Abstract

Measurements of absorption, photoconductivity, and dark conductivity and of light-induced absorption changes in photorefractive Sr0.61Ba0.39Nb2O6:Ce crystals with Ce concentrations from 0.025 wt% to 1.6 wt% are carried out for different light wavelengths, intensities, and polarizations. The experimental findings are interpreted alternatively by the two-center or by the three-valence model. The results yield that the concentrations of the deep and of the more shallow photorefractive levels increase linearly with the Ce concentration and show that for SBN:Ce the two-center model is probably more appropriate.

© 1996 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. R. Neurgaonkar, W. K. Cory, J. R. Oliver, and M. Khoshnevisan, “Ferroelectric tungsten bronze crystals and their photorefractive applications,” Ferroelectrics 102, 3 (1990).
    [CrossRef]
  2. T. Parish, “Crystal clear storage,” BYTE (November1990), p. 283.
  3. Y. H. Shih, H. Y. Zhang, X. H. He, and L. Yan, “High reflectivity broad band self-pumped phase conjugator at near infrared wavelengths using SBN:Ce,” J. Mod. Opt. 40, 2321 (1993).
    [CrossRef]
  4. N. V. Bogodaev, V. V. Eliseev, L. I. Ivleva, A. S. Korshunov, S. S. Orlov, N. M. Polozkov, and A. A. Zozulya, “Double phase-conjugate mirror: experimental investigation and comparison with theory,” J. Opt. Soc. Am. B 9, 1493 (1992).
    [CrossRef]
  5. J. Ma, L. Liu, S. Wu, Z. Wang, P. Mormile, G. Pierattinin, and S. D. Nicola, “Photorefractive spatial light modulation by electrocontrolled beam coupling in SBN:Ce crystals,” Opt. Commun. 70, 181 (1989).
    [CrossRef]
  6. J. Ma, L. Liu, Z. Wang, and L. Xu, “Controllable real-time simple spatial filter based on selectively erasing in photorefractive two-beam coupling,” Opt. Commun. 74, 15 (1989).
    [CrossRef]
  7. F. Kahmann, R. Pankrath, and R. A. Rupp, “Photoassisted generation of ferroelectric domain gratings in SBN,” Opt. Commun. 107, 6 (1994).
    [CrossRef]
  8. K. Megumi, H. Kozuka, M. Kobayashi, and Y. Furuhata, “High-sensitive holographic storage in Ce-doped SBN,” Appl. Phys. Lett. 30, 631 (1977).
    [CrossRef]
  9. E. Krätzig and O. F. Schirmer, “Photorefractive centers in electro-optic crystals,” in Photorefractive Materials and Their Applications I, Vol. 61 of Topics in Applied Physics, P. Günter and J.-P. Huignard, eds. (Springer-Verlag, Berlin, 1988), pp. 131–166.
    [CrossRef]
  10. A. Motes and J. J. Kim, “Intensity-dependent absorption coefficient in photorefractive BaTiO3 crystals,” J. Opt. Soc. Am. B 4, 1379 (1987).
    [CrossRef]
  11. L. Holtmann, K. Buse, G. Kuper, A. Groll, H. Hesse, and E. Krätzig, “Conductivity and light-induced absorption in KNbO3:Fe,” Appl. Phys. A 53, 81 (1991).
    [CrossRef]
  12. E. Krätzig, F. Welz, R. Orlowski, V. Doormann, and M. Rosenkranz, “Holographic storage properties of BaTiO3,” Solid State Commun. 34, 817 (1980).
    [CrossRef]
  13. P. Günter and F. Micheron, “Photorefractive effects and photocurrents in KNbO3:Fe,” Ferroelectrics 18, 27 (1978).
    [CrossRef]
  14. G. A. Brost, R. A. Motes, and J. R. Rotgé, “Intensity-dependent absorption and photorefractive effects in barium titanate,” J. Opt. Soc. Am. B 5, 1879 (1988).
    [CrossRef]
  15. L. Holtmann, “A model for the nonlinear photoconductivity of BaTiO3,” Phys. Status Solidi A 113, K89 (1989).
    [CrossRef]
  16. G. A. Brost and R. A. Motes, “Origin of the sublinear photorefractive response time in BaTiO3,” Opt. Lett. 15, 1194 (1990).
    [CrossRef] [PubMed]
  17. D. Mahgerefteh and J. Feinberg, “Explanation of the apparent sublinear photoconductivity of photorefractive barium titanate,” Phys. Rev. Lett. 64, 2195 (1990).
    [CrossRef] [PubMed]
  18. K. Buse, L. Holtmann, and E. Krätzig, “Activation of BaTiO3 for infrared holographic recording,” Opt. Commun. 85, 183 (1991).
    [CrossRef]
  19. P. Tayebati and K. Mahgerefteh, “Theory of the photorefractive effect for Bi12SiO20 and BaTiO3 with shallow traps,” J. Opt. Soc. Am. B 8, 1053 (1991).
    [CrossRef]
  20. R. S. Cudney, R. M. Pierce, G. D. Bacher, D. Mahgerefteh, and J. Feinberg, “Intensity dependence of the photogalvanic effect in barium titanate,” J. Opt. Soc. Am. B 9, 1704 (1992).
    [CrossRef]
  21. K. Buse and E. Krätzig, “Three-valence charge-transport model for explanation of the photorefractive effect,” Appl. Phys. B 61, 27 (1995).
    [CrossRef]
  22. K. Buse, R. Pankrath, and E. Krätzig, “Pyroelectrically-induced photorefractive effect in Sr0.61Ba0.39Nb2O6:Ce,” Opt. Lett. 19, 260 (1994).
    [CrossRef] [PubMed]
  23. M. Simon, A. Gerwens, and E. Krätzig, “Light-induced absorption generated with high intensity laser pulses in strontium-barium niobate,” Phys. Status Solidi A 143, K125 (1994).
    [CrossRef]
  24. S. Orlov, M. Segev, A. Yariv, and R. Neurgaonkar, “Light-induced absorption in photorefractive strontium barium niobate,” Opt. Lett. 19, 1293 (1994).
    [CrossRef] [PubMed]
  25. F. L. Venturini, E. G. Spencer, P. V. Lenzo, and A. A. Ballman, “Refractive indices of strontium barium niobate,” J. Appl. Phys. 39, 343 (1968).
    [CrossRef]
  26. D. Fluck, P. Amrhein, and P. Günter, “Photorefractive effect in crystals with a nonlinear recombination of charge carriers: theory and observation in KNbO3,” J. Opt. Soc. Am. B 8, 2196 (1991).
    [CrossRef]
  27. L. Holtmann, M. Unland, E. Krätzig, and G. Godefroy, “Conductivity and light-induced absorption in BaTiO3,” Appl. Phys. A 51, 13 (1990).
    [CrossRef]
  28. S. Ducharme, J. Feinberg, and R. R. Neurgaonkar, “Electrooptic and piezoelectric measurements in photorefractive barium titanate and strontium barium niobate,” IEEE J. Quantum Electron. QE-23, 2116 (1987).
    [CrossRef]
  29. M. D. Ewbank, R. R. Neurgaonkar, W. K. Cory, and J. Feinberg, “Photorefractive properties of strontium barium niobate,” J. Appl. Phys. 62, 374 (1987).
    [CrossRef]

