Abstract

We study clustering effects in heavily ytterbium–erbium-codoped silica fibers. We demonstrate that the fraction of both ions found in clusters can exceed 50% in such fibers. A clustering effect is at the origin of an efficient double energy transfer process that generates a green fluorescence. An original method, based on a dynamic analysis of the ytterbium–erbium system, permits determination of the intracluster transfer rates involved, which are found to be high enough to compensate for the weak metastability of the erbium intermediate level.

© 1996 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C. G. Akins, J. R. Armitage, R. Wyatt, B. J. Ainslie, and S. P. Craig-Ryan, “Pump exicited state absorption in Er3+ doped optical fibres,” Opt. Commun. 73, 217–222 (1989).
    [Crossref]
  2. E. Maurice, G. Monnom, B. Dussardier, A. Saïssy, D. B. Ostrowsky, and G. W. Baxter, “Thermalization effects between upper levels of green fluorescence in Er-doped silica fibers,” Opt. Lett. 19, 990–992 (1994).
    [Crossref] [PubMed]
  3. H. Berthou and C. K. Jorgensen, “Optical-fiber temperature sensor based on upconversion-excited fluorescence,” Opt Lett. 15, 1100–1102 (1990).
    [Crossref] [PubMed]
  4. J. L. Jackel, A. Yi-Yan, E. M. Vagel, A. Van Lehmen, J. J. Johnson, and E. Snitzer, “Guided blue and green upconversion fluorescence in an erbium–ytterbium-containing glass,” Appl. Opt. 31, 3390–3392 (1992).
    [Crossref] [PubMed]
  5. J. E. Townsend, W. L. Barnes, K. P. Jedrzejewski, and S. G. Grubb, “Yb3+ sensitised Er3+ doped silica optical fibre with ultrahigh transfer efficiency and gain,” Electron. Lett. 27, 1958–1959 (1991).
    [Crossref]
  6. B. J. Ainslie, S. P. Craig, R. Wyatt, and K. Moulding, “Optical and structural analysis of neodymiumdoped silica-based optical fibre,” Mater. Lett. 8, 204–208 (1989).
    [Crossref]
  7. E. Delevaque, T. Georges, M. Monerie, P. Lamouler, and J. F. Bayon, “Modeling of pair-induced quenching in erbium-doped silicate fibers,” IEEE Photon. Technol. Lett. 5, 73–75 (1993).
    [Crossref]
  8. R. S. Quimby, W. J. Miniscalco, and B. Thompson, “Quantitative characterization of clustering in erbium-doped silica glass fibers,” in Fiber Laser Sources and Amplifiers V, M. J. Digonnet, ed., Proc. Soc. Photo-Opt. Instrum. Eng.2073, 1 (1993).
  9. E. Maurice, G. Monnom, B. Dussardier, and D. B. Ostrowsky, “Clustering induced non-saturable absorption phenomenon in heavily erbium-doped silica fibers,” Opt. Lett. 20, 2487–2489 (1995).
    [Crossref]
  10. J. L. Wagener, P. F. Wysocki, M. J. F. Digonnet, H. J. Shaw, and D. J. DiGiovanni, “Effects of concentration and clusters in erbium-doped fiber lasers,” Opt. Lett. 18, 2014–2016 (1993).
    [Crossref] [PubMed]
  11. J. Nilsson, P. Blixt, B. Jaskorzynska, and J. Babonas, “Evaluation of parasistic upconversion mechanisms in Er3+-doped silica-glass fibers by analysis of fluorescence at 980 nm,” IEEE Photon. Technol. Lett. 13, 341–349 (1995).
  12. S. Georgescu, T. L. Glynn, R. Sherlock, and V. Lupei, “Concentration quenching of the 4I9/2 level of Er3+ in laser crystals,” Opt. Commun. 106, 75–78 (1994).
    [Crossref]
  13. E. Maurice, G. Monnom, D. B. Ostrowsky, and G. W. Baxter, “High-dynamic range temperature point sensor using green fluorescence intensity ratio in Er-doped silica fiber,” J. Lightwave Technol. 13, 1349–1353 (1995).
    [Crossref]
  14. E. Maurice, G. Monnom, B. Dussardier, A. Saissy, D. B. Ostrowsky, and G. W. Baxter, “Erbium doped silica fibers for intrinsic fiber optic temperature sensors,” Appl. Opt. 34, 8019–8025 (1995).
    [Crossref] [PubMed]
  15. J.-Y. Allain, M. Monerie, and H. Poignant, “Tunable green upconversion erbium fibre laser,” Electron. Lett. 28, 111–113 (1992).
    [Crossref]
  16. E. Desurvire, J. L. Zyskind, and C. R. Giles, “Design optimization for efficient erbium-doped fiber amplifiers,” J. Lightwave Technol. 8, 1730–1741 (1990).
    [Crossref]
  17. J. R. Armitage, R. Wyatt, B. J. Ainslie, and S. P. Craig-Ryan, “Highly efficient 980 nm operation of an Yb3+-doped silica fibre laser,” Electron. Lett. 25, 398–399 (1989).
    [Crossref]
  18. D. C. Hanna, I. R. Perry, R. G. Smart, P. J. Suni, J. E. Townsend, and A. C. Tropper, “Efficient superfluorescent emission at 974 nm and 1040 nm from an Yb-doped fiber,” Opt. Commun. 72, 230–234 (1989).
    [Crossref]
  19. A. Hartog and M. Gold, “On the theory of backscattering in single-mode optical fibers,” J. Lightwave Technol. 2, 76–82 (1984).
    [Crossref]

