Abstract

Holographic recording in LiNbO3 doped with 2–5% ZnO is reported. High photoconductivities of these crystals result in high-speed recording. Holograms are formed by a combined mechanism including photovoltaic and diffusion fields simultaneously. The contribution from the photovoltaic mechanism increases with light intensity because of strong intensity dependence of the photovoltaic field. The observed values of the photovoltaic fields are higher than those calculated from the available data on photoconductivity and absorption coefficient. The enhanced values of the photovoltaic field are obviously related to the intensity dependence of the optical absorption coefficient that results from a multilevel charge-transport scheme in LiNbO3:Zn crystals.

© 1996 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. R. Volk and N. M. Rubinina, Sov. Phys. Solid State 33, 674 (1991).
  2. T. Volk, N. Rubinina, and M. Woehlecke, J. Opt. Soc. Am. B 11, 1681 (1994).
    [CrossRef]
  3. S. G. Odulov and M. S. Soskin, Photorefractive Materials and Their Applications, Vol. 62 of Topics in Applied Physics (Springer-Verlag, Berlin, 1989), p. 6.
  4. S. B. Serreze and R. B. Goldner, Rev. Sci. Instrum. 45, 1613 (1974).
    [CrossRef]
  5. H. Kogelnick, Bell. Syst. Tech. J. 48, 2909 (1969).
    [CrossRef]
  6. J. J. Amodei, Appl. Phys. Lett. 18, 22 (1971).
    [CrossRef]
  7. P. Guenter, Phys. Lett. 93, 199 (1984).
  8. See, e.g., D. von der Linde and A. M. Glass, Appl. Phys. 8, 85 (1975).
    [CrossRef]
  9. G. A. Brost, R. A. Motes, and J. R. Rotge, J. Opt. Soc. Am. B 5, 1879 (1988).
    [CrossRef]
  10. D. Mahgerefteh and J. Feinberg, Phys. Rev. Lett. 64, 2195 (1990).
    [CrossRef] [PubMed]
  11. M. Simon, F. Jermann, and E. Kraetzig, Opt. Mater. 3, 101 (1994).
    [CrossRef]
  12. H. Donnerberg, S. M. Tomlinson, C. R. A. Catlow, and O. F. Schirmer, Phys. Rev. B 40, 11909 (1989).
    [CrossRef]

1994 (2)

M. Simon, F. Jermann, and E. Kraetzig, Opt. Mater. 3, 101 (1994).
[CrossRef]

T. Volk, N. Rubinina, and M. Woehlecke, J. Opt. Soc. Am. B 11, 1681 (1994).
[CrossRef]

1991 (1)

T. R. Volk and N. M. Rubinina, Sov. Phys. Solid State 33, 674 (1991).

1990 (1)

D. Mahgerefteh and J. Feinberg, Phys. Rev. Lett. 64, 2195 (1990).
[CrossRef] [PubMed]

1989 (1)

H. Donnerberg, S. M. Tomlinson, C. R. A. Catlow, and O. F. Schirmer, Phys. Rev. B 40, 11909 (1989).
[CrossRef]

1988 (1)

1984 (1)

P. Guenter, Phys. Lett. 93, 199 (1984).

1975 (1)

See, e.g., D. von der Linde and A. M. Glass, Appl. Phys. 8, 85 (1975).
[CrossRef]

1974 (1)

S. B. Serreze and R. B. Goldner, Rev. Sci. Instrum. 45, 1613 (1974).
[CrossRef]

1971 (1)

J. J. Amodei, Appl. Phys. Lett. 18, 22 (1971).
[CrossRef]

1969 (1)

H. Kogelnick, Bell. Syst. Tech. J. 48, 2909 (1969).
[CrossRef]

Amodei, J. J.

J. J. Amodei, Appl. Phys. Lett. 18, 22 (1971).
[CrossRef]

Brost, G. A.

Catlow, C. R. A.

H. Donnerberg, S. M. Tomlinson, C. R. A. Catlow, and O. F. Schirmer, Phys. Rev. B 40, 11909 (1989).
[CrossRef]

Donnerberg, H.

H. Donnerberg, S. M. Tomlinson, C. R. A. Catlow, and O. F. Schirmer, Phys. Rev. B 40, 11909 (1989).
[CrossRef]

Feinberg, J.

D. Mahgerefteh and J. Feinberg, Phys. Rev. Lett. 64, 2195 (1990).
[CrossRef] [PubMed]

Glass, A. M.

See, e.g., D. von der Linde and A. M. Glass, Appl. Phys. 8, 85 (1975).
[CrossRef]

Goldner, R. B.

S. B. Serreze and R. B. Goldner, Rev. Sci. Instrum. 45, 1613 (1974).
[CrossRef]

Guenter, P.

P. Guenter, Phys. Lett. 93, 199 (1984).

Jermann, F.

M. Simon, F. Jermann, and E. Kraetzig, Opt. Mater. 3, 101 (1994).
[CrossRef]

Kogelnick, H.

