Abstract

Laser-induced damage threshold measurements were performed on homogeneous and multilayer dielectrics and gold-coated optics at 1053 and 526 nm for pulse durations τ ranging from 140 fs to 1 ns. Gold coatings were found, both experimentally and theoretically, to be limited to 0.6 J/cm2 in the subpicosecond range for 1053-nm pulses. In dielectrics, we find qualitative differences in the morphology of damage and a departure from the diffusion-dominated τ1/2 scaling that indicate that damage results from plasma formation and ablation for τ ≤ 10 ps and from conventional heating and melting for τ > 50 ps. A theoretical model based on electron production by multiphoton ionization, joule heating, and collisional (avalanche) ionization is in quantitative agreement with both the pulse-width and the wavelength scaling of experimental results.

© 1996 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. Strickland and G. Mourou, “Compression of amplified chirped optical pulses,” Opt. Comun. 56, 219–221 (1985); P. Maine, D. Strickland, P. Bado, M. Pessot, and G. Mourou, “Generation of ultrahigh peak power pulses by chirped pulse amplification,” IEEE J. Quantum Electron. 24, 398–403 (1988).
    [CrossRef]
  2. M. D. Perry and G. Mourou, “Terawatt to petawatt subpicosecond lasers,” Science 264, 917–924 (1994).
    [CrossRef] [PubMed]
  3. M. D. Perry, R. D. Boyd, J. A. Britten, D. Decker, B. W. Shore, C. Shannon, E. Shults, and L. Li, “High-efficiency multilayer dielectric diffraction gratings,” Opt. Lett. 20, 940–942 (1995).
    [CrossRef] [PubMed]
  4. N. Bloembergen, “Laser-induced breakdown in solids,” IEEE J. Quantum Electron. QE-10, 375–386 (1974).
    [CrossRef]
  5. L. H. Holway and D. W. Fradin, “Electron avalanche breakdown by laser radiation in insulating crystals,” J. Appl. Phys. 46, 279–291 (1975).
    [CrossRef]
  6. M. Sparks, D. L. Mills, R. Warren, T. Holstein, A. A. Maradudin, L. J. Sham, E. Loh, and D. F. King, “Theory of electron-avalanche breakdown in solids,” Phys. Rev. B 24, 3519–3536 (1981).
    [CrossRef]
  7. A. A. Manenkov and A. M. Prokhorov, “Laser-induced damage in solids,” Sov. Phys. Usp. 29, 104–122 (1986).
    [CrossRef]
  8. S. C. Jones, P. Braunlich, R. T. Casper, X.-A. Shen, and P. Kelly, “Recent progress on laser-induced modifications and intrinsic bulk damage of wide-gap optical materials,” Opt. Eng. 28, 1039–1068 (1989).
    [CrossRef]
  9. A. S. Epifanov, A. A. Manenkov, and A. M. Prokhorov, “Theory of avalanche ionization induced in transparent dielectrics by an electromagnetic field,” Sov. Phys. JETP 43, 377–382 (1976).
  10. W. L. Smith, J. H. Bechtel, and N. Bloembergen, “Picosecond laser-induced breakdown at 5321 and 3547 Å: Observation of frequency-dependent behavior,” Phys. Rev. B 15, 4039–4055 (1977).
    [CrossRef]
  11. A. Schmid, P. Kelly, and P. Bräunlich, “Optical breakdown in alkali halides,” Phys. Rev. B 16, 4569–4582 (1977).
    [CrossRef]
  12. B. G. Gorshkov, A. S. Epifanov, and A. A. Manenkov, “Avalanche ionization produced in solids by large radiation quanta and relative role of multiphoton ionization in laser-induced breakdown,” Sov. Phys. JETP 49, 309–315 (1979).
  13. A. Vaidyanathan, T. W. Walker, and A. H. Guenther, “The relative roles of avalanche multiplication and multiphoton absorption in laser-induced damage of dielectrics,” IEEE J. Quantum Electron. QE-16, 89–93 (1980).
    [CrossRef]
  14. E. S. Bliss, “Pulse duration dependence of laser damage mechanisms,” Opto-Electronics 3, 99–108 (1971).
    [CrossRef]
  15. J. R. Bettis, R. A. House, and A. H. Guenther, “Spot size and pulse duration dependence of laser-induced damage,” in Laser-Induced Damage in Optical Materials: 1976, A. J. Glass and A. H. Guenther, eds., Natl. Bur. Stand. Spec. Publ.462, 338–345 (1976).
  16. W. H. Lowdermilk and D. Milam, “Laser-induced surface and coating damage,” IEEE J. Quantum Electron. QE-17, 1888–1903 (1981).
    [CrossRef]
  17. T. W. Walker, A. H. Guenther, and P. E. Nielsen, “Pulsed laser-induced damage to thin-film optical coatings—Part I: Experimental,” IEEE J. Quantum Electron. QE-17, 2041–2052 (1981).
    [CrossRef]
  18. M. J. Soileau, W. E. Williams, E. W. Van Stryland, T. F. Boggess, and A. L. Smirl, “Temporal dependence of laser-induced breakdown in NaCl and SiO2,” in Laser-Induced Damage in Optical Materials: 1982, H. E. Bennett, A. H. Guenther, D. Milam, and B. E. Newnam, eds., Natl. Bur. Stand. (U.S.) Spec. Publ.669, 387–405 (1984).