1995 (4)

E. Maurice, G. Monnom, B. Dussardier, and D. B. Ostrowsky, “Clustering induced non-saturable absorption phenomenon in heavily erbium-doped silica fibers,” Opt. Lett. 20, 2487–2489 (1995).
[Crossref]

E. Maurice, G. Monnom, D. B. Ostrowsky, and G. W. Baxter, “High-dynamic range temperature point sensor using green fluorescence intensity ratio in Er-doped silica fiber,” J. Lightwave Technol. 13, 1349–1353 (1995).
[Crossref]

E. Maurice, G. Monnom, B. Dussardier, A. Saissy, D. B. Ostrowsky, and G. W. Baxter, “Erbium doped silica fibers for intrinsic fiber optic temperature sensors,” Appl. Opt. 34, 8019–8025 (1995).
[Crossref] [PubMed]

J. Nilsson, P. Blixt, B. Jaskorzynska, and J. Babonas, “Evaluation of parasistic upconversion mechanisms in Er3+-doped silica-glass fibers by analysis of fluorescence at 980 nm,” IEEE Photon. Technol. Lett. 13, 341–349 (1995).

1994 (2)

S. Georgescu, T. L. Glynn, R. Sherlock, and V. Lupei, “Concentration quenching of the 4I9/2 level of Er3+ in laser crystals,” Opt. Commun. 106, 75–78 (1994).
[Crossref]

E. Maurice, G. Monnom, B. Dussardier, A. Saïssy, D. B. Ostrowsky, and G. W. Baxter, “Thermalization effects between upper levels of green fluorescence in Er-doped silica fibers,” Opt. Lett. 19, 990–992 (1994).
[Crossref] [PubMed]

1993 (2)

J. L. Wagener, P. F. Wysocki, M. J. F. Digonnet, H. J. Shaw, and D. J. DiGiovanni, “Effects of concentration and clusters in erbium-doped fiber lasers,” Opt. Lett. 18, 2014–2016 (1993).
[Crossref] [PubMed]

E. Delevaque, T. Georges, M. Monerie, P. Lamouler, and J. F. Bayon, “Modeling of pair-induced quenching in erbium-doped silicate fibers,” IEEE Photon. Technol. Lett. 5, 73–75 (1993).
[Crossref]

1992 (2)

1991 (1)

J. E. Townsend, W. L. Barnes, K. P. Jedrzejewski, and S. G. Grubb, “Yb3+ sensitised Er3+ doped silica optical fibre with ultrahigh transfer efficiency and gain,” Electron. Lett. 27, 1958–1959 (1991).
[Crossref]

1990 (2)

H. Berthou and C. K. Jorgensen, “Optical-fiber temperature sensor based on upconversion-excited fluorescence,” Opt Lett. 15, 1100–1102 (1990).
[Crossref] [PubMed]

E. Desurvire, J. L. Zyskind, and C. R. Giles, “Design optimization for efficient erbium-doped fiber amplifiers,” J. Lightwave Technol. 8, 1730–1741 (1990).
[Crossref]