1995 (1)

K. Buse and E. Krätzig, “Three-valence charge-transport model for explanation of the photorefractive effect,” Appl. Phys. B 61, 27 (1995).
[CrossRef]

1994 (4)

K. Buse, R. Pankrath, and E. Krätzig, “Pyroelectrically-induced photorefractive effect in Sr0.61Ba0.39Nb2O6:Ce,” Opt. Lett. 19, 260 (1994).
[CrossRef] [PubMed]

M. Simon, A. Gerwens, and E. Krätzig, “Light-induced absorption generated with high intensity laser pulses in strontium-barium niobate,” Phys. Status Solidi A 143, K125 (1994).
[CrossRef]

S. Orlov, M. Segev, A. Yariv, and R. Neurgaonkar, “Light-induced absorption in photorefractive strontium barium niobate,” Opt. Lett. 19, 1293 (1994).
[CrossRef] [PubMed]

F. Kahmann, R. Pankrath, and R. A. Rupp, “Photoassisted generation of ferroelectric domain gratings in SBN,” Opt. Commun. 107, 6 (1994).
[CrossRef]

1993 (1)

Y. H. Shih, H. Y. Zhang, X. H. He, and L. Yan, “High reflectivity broad band self-pumped phase conjugator at near infrared wavelengths using SBN:Ce,” J. Mod. Opt. 40, 2321 (1993).
[CrossRef]

1992 (2)

1991 (4)

D. Fluck, P. Amrhein, and P. Günter, “Photorefractive effect in crystals with a nonlinear recombination of charge carriers: theory and observation in KNbO3,” J. Opt. Soc. Am. B 8, 2196 (1991).
[CrossRef]

L. Holtmann, K. Buse, G. Kuper, A. Groll, H. Hesse, and E. Krätzig, “Conductivity and light-induced absorption in KNbO3:Fe,” Appl. Phys. A 53, 81 (1991).
[CrossRef]

K. Buse, L. Holtmann, and E. Krätzig, “Activation of BaTiO3 for infrared holographic recording,” Opt. Commun. 85, 183 (1991).
[CrossRef]

P. Tayebati and K. Mahgerefteh, “Theory of the photorefractive effect for Bi12SiO20 and BaTiO3 with shallow traps,” J. Opt. Soc. Am. B 8, 1053 (1991).
[CrossRef]

1990 (5)

G. A. Brost and R. A. Motes, “Origin of the sublinear photorefractive response time in BaTiO3,” Opt. Lett. 15, 1194 (1990).
[CrossRef] [PubMed]