  19. S. R. Foltyn and L. J. Jolin, “Long-range pulselength scaling of 351 nm laser damage thresholds,” in Laser-Induced Damage in Optical Materials: 1986, H. E. Bennett, A. H. Guenther, D. Milam, and B. E. Newnam, eds., Natl. Inst. Stand. Technol. (U.S.) Spec. Publ.752, 336–343 (1988).
  20. J. Campbell, F. Rainer, M. Kozlowski, C. R. Wolfe, I. Thomas, and F. Milanovich, “Damage resistance optics for a mega-joule solid-state laser,” in Laser-Induced Damage in Optical Materials: 1990, H. E. Bennett, L. L. Chase, A. H. Guenther, B. E. Newnam, and M. J. Soileau, eds., Proc. Soc. Photo-Opt. Instrum. Eng.1441, 444–456 (1991).
  21. K. Mann, H. Gerhardt, G. Pfeifer, and R. Wolf, “Influence of the laser pulse length and shape on the damage threshold of UV optics,” in Laser-Induced Damage in Optical Materials: 1991, H. E. Bennett, L. L. Chase, A. H. Guenther, B. E. Newnam, and M. J. Soileau, eds., Proc. Soc. Photo-Opt. Instrum. Eng.1624, 436–443 (1992).
  22. D. Du, X. Liu, G. Korn, J. Squier, and G. Mourou, “Laser-induced breakdown by impact ionization in SiO2 with pulse widths from 7 ns to 150 fs,” Appl. Phys. Lett. 64, 3071–3073 (1994).
    [CrossRef]
  23. B. C. Stuart, M. D. Feit, A. M. Rubenchik, B. W. Shore, and M. D. Perry, “Laser-induced damage in dielectrics with nanosecond to subpicosecond pulses,” Phys. Rev. Lett. 74, 2248–2251 (1995).
    [CrossRef] [PubMed]
  24. B. C. Stuart, S. Herman, and M. D. Perry, “Chirped-pulse amplification in Ti:Sapphire beyond 1 μm,” IEEE J. Quantum Electron. 31, 528–538 (1995).
    [CrossRef]
  25. T. Ditmire, H. Nguyen, and M. D. Perry, “Design and performance of a multiterawatt Cr:LiSrAlF6 laser system,” J. Opt. Soc. Am. B 11, 580–590 (1994).
    [CrossRef]
  26. P. B. Corkum, F. Brunel, N. K. Sherman, and T. Srinivasan-Rao, “Thermal response of metals to ultrashort-pulse laser excitation,” Phys. Rev. Lett. 61, 2886–2889 (1988); N. K. Sherman, F. Brunel, P. B. Corkum, and F. A. Hegmann, “Transient response of metals to ultrashort pulse excitation,” Opt. Eng. 28, 1114–1121 (1989).
    [CrossRef] [PubMed]
  27. J. F. Figeria and S. J. Thomas, “Damage thresholds at metal surfaces for short pulse IR lasers,” IEEE J. Quantum Electron. QE-18, 1381–1386 (1982).
    [CrossRef]
  28. M. Sparks and E. Loh, “Temperature dependence of absorption in laser damage of metallic mirrors: I. melting; II. Vaporization and heating the vapor,” J. Opt. Soc. Am. 69, 847–858, 859–868 (1979).
    [CrossRef]
  29. R. D. Boyd, J. A. Britten, D. E. Decker, B. W. Shore, B. C. Stuart, and M. D. Perry, “High-efficiency metallic diffraction grating for laser applications,” Appl. Opt. 34, 1697–1706 (1995).
    [CrossRef] [PubMed]
  30. Y. P. Raizer, “Breakdown and heating of gases under the influence of a laser beam,” Sov. Phys. Usp. 8, 650–673 (1966)
    [CrossRef]
  31. D. Arnold, E. Cartier, and D. J. DiMaria, “Acoustic-phonon runaway and impact ionization by hot electrons in silicon dioxide,” Phys. Rev. A 45, 1477–1480 (1992).
  32. B. K. Ridley, Quantum Processes in Semiconductors (Clarendon, Oxford, 1993), pp. 276–278.
  33. L. V. Keldysh, “Ionization in the field of a strong electromagnetic wave,” Sov. Phys., JETP 20, 1307–1314 (1965).
  34. M. D. Perry, “High-order multiphoton ionization of the noble gases,” Ph.D. dissertation, UCRL-53852, (University of California, Berkeley, Calif., 1987).
  35. M. V. Ammosov, N. B. Delone, and V. P. Krainov, “Tunnel ionization of complex atoms and of atomic ions in an alternating electromagnetic field,” Sov. Phys JETP 64, 1191–1194 (1986).
  36. X. A. Shen, S. C. Jones, and P. Braunlich, “Laser heating of free electrons in wide-gap optical materials at 1064 nm,” Phys. Rev. Lett. 62, 2711–2713 (1989).
    [CrossRef] [PubMed]
  37. M. R. Kozlowski and R. Chow, “The role of defects in laser damage of multilayer coatings,” in Laser-Induced Damage in Optical Materials: 1993, H. E. Bennett, L. L. Chase, A. H. Guenther, B. E. Newnam, and M. J. Soileau, eds., Proc. Soc. Photo-Opt. Instrum. Eng.2114, 640–649 (1994).
  38. M. R. Kozlowski, M. Staggs, F. Rainer, and J. H. Stathis, “Laser conditioning and electronic defect measurements of HfO2 and SiO2 thin films,” in Laser-Induced Damage in Optical Materials: 1990, H. E. Bennett, L. L. Chase, A. H. Guenther, B. E. Newnam, and M. J. Soileau, eds., Proc.1441, 269–282 (1991).