1989 (4)

J. R. Armitage, R. Wyatt, B. J. Ainslie, and S. P. Craig-Ryan, “Highly efficient 980 nm operation of an Yb3+-doped silica fibre laser,” Electron. Lett. 25, 398–399 (1989).
[Crossref]

D. C. Hanna, I. R. Perry, R. G. Smart, P. J. Suni, J. E. Townsend, and A. C. Tropper, “Efficient superfluorescent emission at 974 nm and 1040 nm from an Yb-doped fiber,” Opt. Commun. 72, 230–234 (1989).
[Crossref]

B. J. Ainslie, S. P. Craig, R. Wyatt, and K. Moulding, “Optical and structural analysis of neodymiumdoped silica-based optical fibre,” Mater. Lett. 8, 204–208 (1989).
[Crossref]

C. G. Akins, J. R. Armitage, R. Wyatt, B. J. Ainslie, and S. P. Craig-Ryan, “Pump exicited state absorption in Er3+ doped optical fibres,” Opt. Commun. 73, 217–222 (1989).
[Crossref]

1984 (1)

A. Hartog and M. Gold, “On the theory of backscattering in single-mode optical fibers,” J. Lightwave Technol. 2, 76–82 (1984).
[Crossref]

Ainslie, B. J.

C. G. Akins, J. R. Armitage, R. Wyatt, B. J. Ainslie, and S. P. Craig-Ryan, “Pump exicited state absorption in Er3+ doped optical fibres,” Opt. Commun. 73, 217–222 (1989).
[Crossref]

B. J. Ainslie, S. P. Craig, R. Wyatt, and K. Moulding, “Optical and structural analysis of neodymiumdoped silica-based optical fibre,” Mater. Lett. 8, 204–208 (1989).
[Crossref]

J. R. Armitage, R. Wyatt, B. J. Ainslie, and S. P. Craig-Ryan, “Highly efficient 980 nm operation of an Yb3+-doped silica fibre laser,” Electron. Lett. 25, 398–399 (1989).
[Crossref]

Akins, C. G.

C. G. Akins, J. R. Armitage, R. Wyatt, B. J. Ainslie, and S. P. Craig-Ryan, “Pump exicited state absorption in Er3+ doped optical fibres,” Opt. Commun. 73, 217–222 (1989).
[Crossref]

Allain, J.-Y.

J.-Y. Allain, M. Monerie, and H. Poignant, “Tunable green upconversion erbium fibre laser,” Electron. Lett. 28, 111–113 (1992).
[Crossref]

Armitage, J. R.

C. G. Akins, J. R. Armitage, R. Wyatt, B. J. Ainslie, and S. P. Craig-Ryan, “Pump exicited state absorption in Er3+ doped optical fibres,” Opt. Commun. 73, 217–222 (1989).
[Crossref]

J. R. Armitage, R. Wyatt, B. J. Ainslie, and S. P. Craig-Ryan, “Highly efficient 980 nm operation of an Yb3+-doped silica fibre laser,” Electron. Lett. 25, 398–399 (1989).
[Crossref]

Babonas, J.

J. Nilsson, P. Blixt, B. Jaskorzynska, and J. Babonas, “Evaluation of parasistic upconversion mechanisms in Er3+-doped silica-glass fibers by analysis of fluorescence at 980 nm,” IEEE Photon. Technol. Lett. 13, 341–349 (1995).

Barnes, W. L.

J. E. Townsend, W. L. Barnes, K. P. Jedrzejewski, and S. G. Grubb, “Yb3+ sensitised Er3+ doped silica optical fibre with ultrahigh transfer efficiency and gain,” Electron. Lett. 27, 1958–1959 (1991).
[Crossref]

Baxter, G. W.

Bayon, J. F.

E. Delevaque, T. Georges, M. Monerie, P. Lamouler, and J. F. Bayon, “Modeling of pair-induced quenching in erbium-doped silicate fibers,” IEEE Photon. Technol. Lett. 5, 73–75 (1993).
[Crossref]

Berthou, H.

H. Berthou and C. K. Jorgensen, “Optical-fiber temperature sensor based on upconversion-excited fluorescence,” Opt Lett. 15, 1100–1102 (1990).
[Crossref] [PubMed]

Blixt, P.

