer.

Fig. 4
Fig. 4

Experimental setup for locking the doubled Nd:YAG laser to I2 by modulation transfer spectroscopy: EOM, electro-optic modulator; PBS, polarizing beam splitter; PZT, piezoelectric transducer.

Fig. 5
Fig. 5

Root Allan variance between the Cs2-locked laser and the I2-locked reference system. A minimum value of 1.3 × 10−11 (3.65 kHz) was achieved at 20-s measurement time (Cs2 temperature, 230 °C).

Fig. 6
Fig. 6

Time variation of the beat frequency between the Cs2-locked laser and the I2-locked reference system over a 1-h measurement period (Cs2 temperature, 230 °C).

Fig. 7
Fig. 7

Temperature-induced frequency shifts of Cs2.

Fig. 8
Fig. 8

Experimental setup for obtaining a sub-Doppler derivative signal by use of a Fabry–Perot cavity: AOM, acousto-optic modulator; EOM, electro-optic modulator; HR’s, highly reflecting mirrors.

Fig. 9
Fig. 9

(a) Sub-Doppler signal of line −21(8) at 9394.06 cm−1 obtained with the setup of Fig. 8. (b) The same line obtained by single-pass wavelength modulation spectroscopy. For both figures the lock-in amplifier time constant was 30 ms.

Tables (3)

Tables Icon

Table 1 Wavelengths of Cs2 Sub-Doppler Lines within the Tuning Range of the Nd:YAG Laser

Tables Icon

Table 2 Frequency Measurement and Accuracy of Cs2 Line −26(11)a

Tables Icon

Table 3 Absolute Frequencies of Cs2 Sub-Doppler Lines at T = 230 °C

Metrics