1995 (4)

M. D. Perry, R. D. Boyd, J. A. Britten, D. Decker, B. W. Shore, C. Shannon, E. Shults, and L. Li, “High-efficiency multilayer dielectric diffraction gratings,” Opt. Lett. 20, 940–942 (1995).
[CrossRef] [PubMed]

B. C. Stuart, M. D. Feit, A. M. Rubenchik, B. W. Shore, and M. D. Perry, “Laser-induced damage in dielectrics with nanosecond to subpicosecond pulses,” Phys. Rev. Lett. 74, 2248–2251 (1995).
[CrossRef] [PubMed]

B. C. Stuart, S. Herman, and M. D. Perry, “Chirped-pulse amplification in Ti:Sapphire beyond 1 μm,” IEEE J. Quantum Electron. 31, 528–538 (1995).
[CrossRef]

R. D. Boyd, J. A. Britten, D. E. Decker, B. W. Shore, B. C. Stuart, and M. D. Perry, “High-efficiency metallic diffraction grating for laser applications,” Appl. Opt. 34, 1697–1706 (1995).
[CrossRef] [PubMed]

1994 (3)

T. Ditmire, H. Nguyen, and M. D. Perry, “Design and performance of a multiterawatt Cr:LiSrAlF6 laser system,” J. Opt. Soc. Am. B 11, 580–590 (1994).
[CrossRef]