J. Nilsson, P. Blixt, B. Jaskorzynska, and J. Babonas, “Evaluation of parasistic upconversion mechanisms in Er3+-doped silica-glass fibers by analysis of fluorescence at 980 nm,” IEEE Photon. Technol. Lett. 13, 341–349 (1995).

Craig, S. P.

B. J. Ainslie, S. P. Craig, R. Wyatt, and K. Moulding, “Optical and structural analysis of neodymiumdoped silica-based optical fibre,” Mater. Lett. 8, 204–208 (1989).
[Crossref]

Craig-Ryan, S. P.

C. G. Akins, J. R. Armitage, R. Wyatt, B. J. Ainslie, and S. P. Craig-Ryan, “Pump exicited state absorption in Er3+ doped optical fibres,” Opt. Commun. 73, 217–222 (1989).
[Crossref]

J. R. Armitage, R. Wyatt, B. J. Ainslie, and S. P. Craig-Ryan, “Highly efficient 980 nm operation of an Yb3+-doped silica fibre laser,” Electron. Lett. 25, 398–399 (1989).
[Crossref]

Delevaque, E.

E. Delevaque, T. Georges, M. Monerie, P. Lamouler, and J. F. Bayon, “Modeling of pair-induced quenching in erbium-doped silicate fibers,” IEEE Photon. Technol. Lett. 5, 73–75 (1993).
[Crossref]

Desurvire, E.

E. Desurvire, J. L. Zyskind, and C. R. Giles, “Design optimization for efficient erbium-doped fiber amplifiers,” J. Lightwave Technol. 8, 1730–1741 (1990).
[Crossref]

DiGiovanni, D. J.

Digonnet, M. J. F.

Dussardier, B.

Georges, T.

E. Delevaque, T. Georges, M. Monerie, P. Lamouler, and J. F. Bayon, “Modeling of pair-induced quenching in erbium-doped silicate fibers,” IEEE Photon. Technol. Lett. 5, 73–75 (1993).
[Crossref]

Georgescu, S.

S. Georgescu, T. L. Glynn, R. Sherlock, and V. Lupei, “Concentration quenching of the 4I9/2 level of Er3+ in laser crystals,” Opt. Commun. 106, 75–78 (1994).
[Crossref]

Giles, C. R.

E. Desurvire, J. L. Zyskind, and C. R. Giles, “Design optimization for efficient erbium-doped fiber amplifiers,” J. Lightwave Technol. 8, 1730–1741 (1990).
[Crossref]

Glynn, T. L.

S. Georgescu, T. L. Glynn, R. Sherlock, and V. Lupei, “Concentration quenching of the 4I9/2 level of Er3+ in laser crystals,” Opt. Commun. 106, 75–78 (1994).
[Crossref]

Gold, M.

A. Hartog and M. Gold, “On the theory of backscattering in single-mode optical fibers,” J. Lightwave Technol. 2, 76–82 (1984).
[Crossref]

Grubb, S. G.

J. E. Townsend, W. L. Barnes, K. P. Jedrzejewski, and S. G. Grubb, “Yb3+ sensitised Er3+ doped silica optical fibre with ultrahigh transfer efficiency and gain,” Electron. Lett. 27, 1958–1959 (1991).
[Crossref]

Hanna, D. C.

D. C. Hanna, I. R. Perry, R. G. Smart, P. J. Suni, J. E. Townsend, and A. C. Tropper, “Efficient superfluorescent emission at 974 nm and 1040 nm from an Yb-doped fiber,” Opt. Commun. 72, 230–234 (1989).
[Crossref]

Hartog, A.

A. Hartog and M. Gold, “On the theory of backscattering in single-mode optical fibers,” J. Lightwave Technol. 2, 76–82 (1984).
[Crossref]

Jackel, J. L.

Jaskorzynska, B.

J. Nilsson, P. Blixt, B. Jaskorzynska, and J. Babonas, “Evaluation of parasistic upconversion mechanisms in Er3+-doped silica-glass fibers by analysis of fluorescence at 980 nm,” IEEE Photon. Technol. Lett. 13, 341–349 (1995).

Jedrzejewski, K. P.

J. E. Townsend, W. L. Barnes, K. P. Jedrzejewski, and S. G. Grubb, “Yb3+ sensitised Er3+ doped silica optical fibre with ultrahigh transfer efficiency and gain,” Electron. Lett. 27, 1958–1959 (1991).
[Crossref]

Johnson, J. J.