D. Mahgerefteh and J. Feinberg, “Explanation of the apparent sublinear photoconductivity of photorefractive barium titanate,” Phys. Rev. Lett. 64, 2195 (1990).
[CrossRef] [PubMed]

R. R. Neurgaonkar, W. K. Cory, J. R. Oliver, and M. Khoshnevisan, “Ferroelectric tungsten bronze crystals and their photorefractive applications,” Ferroelectrics 102, 3 (1990).
[CrossRef]

T. Parish, “Crystal clear storage,” BYTE (November1990), p. 283.

L. Holtmann, M. Unland, E. Krätzig, and G. Godefroy, “Conductivity and light-induced absorption in BaTiO3,” Appl. Phys. A 51, 13 (1990).
[CrossRef]

1989 (3)

L. Holtmann, “A model for the nonlinear photoconductivity of BaTiO3,” Phys. Status Solidi A 113, K89 (1989).
[CrossRef]

J. Ma, L. Liu, S. Wu, Z. Wang, P. Mormile, G. Pierattinin, and S. D. Nicola, “Photorefractive spatial light modulation by electrocontrolled beam coupling in SBN:Ce crystals,” Opt. Commun. 70, 181 (1989).
[CrossRef]

J. Ma, L. Liu, Z. Wang, and L. Xu, “Controllable real-time simple spatial filter based on selectively erasing in photorefractive two-beam coupling,” Opt. Commun. 74, 15 (1989).
[CrossRef]

1988 (1)

1987 (3)

A. Motes and J. J. Kim, “Intensity-dependent absorption coefficient in photorefractive BaTiO3 crystals,” J. Opt. Soc. Am. B 4, 1379 (1987).
[CrossRef]

S. Ducharme, J. Feinberg, and R. R. Neurgaonkar, “Electrooptic and piezoelectric measurements in photorefractive barium titanate and strontium barium niobate,” IEEE J. Quantum Electron. QE-23, 2116 (1987).
[CrossRef]

M. D. Ewbank, R. R. Neurgaonkar, W. K. Cory, and J. Feinberg, “Photorefractive properties of strontium barium niobate,” J. Appl. Phys. 62, 374 (1987).
[CrossRef]

1980 (1)

E. Krätzig, F. Welz, R. Orlowski, V. Doormann, and M. Rosenkranz, “Holographic storage properties of BaTiO3,” Solid State Commun. 34, 817 (1980).
[CrossRef]

1978 (1)

P. Günter and F. Micheron, “Photorefractive effects and photocurrents in KNbO3:Fe,” Ferroelectrics 18, 27 (1978).
[CrossRef]

1977 (1)

K. Megumi, H. Kozuka, M. Kobayashi, and Y. Furuhata, “High-sensitive holographic storage in Ce-doped SBN,” Appl. Phys. Lett. 30, 631 (1977).
[CrossRef]

1968 (1)

F. L. Venturini, E. G. Spencer, P. V. Lenzo, and A. A. Ballman, “Refractive indices of strontium barium niobate,” J. Appl. Phys. 39, 343 (1968).
[CrossRef]

Amrhein, P.

Bacher, G. D.

Ballman, A. A.

F. L. Venturini, E. G. Spencer, P. V. Lenzo, and A. A. Ballman, “Refractive indices of strontium barium niobate,” J. Appl. Phys. 39, 343 (1968).
[CrossRef]

Bogodaev, N. V.

Brost, G. A.

Buse, K.

K. Buse and E. Krätzig, “Three-valence charge-transport model for explanation of the photorefractive effect,” Appl. Phys. B 61, 27 (1995).
[CrossRef]

K. Buse, R. Pankrath, and E. Krätzig, “Pyroelectrically-induced photorefractive effect in Sr0.61Ba0.39Nb2O6:Ce,” Opt. Lett. 19, 260 (1994).
[CrossRef] [PubMed]

K. Buse, L. Holtmann, and E. Krätzig, “Activation of BaTiO3 for infrared holographic recording,” Opt. Commun. 85, 183 (1991).
[CrossRef]

L. Holtmann, K. Buse, G. Kuper, A. Groll, H. Hesse, and E. Krätzig, “Conductivity and light-induced absorption in KNbO3:Fe,” Appl. Phys. A 53, 81 (1991).
[CrossRef]

Cory, W. K.

R. R. Neurgaonkar, W. K. Cory, J. R. Oliver, and M. Khoshnevisan, “Ferroelectric tungsten bronze crystals and their photorefractive applications,” Ferroelectrics 102, 3 (1990).
[CrossRef]

M. D. Ewbank, R. R. Neurgaonkar, W. K. Cory, and J. Feinberg, “Photorefractive properties of strontium barium niobate,” J. Appl. Phys. 62, 374 (1987).
[CrossRef]

Cudney, R. S.

Doormann, V.