D. Du, X. Liu, G. Korn, J. Squier, and G. Mourou, “Laser-induced breakdown by impact ionization in SiO2 with pulse widths from 7 ns to 150 fs,” Appl. Phys. Lett. 64, 3071–3073 (1994).
[CrossRef]

M. D. Perry and G. Mourou, “Terawatt to petawatt subpicosecond lasers,” Science 264, 917–924 (1994).
[CrossRef] [PubMed]

1992 (1)

D. Arnold, E. Cartier, and D. J. DiMaria, “Acoustic-phonon runaway and impact ionization by hot electrons in silicon dioxide,” Phys. Rev. A 45, 1477–1480 (1992).

1989 (2)

X. A. Shen, S. C. Jones, and P. Braunlich, “Laser heating of free electrons in wide-gap optical materials at 1064 nm,” Phys. Rev. Lett. 62, 2711–2713 (1989).
[CrossRef] [PubMed]

S. C. Jones, P. Braunlich, R. T. Casper, X.-A. Shen, and P. Kelly, “Recent progress on laser-induced modifications and intrinsic bulk damage of wide-gap optical materials,” Opt. Eng. 28, 1039–1068 (1989).
[CrossRef]

1988 (1)

P. B. Corkum, F. Brunel, N. K. Sherman, and T. Srinivasan-Rao, “Thermal response of metals to ultrashort-pulse laser excitation,” Phys. Rev. Lett. 61, 2886–2889 (1988); N. K. Sherman, F. Brunel, P. B. Corkum, and F. A. Hegmann, “Transient response of metals to ultrashort pulse excitation,” Opt. Eng. 28, 1114–1121 (1989).
[CrossRef] [PubMed]

1986 (2)

M. V. Ammosov, N. B. Delone, and V. P. Krainov, “Tunnel ionization of complex atoms and of atomic ions in an alternating electromagnetic field,” Sov. Phys JETP 64, 1191–1194 (1986).

A. A. Manenkov and A. M. Prokhorov, “Laser-induced damage in solids,” Sov. Phys. Usp. 29, 104–122 (1986).
[CrossRef]

1985 (1)

D. Strickland and G. Mourou, “Compression of amplified chirped optical pulses,” Opt. Comun. 56, 219–221 (1985); P. Maine, D. Strickland, P. Bado, M. Pessot, and G. Mourou, “Generation of ultrahigh peak power pulses by chirped pulse amplification,” IEEE J. Quantum Electron. 24, 398–403 (1988).
[CrossRef]

1982 (1)

J. F. Figeria and S. J. Thomas, “Damage thresholds at metal surfaces for short pulse IR lasers,” IEEE J. Quantum Electron. QE-18, 1381–1386 (1982).
[CrossRef]

1981 (3)

M. Sparks, D. L. Mills, R. Warren, T. Holstein, A. A. Maradudin, L. J. Sham, E. Loh, and D. F. King, “Theory of electron-avalanche breakdown in solids,” Phys. Rev. B 24, 3519–3536 (1981).
[CrossRef]

W. H. Lowdermilk and D. Milam, “Laser-induced surface and coating damage,” IEEE J. Quantum Electron. QE-17, 1888–1903 (1981).
[CrossRef]

T. W. Walker, A. H. Guenther, and P. E. Nielsen, “Pulsed laser-induced damage to thin-film optical coatings—Part I: Experimental,” IEEE J. Quantum Electron. QE-17, 2041–2052 (1981).
[CrossRef]

1980 (1)

A. Vaidyanathan, T. W. Walker, and A. H. Guenther, “The relative roles of avalanche multiplication and multiphoton absorption in laser-induced damage of dielectrics,” IEEE J. Quantum Electron. QE-16, 89–93 (1980).
[CrossRef]

1979 (2)

B. G. Gorshkov, A. S. Epifanov, and A. A. Manenkov, “Avalanche ionization produced in solids by large radiation quanta and relative role of multiphoton ionization in laser-induced breakdown,” Sov. Phys. JETP 49, 309–315 (1979).