Jorgensen, C. K.

H. Berthou and C. K. Jorgensen, “Optical-fiber temperature sensor based on upconversion-excited fluorescence,” Opt Lett. 15, 1100–1102 (1990).
[Crossref] [PubMed]

Lamouler, P.

E. Delevaque, T. Georges, M. Monerie, P. Lamouler, and J. F. Bayon, “Modeling of pair-induced quenching in erbium-doped silicate fibers,” IEEE Photon. Technol. Lett. 5, 73–75 (1993).
[Crossref]

Lupei, V.

S. Georgescu, T. L. Glynn, R. Sherlock, and V. Lupei, “Concentration quenching of the 4I9/2 level of Er3+ in laser crystals,” Opt. Commun. 106, 75–78 (1994).
[Crossref]

Maurice, E.

Miniscalco, W. J.

R. S. Quimby, W. J. Miniscalco, and B. Thompson, “Quantitative characterization of clustering in erbium-doped silica glass fibers,” in Fiber Laser Sources and Amplifiers V, M. J. Digonnet, ed., Proc. Soc. Photo-Opt. Instrum. Eng.2073, 1 (1993).

Monerie, M.

E. Delevaque, T. Georges, M. Monerie, P. Lamouler, and J. F. Bayon, “Modeling of pair-induced quenching in erbium-doped silicate fibers,” IEEE Photon. Technol. Lett. 5, 73–75 (1993).
[Crossref]

J.-Y. Allain, M. Monerie, and H. Poignant, “Tunable green upconversion erbium fibre laser,” Electron. Lett. 28, 111–113 (1992).
[Crossref]

Monnom, G.

Moulding, K.

B. J. Ainslie, S. P. Craig, R. Wyatt, and K. Moulding, “Optical and structural analysis of neodymiumdoped silica-based optical fibre,” Mater. Lett. 8, 204–208 (1989).
[Crossref]

Nilsson, J.

J. Nilsson, P. Blixt, B. Jaskorzynska, and J. Babonas, “Evaluation of parasistic upconversion mechanisms in Er3+-doped silica-glass fibers by analysis of fluorescence at 980 nm,” IEEE Photon. Technol. Lett. 13, 341–349 (1995).

Ostrowsky, D. B.

Perry, I. R.

D. C. Hanna, I. R. Perry, R. G. Smart, P. J. Suni, J. E. Townsend, and A. C. Tropper, “Efficient superfluorescent emission at 974 nm and 1040 nm from an Yb-doped fiber,” Opt. Commun. 72, 230–234 (1989).
[Crossref]

Poignant, H.

J.-Y. Allain, M. Monerie, and H. Poignant, “Tunable green upconversion erbium fibre laser,” Electron. Lett. 28, 111–113 (1992).
[Crossref]

Quimby, R. S.

R. S. Quimby, W. J. Miniscalco, and B. Thompson, “Quantitative characterization of clustering in erbium-doped silica glass fibers,” in Fiber Laser Sources and Amplifiers V, M. J. Digonnet, ed., Proc. Soc. Photo-Opt. Instrum. Eng.2073, 1 (1993).

Saissy, A.

Saïssy, A.

Shaw, H. J.

Sherlock, R.

S. Georgescu, T. L. Glynn, R. Sherlock, and V. Lupei, “Concentration quenching of the 4I9/2 level of Er3+ in laser crystals,” Opt. Commun. 106, 75–78 (1994).
[Crossref]

Smart, R. G.

D. C. Hanna, I. R. Perry, R. G. Smart, P. J. Suni, J. E. Townsend, and A. C. Tropper, “Efficient superfluorescent emission at 974 nm and 1040 nm from an Yb-doped fiber,” Opt. Commun. 72, 230–234 (1989).
[Crossref]

Snitzer, E.

Suni, P. J.

D. C. Hanna, I. R. Perry, R. G. Smart, P. J. Suni, J. E. Townsend, and A. C. Tropper, “Efficient superfluorescent emission at 974 nm and 1040 nm from an Yb-doped fiber,” Opt. Commun. 72, 230–234 (1989).
[Crossref]

Thompson, B.