E. Krätzig, F. Welz, R. Orlowski, V. Doormann, and M. Rosenkranz, “Holographic storage properties of BaTiO3,” Solid State Commun. 34, 817 (1980).
[CrossRef]

Ducharme, S.

S. Ducharme, J. Feinberg, and R. R. Neurgaonkar, “Electrooptic and piezoelectric measurements in photorefractive barium titanate and strontium barium niobate,” IEEE J. Quantum Electron. QE-23, 2116 (1987).
[CrossRef]

Eliseev, V. V.

Ewbank, M. D.

M. D. Ewbank, R. R. Neurgaonkar, W. K. Cory, and J. Feinberg, “Photorefractive properties of strontium barium niobate,” J. Appl. Phys. 62, 374 (1987).
[CrossRef]

Feinberg, J.

R. S. Cudney, R. M. Pierce, G. D. Bacher, D. Mahgerefteh, and J. Feinberg, “Intensity dependence of the photogalvanic effect in barium titanate,” J. Opt. Soc. Am. B 9, 1704 (1992).
[CrossRef]

D. Mahgerefteh and J. Feinberg, “Explanation of the apparent sublinear photoconductivity of photorefractive barium titanate,” Phys. Rev. Lett. 64, 2195 (1990).
[CrossRef] [PubMed]

M. D. Ewbank, R. R. Neurgaonkar, W. K. Cory, and J. Feinberg, “Photorefractive properties of strontium barium niobate,” J. Appl. Phys. 62, 374 (1987).
[CrossRef]

S. Ducharme, J. Feinberg, and R. R. Neurgaonkar, “Electrooptic and piezoelectric measurements in photorefractive barium titanate and strontium barium niobate,” IEEE J. Quantum Electron. QE-23, 2116 (1987).
[CrossRef]

Fluck, D.

Furuhata, Y.

K. Megumi, H. Kozuka, M. Kobayashi, and Y. Furuhata, “High-sensitive holographic storage in Ce-doped SBN,” Appl. Phys. Lett. 30, 631 (1977).
[CrossRef]

Gerwens, A.

M. Simon, A. Gerwens, and E. Krätzig, “Light-induced absorption generated with high intensity laser pulses in strontium-barium niobate,” Phys. Status Solidi A 143, K125 (1994).
[CrossRef]

Godefroy, G.

L. Holtmann, M. Unland, E. Krätzig, and G. Godefroy, “Conductivity and light-induced absorption in BaTiO3,” Appl. Phys. A 51, 13 (1990).
[CrossRef]

Groll, A.

L. Holtmann, K. Buse, G. Kuper, A. Groll, H. Hesse, and E. Krätzig, “Conductivity and light-induced absorption in KNbO3:Fe,” Appl. Phys. A 53, 81 (1991).
[CrossRef]

Günter, P.

He, X. H.

Y. H. Shih, H. Y. Zhang, X. H. He, and L. Yan, “High reflectivity broad band self-pumped phase conjugator at near infrared wavelengths using SBN:Ce,” J. Mod. Opt. 40, 2321 (1993).
[CrossRef]

Hesse, H.

L. Holtmann, K. Buse, G. Kuper, A. Groll, H. Hesse, and E. Krätzig, “Conductivity and light-induced absorption in KNbO3:Fe,” Appl. Phys. A 53, 81 (1991).
[CrossRef]

Holtmann, L.

L. Holtmann, K. Buse, G. Kuper, A. Groll, H. Hesse, and E. Krätzig, “Conductivity and light-induced absorption in KNbO3:Fe,” Appl. Phys. A 53, 81 (1991).
[CrossRef]

K. Buse, L. Holtmann, and E. Krätzig, “Activation of BaTiO3 for infrared holographic recording,” Opt. Commun. 85, 183 (1991).
[CrossRef]

L. Holtmann, M. Unland, E. Krätzig, and G. Godefroy, “Conductivity and light-induced absorption in BaTiO3,” Appl. Phys. A 51, 13 (1990).
[CrossRef]

L. Holtmann, “A model for the nonlinear photoconductivity of BaTiO3,” Phys. Status Solidi A 113, K89 (1989).
[CrossRef]

Ivleva, L. I.

Kahmann, F.

F. Kahmann, R. Pankrath, and R. A. Rupp, “Photoassisted generation of ferroelectric domain gratings in SBN,” Opt. Commun. 107, 6 (1994).
[CrossRef]

Khoshnevisan, M.

R. R. Neurgaonkar, W. K. Cory, J. R. Oliver, and M. Khoshnevisan, “Ferroelectric tungsten bronze crystals and their photorefractive applications,” Ferroelectrics 102, 3 (1990).
[CrossRef]

Kim, J. J.

Kobayashi, M.

K. Megumi, H. Kozuka, M. Kobayashi, and Y. Furuhata, “High-sensitive holographic storage in Ce-doped SBN,” Appl. Phys. Lett. 30, 631 (1977).
[CrossRef]

Korshunov, A. S.