H. Kogelnick, Bell. Syst. Tech. J. 48, 2909 (1969).
[CrossRef]

Kraetzig, E.

M. Simon, F. Jermann, and E. Kraetzig, Opt. Mater. 3, 101 (1994).
[CrossRef]

Mahgerefteh, D.

D. Mahgerefteh and J. Feinberg, Phys. Rev. Lett. 64, 2195 (1990).
[CrossRef] [PubMed]

Motes, R. A.

Odulov, S. G.

S. G. Odulov and M. S. Soskin, Photorefractive Materials and Their Applications, Vol. 62 of Topics in Applied Physics (Springer-Verlag, Berlin, 1989), p. 6.

Rotge, J. R.

Rubinina, N.

Rubinina, N. M.

T. R. Volk and N. M. Rubinina, Sov. Phys. Solid State 33, 674 (1991).

Schirmer, O. F.

H. Donnerberg, S. M. Tomlinson, C. R. A. Catlow, and O. F. Schirmer, Phys. Rev. B 40, 11909 (1989).
[CrossRef]

Serreze, S. B.

S. B. Serreze and R. B. Goldner, Rev. Sci. Instrum. 45, 1613 (1974).
[CrossRef]

Simon, M.

M. Simon, F. Jermann, and E. Kraetzig, Opt. Mater. 3, 101 (1994).
[CrossRef]

Soskin, M. S.

S. G. Odulov and M. S. Soskin, Photorefractive Materials and Their Applications, Vol. 62 of Topics in Applied Physics (Springer-Verlag, Berlin, 1989), p. 6.

Tomlinson, S. M.

H. Donnerberg, S. M. Tomlinson, C. R. A. Catlow, and O. F. Schirmer, Phys. Rev. B 40, 11909 (1989).
[CrossRef]

Volk, T.

Volk, T. R.

T. R. Volk and N. M. Rubinina, Sov. Phys. Solid State 33, 674 (1991).

von der Linde, D.

See, e.g., D. von der Linde and A. M. Glass, Appl. Phys. 8, 85 (1975).
[CrossRef]

Woehlecke, M.

Appl. Phys. (1)

See, e.g., D. von der Linde and A. M. Glass, Appl. Phys. 8, 85 (1975).
[CrossRef]

Appl. Phys. Lett. (1)

J. J. Amodei, Appl. Phys. Lett. 18, 22 (1971).
[CrossRef]

Bell. Syst. Tech. J. (1)

H. Kogelnick, Bell. Syst. Tech. J. 48, 2909 (1969).
[CrossRef]

J. Opt. Soc. Am. B (2)

Opt. Mater. (1)

M. Simon, F. Jermann, and E. Kraetzig, Opt. Mater. 3, 101 (1994).
[CrossRef]

Phys. Lett. (1)

P. Guenter, Phys. Lett. 93, 199 (1984).

Phys. Rev. B (1)

H. Donnerberg, S. M. Tomlinson, C. R. A. Catlow, and O. F. Schirmer, Phys. Rev. B 40, 11909 (1989).
[CrossRef]

Phys. Rev. Lett. (1)

D. Mahgerefteh and J. Feinberg, Phys. Rev. Lett. 64, 2195 (1990).
[CrossRef] [PubMed]

Rev. Sci. Instrum. (1)

S. B. Serreze and R. B. Goldner, Rev. Sci. Instrum. 45, 1613 (1974).
[CrossRef]

Sov. Phys. Solid State (1)

T. R. Volk and N. M. Rubinina, Sov. Phys. Solid State 33, 674 (1991).

Other (1)

S. G. Odulov and M. S. Soskin, Photorefractive Materials and Their Applications, Vol. 62 of Topics in Applied Physics (Springer-Verlag, Berlin, 1989), p. 6.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Diffraction efficiency η versus the grating wave vector in LiNbO3:2%Zn for I = 1 W/cm2 (curve 1). Curve 2, the corresponding dependence of the space-charge field. Curve 3, the diffusion field versus the grating wave vector calculated by Eq. (1). (Λ in the upper abcissa is the grating period.)

Fig. 2
Fig. 2

Diffraction efficiency η versus light intensity in LiNbO3:2%Zn at a grating period 5.2 × 10−4 cm (curve 1). Curve 2, the corresponding dependence of the space-charge field.

Fig. 3
Fig. 3

Curve 1, photovoltaic field and curve 2, photoconductivity σph versus light intensity. Ephv was estimated from measurements of photorefraction by the optical compensator technique. Curve 3, the photovoltaic field calculated by Eq. (1) with the experimental dependence σph(I) (curve 2).

Fig. 4
Fig. 4

Intensity dependence of the saturation values of photorefraction in LiNbO3:Zn crystals compared with those for undoped LiNbO3.

Tables (1)

Tables Icon

Table 1 Properties of LiNbO3:Zn Crystals

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

E dif = k T / e ( 4 π sin θ / 2 ) / λ = k T / e K ,
ϕ = arctan ( E dif / E phv ) ,
E phv = J phv / σ = k α I / σ ,

Metrics