R. S. Quimby, W. J. Miniscalco, and B. Thompson, “Quantitative characterization of clustering in erbium-doped silica glass fibers,” in Fiber Laser Sources and Amplifiers V, M. J. Digonnet, ed., Proc. Soc. Photo-Opt. Instrum. Eng.2073, 1 (1993).

Townsend, J. E.

J. E. Townsend, W. L. Barnes, K. P. Jedrzejewski, and S. G. Grubb, “Yb3+ sensitised Er3+ doped silica optical fibre with ultrahigh transfer efficiency and gain,” Electron. Lett. 27, 1958–1959 (1991).
[Crossref]

D. C. Hanna, I. R. Perry, R. G. Smart, P. J. Suni, J. E. Townsend, and A. C. Tropper, “Efficient superfluorescent emission at 974 nm and 1040 nm from an Yb-doped fiber,” Opt. Commun. 72, 230–234 (1989).
[Crossref]

Tropper, A. C.

D. C. Hanna, I. R. Perry, R. G. Smart, P. J. Suni, J. E. Townsend, and A. C. Tropper, “Efficient superfluorescent emission at 974 nm and 1040 nm from an Yb-doped fiber,” Opt. Commun. 72, 230–234 (1989).
[Crossref]

Vagel, E. M.

Van Lehmen, A.

Wagener, J. L.

Wyatt, R.

J. R. Armitage, R. Wyatt, B. J. Ainslie, and S. P. Craig-Ryan, “Highly efficient 980 nm operation of an Yb3+-doped silica fibre laser,” Electron. Lett. 25, 398–399 (1989).
[Crossref]

C. G. Akins, J. R. Armitage, R. Wyatt, B. J. Ainslie, and S. P. Craig-Ryan, “Pump exicited state absorption in Er3+ doped optical fibres,” Opt. Commun. 73, 217–222 (1989).
[Crossref]

B. J. Ainslie, S. P. Craig, R. Wyatt, and K. Moulding, “Optical and structural analysis of neodymiumdoped silica-based optical fibre,” Mater. Lett. 8, 204–208 (1989).
[Crossref]

Wysocki, P. F.

Yi-Yan, A.

Zyskind, J. L.

E. Desurvire, J. L. Zyskind, and C. R. Giles, “Design optimization for efficient erbium-doped fiber amplifiers,” J. Lightwave Technol. 8, 1730–1741 (1990).
[Crossref]

Appl. Opt. (2)

Electron. Lett. (3)

J.-Y. Allain, M. Monerie, and H. Poignant, “Tunable green upconversion erbium fibre laser,” Electron. Lett. 28, 111–113 (1992).
[Crossref]

J. R. Armitage, R. Wyatt, B. J. Ainslie, and S. P. Craig-Ryan, “Highly efficient 980 nm operation of an Yb3+-doped silica fibre laser,” Electron. Lett. 25, 398–399 (1989).
[Crossref]

J. E. Townsend, W. L. Barnes, K. P. Jedrzejewski, and S. G. Grubb, “Yb3+ sensitised Er3+ doped silica optical fibre with ultrahigh transfer efficiency and gain,” Electron. Lett. 27, 1958–1959 (1991).
[Crossref]

IEEE Photon. Technol. Lett. (2)

E. Delevaque, T. Georges, M. Monerie, P. Lamouler, and J. F. Bayon, “Modeling of pair-induced quenching in erbium-doped silicate fibers,” IEEE Photon. Technol. Lett. 5, 73–75 (1993).
[Crossref]

J. Nilsson, P. Blixt, B. Jaskorzynska, and J. Babonas, “Evaluation of parasistic upconversion mechanisms in Er3+-doped silica-glass fibers by analysis of fluorescence at 980 nm,” IEEE Photon. Technol. Lett. 13, 341–349 (1995).