Kozuka, H.

K. Megumi, H. Kozuka, M. Kobayashi, and Y. Furuhata, “High-sensitive holographic storage in Ce-doped SBN,” Appl. Phys. Lett. 30, 631 (1977).
[CrossRef]

Krätzig, E.

K. Buse and E. Krätzig, “Three-valence charge-transport model for explanation of the photorefractive effect,” Appl. Phys. B 61, 27 (1995).
[CrossRef]

M. Simon, A. Gerwens, and E. Krätzig, “Light-induced absorption generated with high intensity laser pulses in strontium-barium niobate,” Phys. Status Solidi A 143, K125 (1994).
[CrossRef]

K. Buse, R. Pankrath, and E. Krätzig, “Pyroelectrically-induced photorefractive effect in Sr0.61Ba0.39Nb2O6:Ce,” Opt. Lett. 19, 260 (1994).
[CrossRef] [PubMed]

K. Buse, L. Holtmann, and E. Krätzig, “Activation of BaTiO3 for infrared holographic recording,” Opt. Commun. 85, 183 (1991).
[CrossRef]

L. Holtmann, K. Buse, G. Kuper, A. Groll, H. Hesse, and E. Krätzig, “Conductivity and light-induced absorption in KNbO3:Fe,” Appl. Phys. A 53, 81 (1991).
[CrossRef]

L. Holtmann, M. Unland, E. Krätzig, and G. Godefroy, “Conductivity and light-induced absorption in BaTiO3,” Appl. Phys. A 51, 13 (1990).
[CrossRef]

E. Krätzig, F. Welz, R. Orlowski, V. Doormann, and M. Rosenkranz, “Holographic storage properties of BaTiO3,” Solid State Commun. 34, 817 (1980).
[CrossRef]

E. Krätzig and O. F. Schirmer, “Photorefractive centers in electro-optic crystals,” in Photorefractive Materials and Their Applications I, Vol. 61 of Topics in Applied Physics, P. Günter and J.-P. Huignard, eds. (Springer-Verlag, Berlin, 1988), pp. 131–166.
[CrossRef]

Kuper, G.

L. Holtmann, K. Buse, G. Kuper, A. Groll, H. Hesse, and E. Krätzig, “Conductivity and light-induced absorption in KNbO3:Fe,” Appl. Phys. A 53, 81 (1991).
[CrossRef]

Lenzo, P. V.

F. L. Venturini, E. G. Spencer, P. V. Lenzo, and A. A. Ballman, “Refractive indices of strontium barium niobate,” J. Appl. Phys. 39, 343 (1968).
[CrossRef]

Liu, L.

J. Ma, L. Liu, Z. Wang, and L. Xu, “Controllable real-time simple spatial filter based on selectively erasing in photorefractive two-beam coupling,” Opt. Commun. 74, 15 (1989).
[CrossRef]

J. Ma, L. Liu, S. Wu, Z. Wang, P. Mormile, G. Pierattinin, and S. D. Nicola, “Photorefractive spatial light modulation by electrocontrolled beam coupling in SBN:Ce crystals,” Opt. Commun. 70, 181 (1989).
[CrossRef]

Ma, J.

J. Ma, L. Liu, S. Wu, Z. Wang, P. Mormile, G. Pierattinin, and S. D. Nicola, “Photorefractive spatial light modulation by electrocontrolled beam coupling in SBN:Ce crystals,” Opt. Commun. 70, 181 (1989).
[CrossRef]

J. Ma, L. Liu, Z. Wang, and L. Xu, “Controllable real-time simple spatial filter based on selectively erasing in photorefractive two-beam coupling,” Opt. Commun. 74, 15 (1989).
[CrossRef]

Mahgerefteh, D.

R. S. Cudney, R. M. Pierce, G. D. Bacher, D. Mahgerefteh, and J. Feinberg, “Intensity dependence of the photogalvanic effect in barium titanate,” J. Opt. Soc. Am. B 9, 1704 (1992).
[CrossRef]

D. Mahgerefteh and J. Feinberg, “Explanation of the apparent sublinear photoconductivity of photorefractive barium titanate,” Phys. Rev. Lett. 64, 2195 (1990).
[CrossRef] [PubMed]

Mahgerefteh, K.

Megumi, K.

K. Megumi, H. Kozuka, M. Kobayashi, and Y. Furuhata, “High-sensitive holographic storage in Ce-doped SBN,” Appl. Phys. Lett. 30, 631 (1977).
[CrossRef]

Micheron, F.

P. Günter and F. Micheron, “Photorefractive effects and photocurrents in KNbO3:Fe,” Ferroelectrics 18, 27 (1978).
[CrossRef]

Mormile, P.

J. Ma, L. Liu, S. Wu, Z. Wang, P. Mormile, G. Pierattinin, and S. D. Nicola, “Photorefractive spatial light modulation by electrocontrolled beam coupling in SBN:Ce crystals,” Opt. Commun. 70, 181 (1989).
[CrossRef]

Motes, A.