J. Lightwave Technol. (3)

E. Maurice, G. Monnom, D. B. Ostrowsky, and G. W. Baxter, “High-dynamic range temperature point sensor using green fluorescence intensity ratio in Er-doped silica fiber,” J. Lightwave Technol. 13, 1349–1353 (1995).
[Crossref]

E. Desurvire, J. L. Zyskind, and C. R. Giles, “Design optimization for efficient erbium-doped fiber amplifiers,” J. Lightwave Technol. 8, 1730–1741 (1990).
[Crossref]

A. Hartog and M. Gold, “On the theory of backscattering in single-mode optical fibers,” J. Lightwave Technol. 2, 76–82 (1984).
[Crossref]

Mater. Lett. (1)

B. J. Ainslie, S. P. Craig, R. Wyatt, and K. Moulding, “Optical and structural analysis of neodymiumdoped silica-based optical fibre,” Mater. Lett. 8, 204–208 (1989).
[Crossref]

Opt Lett. (1)

H. Berthou and C. K. Jorgensen, “Optical-fiber temperature sensor based on upconversion-excited fluorescence,” Opt Lett. 15, 1100–1102 (1990).
[Crossref] [PubMed]

Opt. Commun. (3)

S. Georgescu, T. L. Glynn, R. Sherlock, and V. Lupei, “Concentration quenching of the 4I9/2 level of Er3+ in laser crystals,” Opt. Commun. 106, 75–78 (1994).
[Crossref]

D. C. Hanna, I. R. Perry, R. G. Smart, P. J. Suni, J. E. Townsend, and A. C. Tropper, “Efficient superfluorescent emission at 974 nm and 1040 nm from an Yb-doped fiber,” Opt. Commun. 72, 230–234 (1989).
[Crossref]

C. G. Akins, J. R. Armitage, R. Wyatt, B. J. Ainslie, and S. P. Craig-Ryan, “Pump exicited state absorption in Er3+ doped optical fibres,” Opt. Commun. 73, 217–222 (1989).
[Crossref]

Opt. Lett. (3)

Other (1)

R. S. Quimby, W. J. Miniscalco, and B. Thompson, “Quantitative characterization of clustering in erbium-doped silica glass fibers,” in Fiber Laser Sources and Amplifiers V, M. J. Digonnet, ed., Proc. Soc. Photo-Opt. Instrum. Eng.2073, 1 (1993).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Energy scheme for the DET process. Two excited Yb3+ ions transfer energy to populate successively the Er3+ 4I11/2 and the Er3+ 4F7/2 levels. The measured lifetime of each level in the studied fiber is indicated. Level energies are in inverse centimeters.

Fig. 2
Fig. 2

Experimental setup for lifetime measurements in lateral and counterpropagating configurations.

Fig. 3
Fig. 3

Fluorescence decays of the Yb–Er fiber under 920-nm excitation. (a) Donor fluorescence, S(1040 nm), and intrinsic Yb3+ decay as measured in the Yb fiber. Inset: Yb–Er fiber decay at short times. (b) Acceptor ion fluorescence, S(540 nm), and intrinsic 2H11/2 and 4S3/2 level decay as measured by exciting the Yb–Er fiber through the 800-nm ESA process.

Fig. 4
Fig. 4

Different species and possibilities of transfer in the Yb3+–Er3+-codoped fibers model. Ybh, Ybs, and Ybc represent the density of Yb3+ ions dissolved into the host, located close to a cluster, or belonging to a cluster, respectively. Erh and Erc represent the density of Er3+ ions dissolved into the host or belonging to a cluster, respectively. The arrows denoted Γ 1,2 p q and Γ designate the first and the second transfer rates between the p species of the Yb3+ and the q species of the Er3+ and the Erc–Erc transfer rate, respectively.

Fig. 5
Fig. 5

540-nm fluorescence decay of the Yb–Er fiber for 920-and 980-nm excitation (solid curves). Dashed curves, numerical simulations.

Fig. 6
Fig. 6

Levels and transitions for modeling the Yb3+–Er3+ double energy transfer process for 920-nm excitation of Yb3+ ion. The p species Yb3+ ion, denoted Ybp, transfers its energy to the q species Er3+ ion, denoted Erq. The first and the second transfer rates, respectively, are denoted Γ 1 p q and Γ 2 p q. The possibility of an energy transfer between two Erc ions placed into their 4I13/2 excited state is also taken into account: Γ is the associated transfer rate.

Tables (2)

Tables Icon

Table 1 Optogeometric Characteristics and Doping Level of the Studied Fibers

Tables Icon

Table 2 Fixed Parameters Used for Numerical Resolution of the Yb3+–Er3+ Cluster Modelinga

Equations (26)

Equations on this page are rendered with MathJax. Learn more.

t Yb 2 = δ Yb 2 Γ 1 Yb 2 Er 0 [Er] ,
t Er 3 = γ 3 Er 3 + Γ 2 Yb 2 Er 2 [Yb] ,
Γ 1 h c = 10 3 s 1 , Γ 1 s c = 6.10 4 s 1 .
Γ 1 c c = 3 × 10 6 s 1 , Γ 2 c c = 4 × 10 6 s 1 , Γ 2 h c = 8 × 10 3 s 1 , Γ 2 s c = 4.8 × 10 5 s 1 .
d m p = Yb m p [ Yb ] , a m q = Er m q [ Er ] .
m = 0 2 d m p = % ( d p ) , m = 0 3 a m q = % ( a q ) .
p = h , s , c % ( d p ) = 1 , q = h , c % ( a q ) = 1.
η = [ Yb ] [Er] .
R = R = σ p I p ( r , θ , z ) h ν p ,
V n m = V m n = σ n m Yb I n m ( r , θ , z ) h ν n m , W n m = W m n = σ n m Er I n m ( r , θ , z ) h ν n m ,
t d 2 h = ( R + V 02 ) d 0 h + V 12 d 1 h ( V 20 + V 21 + δ + Γ 1 h h a 0 h + Γ 2 h h a 2 h + Γ 1 h c a 0 c + Γ 2 h c a 2 c ) d 2 h ,
t d 2 s = ( R + V 02 ) d 0 s + V 12 d 1 s ( V 20 + V 21 + δ + Γ 1 s c a 0 c + Γ 2 s c a 2 c ) d 2 s ,
t d 2 c = ( R + V 02 ) d 0 c + V 12 d 1 c ( V 20 + V 21 + δ + Γ 1 c c a 0 c + Γ 2 c c a 2 c ) d 2 c ,
d 1 p d 0 p = exp ( Δ ε / k T ) ,
d 0 p + d 1 p + d 2 p = % ( d p ) ,
t a 0 h = ( W 01 + W 02 + Γ 1 h h η d 2 h ) a 0 h + ( W 10 + γ 10 ) a 1 h + W 20 a 2 h + γ 30 a 3 h ,
t a 1 h = W 01 a 0 h ( W 10 + γ 10 ) a 1 h + γ 21 a 2 h ,
t a 2 h = ( Γ 1 h h η d 2 h + W 02 ) a 0 h ( W 20 + W 23 + γ 21 + Γ 2 h h η d 2 h ) a 2 h + ( γ 32 + W 32 ) a 3 h ,
t a 3 h = ( W 23 + Γ 2 h h η d 2 h ) a 2 h ( W 32 + γ 3 ) a 3 h .
t a 0 c = ( W 01 + W 02 + Γ 1 h c η d 2 h + Γ 1 s c η d 2 s + Γ 1 c c η d 2 c ) a 0 c + W 20 a 2 c + ( W 10 + γ 10 + Γ a 1 c ) a 1 c + γ 30 a 3 c ,
t a 1 c = W 01 a 0 c ( W 10 + γ 10 + 2 Γ a 1 c ) a 1 c + γ 21 a 2 c ,
t a 2 c = ( W 02 + Γ 1 h c η d 2 h + Γ 1 s c η d 2 s + Γ 1 c c η d 2 c ) a 0 c + Γ ( a 1 c ) 2 ( W 20 + W 23 + γ 21 + Γ 2 h c η d 2 h + Γ 2 s c η d 2 s + Γ 2 c c η d 2 c ) a 2 c + ( γ 32 + W 32 ) a 3 c ,
t a 3 c = ( W 23 + Γ 2 h c η d 2 h + Γ 2 s c η d 2 s + Γ 2 c c η d 2 c ) a 2 c ( γ 3 + W 32 ) a 3 c .
d P i j k ± ( z , t ) d z = ± d P i j k ± ( z , t ) 0 + 0 2 π D ( r ) f i j ( r , θ ) [ σ i j M M i k × ( r , θ , z , t ) σ i j M M j k ( r , θ , z , t ) ] r d r d θ ± C i j h ν i j γ 0 + 0 2 π D ( r ) × M i k ( r , θ , z , t ) r d r d θ ,
0 0 2 π f i j ( r , θ ) r d r d θ = 1 ,
I i j ( r , θ , z ) = P i j ( z ) f i j ( r , θ ) .

Metrics