Motes, R. A.

Neurgaonkar, R.

Neurgaonkar, R. R.

R. R. Neurgaonkar, W. K. Cory, J. R. Oliver, and M. Khoshnevisan, “Ferroelectric tungsten bronze crystals and their photorefractive applications,” Ferroelectrics 102, 3 (1990).
[CrossRef]

S. Ducharme, J. Feinberg, and R. R. Neurgaonkar, “Electrooptic and piezoelectric measurements in photorefractive barium titanate and strontium barium niobate,” IEEE J. Quantum Electron. QE-23, 2116 (1987).
[CrossRef]

M. D. Ewbank, R. R. Neurgaonkar, W. K. Cory, and J. Feinberg, “Photorefractive properties of strontium barium niobate,” J. Appl. Phys. 62, 374 (1987).
[CrossRef]

Nicola, S. D.

J. Ma, L. Liu, S. Wu, Z. Wang, P. Mormile, G. Pierattinin, and S. D. Nicola, “Photorefractive spatial light modulation by electrocontrolled beam coupling in SBN:Ce crystals,” Opt. Commun. 70, 181 (1989).
[CrossRef]

Oliver, J. R.

R. R. Neurgaonkar, W. K. Cory, J. R. Oliver, and M. Khoshnevisan, “Ferroelectric tungsten bronze crystals and their photorefractive applications,” Ferroelectrics 102, 3 (1990).
[CrossRef]

Orlov, S.

Orlov, S. S.

Orlowski, R.

E. Krätzig, F. Welz, R. Orlowski, V. Doormann, and M. Rosenkranz, “Holographic storage properties of BaTiO3,” Solid State Commun. 34, 817 (1980).
[CrossRef]

Pankrath, R.

F. Kahmann, R. Pankrath, and R. A. Rupp, “Photoassisted generation of ferroelectric domain gratings in SBN,” Opt. Commun. 107, 6 (1994).
[CrossRef]

K. Buse, R. Pankrath, and E. Krätzig, “Pyroelectrically-induced photorefractive effect in Sr0.61Ba0.39Nb2O6:Ce,” Opt. Lett. 19, 260 (1994).
[CrossRef] [PubMed]

Parish, T.

T. Parish, “Crystal clear storage,” BYTE (November1990), p. 283.

Pierattinin, G.

J. Ma, L. Liu, S. Wu, Z. Wang, P. Mormile, G. Pierattinin, and S. D. Nicola, “Photorefractive spatial light modulation by electrocontrolled beam coupling in SBN:Ce crystals,” Opt. Commun. 70, 181 (1989).
[CrossRef]

Pierce, R. M.

Polozkov, N. M.

Rosenkranz, M.

E. Krätzig, F. Welz, R. Orlowski, V. Doormann, and M. Rosenkranz, “Holographic storage properties of BaTiO3,” Solid State Commun. 34, 817 (1980).
[CrossRef]

Rotgé, J. R.

Rupp, R. A.

F. Kahmann, R. Pankrath, and R. A. Rupp, “Photoassisted generation of ferroelectric domain gratings in SBN,” Opt. Commun. 107, 6 (1994).
[CrossRef]

Schirmer, O. F.

E. Krätzig and O. F. Schirmer, “Photorefractive centers in electro-optic crystals,” in Photorefractive Materials and Their Applications I, Vol. 61 of Topics in Applied Physics, P. Günter and J.-P. Huignard, eds. (Springer-Verlag, Berlin, 1988), pp. 131–166.
[CrossRef]

Segev, M.

Shih, Y. H.

Y. H. Shih, H. Y. Zhang, X. H. He, and L. Yan, “High reflectivity broad band self-pumped phase conjugator at near infrared wavelengths using SBN:Ce,” J. Mod. Opt. 40, 2321 (1993).
[CrossRef]

Simon, M.

M. Simon, A. Gerwens, and E. Krätzig, “Light-induced absorption generated with high intensity laser pulses in strontium-barium niobate,” Phys. Status Solidi A 143, K125 (1994).
[CrossRef]

Spencer, E. G.

F. L. Venturini, E. G. Spencer, P. V. Lenzo, and A. A. Ballman, “Refractive indices of strontium barium niobate,” J. Appl. Phys. 39, 343 (1968).
[CrossRef]

Tayebati, P.

Unland, M.

L. Holtmann, M. Unland, E. Krätzig, and G. Godefroy, “Conductivity and light-induced absorption in BaTiO3,” Appl. Phys. A 51, 13 (1990).
[CrossRef]

Venturini, F. L.

F. L. Venturini, E. G. Spencer, P. V. Lenzo, and A. A. Ballman, “Refractive indices of strontium barium niobate,” J. Appl. Phys. 39, 343 (1968).
[CrossRef]

Wang, Z.

J. Ma, L. Liu, S. Wu, Z. Wang, P. Mormile, G. Pierattinin, and S. D. Nicola, “Photorefractive spatial light modulation by electrocontrolled beam coupling in SBN:Ce crystals,” Opt. Commun. 70, 181 (1989).
[CrossRef]

J. Ma, L. Liu, Z. Wang, and L. Xu, “Controllable real-time simple spatial filter based on selectively erasing in photorefractive two-beam coupling,” Opt. Commun. 74, 15 (1989).
[CrossRef]

Welz, F.

E. Krätzig, F. Welz, R. Orlowski, V. Doormann, and M. Rosenkranz, “Holographic storage properties of BaTiO3,” Solid State Commun. 34, 817 (1980).
[CrossRef]

Wu, S.

J. Ma, L. Liu, S. Wu, Z. Wang, P. Mormile, G. Pierattinin, and S. D. Nicola, “Photorefractive spatial light modulation by electrocontrolled beam coupling in SBN:Ce crystals,” Opt. Commun. 70, 181 (1989).
[CrossRef]

Xu, L.

J. Ma, L. Liu, Z. Wang, and L. Xu, “Controllable real-time simple spatial filter based on selectively erasing in photorefractive two-beam coupling,” Opt. Commun. 74, 15 (1989).
[CrossRef]

Yan, L.

Y. H. Shih, H. Y. Zhang, X. H. He, and L. Yan, “High reflectivity broad band self-pumped phase conjugator at near infrared wavelengths using SBN:Ce,” J. Mod. Opt. 40, 2321 (1993).
[CrossRef]

Yariv, A.

Zhang, H. Y.

Y. H. Shih, H. Y. Zhang, X. H. He, and L. Yan, “High reflectivity broad band self-pumped phase conjugator at near infrared wavelengths using SBN:Ce,” J. Mod. Opt. 40, 2321 (1993).
[CrossRef]

Zozulya, A. A.

Appl. Phys. A (2)

L. Holtmann, K. Buse, G. Kuper, A. Groll, H. Hesse, and E. Krätzig, “Conductivity and light-induced absorption in KNbO3:Fe,” Appl. Phys. A 53, 81 (1991).
[CrossRef]

L. Holtmann, M. Unland, E. Krätzig, and G. Godefroy, “Conductivity and light-induced absorption in BaTiO3,” Appl. Phys. A 51, 13 (1990).
[CrossRef]

Appl. Phys. B (1)

K. Buse and E. Krätzig, “Three-valence charge-transport model for explanation of the photorefractive effect,” Appl. Phys. B 61, 27 (1995).
[CrossRef]

Appl. Phys. Lett. (1)

K. Megumi, H. Kozuka, M. Kobayashi, and Y. Furuhata, “High-sensitive holographic storage in Ce-doped SBN,” Appl. Phys. Lett. 30, 631 (1977).
[CrossRef]

BYTE (1)

T. Parish, “Crystal clear storage,” BYTE (November1990), p. 283.

Ferroelectrics (2)

R. R. Neurgaonkar, W. K. Cory, J. R. Oliver, and M. Khoshnevisan, “Ferroelectric tungsten bronze crystals and their photorefractive applications,” Ferroelectrics 102, 3 (1990).
[CrossRef]

P. Günter and F. Micheron, “Photorefractive effects and photocurrents in KNbO3:Fe,” Ferroelectrics 18, 27 (1978).
[CrossRef]

IEEE J. Quantum Electron. (1)

S. Ducharme, J. Feinberg, and R. R. Neurgaonkar, “Electrooptic and piezoelectric measurements in photorefractive barium titanate and strontium barium niobate,” IEEE J. Quantum Electron. QE-23, 2116 (1987).
[CrossRef]

J. Appl. Phys. (2)

M. D. Ewbank, R. R. Neurgaonkar, W. K. Cory, and J. Feinberg, “Photorefractive properties of strontium barium niobate,” J. Appl. Phys. 62, 374 (1987).
[CrossRef]

F. L. Venturini, E. G. Spencer, P. V. Lenzo, and A. A. Ballman, “Refractive indices of strontium barium niobate,” J. Appl. Phys. 39, 343 (1968).
[CrossRef]

J. Mod. Opt. (1)

Y. H. Shih, H. Y. Zhang, X. H. He, and L. Yan, “High reflectivity broad band self-pumped phase conjugator at near infrared wavelengths using SBN:Ce,” J. Mod. Opt. 40, 2321 (1993).
[CrossRef]

J. Opt. Soc. Am. B (6)

Opt. Commun. (4)

K. Buse, L. Holtmann, and E. Krätzig, “Activation of BaTiO3 for infrared holographic recording,” Opt. Commun. 85, 183 (1991).
[CrossRef]

J. Ma, L. Liu, S. Wu, Z. Wang, P. Mormile, G. Pierattinin, and S. D. Nicola, “Photorefractive spatial light modulation by electrocontrolled beam coupling in SBN:Ce crystals,” Opt. Commun. 70, 181 (1989).
[CrossRef]

J. Ma, L. Liu, Z. Wang, and L. Xu, “Controllable real-time simple spatial filter based on selectively erasing in photorefractive two-beam coupling,” Opt. Commun. 74, 15 (1989).
[CrossRef]

F. Kahmann, R. Pankrath, and R. A. Rupp, “Photoassisted generation of ferroelectric domain gratings in SBN,” Opt. Commun. 107, 6 (1994).
[CrossRef]

Opt. Lett. (3)

Phys. Rev. Lett. (1)

D. Mahgerefteh and J. Feinberg, “Explanation of the apparent sublinear photoconductivity of photorefractive barium titanate,” Phys. Rev. Lett. 64, 2195 (1990).
[CrossRef] [PubMed]

Phys. Status Solidi A (2)

L. Holtmann, “A model for the nonlinear photoconductivity of BaTiO3,” Phys. Status Solidi A 113, K89 (1989).
[CrossRef]

M. Simon, A. Gerwens, and E. Krätzig, “Light-induced absorption generated with high intensity laser pulses in strontium-barium niobate,” Phys. Status Solidi A 143, K125 (1994).
[CrossRef]

Solid State Commun. (1)

E. Krätzig, F. Welz, R. Orlowski, V. Doormann, and M. Rosenkranz, “Holographic storage properties of BaTiO3,” Solid State Commun. 34, 817 (1980).
[CrossRef]

Other (1)

E. Krätzig and O. F. Schirmer, “Photorefractive centers in electro-optic crystals,” in Photorefractive Materials and Their Applications I, Vol. 61 of Topics in Applied Physics, P. Günter and J.-P. Huignard, eds. (Springer-Verlag, Berlin, 1988), pp. 131–166.
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Schematic drawing of the arrangement yielding intensity- and wavelength-dependent measurements of photoconductivity, dark conductivity, bulk photovoltaic effect, and light-induced absorption changes.

Fig. 2
Fig. 2

Absorption spectra for SBN crystals with different Ce concentrations: (a) absorption coefficient αe for extraordinarily polarized light and (b) difference αoαe between the absorption coefficients for ordinarily and extraordinarily polarized light.

Fig. 3
Fig. 3

Absorption coefficient αe for extraordinarily polarized light of wavelength λ = 514 nm versus Ce concentration cCe. The points are measured results, and the solid line is a linear fit.

Fig. 4
Fig. 4

Current density j versus time t for a SBN crystal doped with 0.1 wt% Ce. Light of wavelength λ = 488 nm and intensity I = 54 W m−2 is switched on at t = 0 and off at t = 1200 s.

Fig. 5
Fig. 5

Current density j versus externally applied field E for a SBN crystal with different electrodes. The crystal is doped with 0.2 wt% Ce and illuminated with light of wavelength λ = 514 nm and intensity I = 4.5 W m−2. The symbols are measured results, and the solid lines are linear fits.

Fig. 6
Fig. 6

Double logarithmic plot of photoconductivity σph versus light intensity I for SBN crystals with different Ce concentrations. The symbols are measured results, and the solid lines are fits of the relation σphIx to the measured data. The fits yield x = 0.48, 0.83, 0.96, 1.00, 0.94, and 1.00 (all ± 0.05) for the samples with 0.025, 0.1, 0.2, 0.4, 0.8, and 1.6 wt% Ce, respectively. The light wavelength is approximately λ = 514 nm.

Fig. 7
Fig. 7

Spectra of (a) the photoconductivity nonlinearity parameter x and (b) the specific photoconductivity σph/Ix for SBN crystals with different Ce concentrations. These parameters are determined from fits like those in Fig. 6.

Fig. 8
Fig. 8

Spectra of light-induced absorption changes αli for SBN crystals with different Ce concentrations. The pump light wavelength is λ = 514 nm, and the intensity in front of the crystals is I = 30 kW m−2.

Fig. 9
Fig. 9

(a) Reciprocal light-induced absorption change σli−1 versus reciprocal photoconductivity σph−1 for SBN crystals with different Ce concentrations. Light-induced absorption and photoconductivity are generated by light of wavelength λ = 514 nm, and the absorption changes are measured at λ = 560 nm. The symbols are measured results, and the solid lines are linear fits. (b) Reciprocal slopes ξ−1 of these lines versus Ce concentration cCe. The solid line is a linear fit.

Tables (1)

Tables Icon

Table 1 Dark Conductivity σdark of SBN Samples with Different Ce Concentrations cCe

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

j k = j drift , k + j pv , k .
j drift , k = ( σ ph , k l + σ dark , k l ) E l ,
j pv , k = ½ ( β k m n e m * e n + c .c . ) ,
α li = 1 d ln [ I probe ( pump light off ) I probe ( pump light on ) ] ,
j pyro = P s T d T d t ,
j pyro = P s T I 0 [ 1 exp ( α d ) ] c p d ρ ,

Metrics