M. Sparks and E. Loh, “Temperature dependence of absorption in laser damage of metallic mirrors: I. melting; II. Vaporization and heating the vapor,” J. Opt. Soc. Am. 69, 847–858, 859–868 (1979).
[CrossRef]

1977 (2)

W. L. Smith, J. H. Bechtel, and N. Bloembergen, “Picosecond laser-induced breakdown at 5321 and 3547 Å: Observation of frequency-dependent behavior,” Phys. Rev. B 15, 4039–4055 (1977).
[CrossRef]

A. Schmid, P. Kelly, and P. Bräunlich, “Optical breakdown in alkali halides,” Phys. Rev. B 16, 4569–4582 (1977).
[CrossRef]

1976 (1)

A. S. Epifanov, A. A. Manenkov, and A. M. Prokhorov, “Theory of avalanche ionization induced in transparent dielectrics by an electromagnetic field,” Sov. Phys. JETP 43, 377–382 (1976).

1975 (1)

L. H. Holway and D. W. Fradin, “Electron avalanche breakdown by laser radiation in insulating crystals,” J. Appl. Phys. 46, 279–291 (1975).
[CrossRef]

1974 (1)

N. Bloembergen, “Laser-induced breakdown in solids,” IEEE J. Quantum Electron. QE-10, 375–386 (1974).
[CrossRef]

1971 (1)

E. S. Bliss, “Pulse duration dependence of laser damage mechanisms,” Opto-Electronics 3, 99–108 (1971).
[CrossRef]

1966 (1)

Y. P. Raizer, “Breakdown and heating of gases under the influence of a laser beam,” Sov. Phys. Usp. 8, 650–673 (1966)
[CrossRef]

1965 (1)

L. V. Keldysh, “Ionization in the field of a strong electromagnetic wave,” Sov. Phys., JETP 20, 1307–1314 (1965).

Ammosov, M. V.

M. V. Ammosov, N. B. Delone, and V. P. Krainov, “Tunnel ionization of complex atoms and of atomic ions in an alternating electromagnetic field,” Sov. Phys JETP 64, 1191–1194 (1986).

Arnold, D.

D. Arnold, E. Cartier, and D. J. DiMaria, “Acoustic-phonon runaway and impact ionization by hot electrons in silicon dioxide,” Phys. Rev. A 45, 1477–1480 (1992).

Bechtel, J. H.

W. L. Smith, J. H. Bechtel, and N. Bloembergen, “Picosecond laser-induced breakdown at 5321 and 3547 Å: Observation of frequency-dependent behavior,” Phys. Rev. B 15, 4039–4055 (1977).
[CrossRef]

Bettis, J. R.

J. R. Bettis, R. A. House, and A. H. Guenther, “Spot size and pulse duration dependence of laser-induced damage,” in Laser-Induced Damage in Optical Materials: 1976, A. J. Glass and A. H. Guenther, eds., Natl. Bur. Stand. Spec. Publ.462, 338–345 (1976).

Bliss, E. S.

E. S. Bliss, “Pulse duration dependence of laser damage mechanisms,” Opto-Electronics 3, 99–108 (1971).
[CrossRef]

Bloembergen, N.

W. L. Smith, J. H. Bechtel, and N. Bloembergen, “Picosecond laser-induced breakdown at 5321 and 3547 Å: Observation of frequency-dependent behavior,” Phys. Rev. B 15, 4039–4055 (1977).
[CrossRef]

N. Bloembergen, “Laser-induced breakdown in solids,” IEEE J. Quantum Electron. QE-10, 375–386 (1974).
[CrossRef]

Boggess, T. F.

M. J. Soileau, W. E. Williams, E. W. Van Stryland, T. F. Boggess, and A. L. Smirl, “Temporal dependence of laser-induced breakdown in NaCl and SiO2,” in Laser-Induced Damage in Optical Materials: 1982, H. E. Bennett, A. H. Guenther, D. Milam, and B. E. Newnam, eds., Natl. Bur. Stand. (U.S.) Spec. Publ.669, 387–405 (1984).

Boyd, R. D.

Braunlich, P.

X. A. Shen, S. C. Jones, and P. Braunlich, “Laser heating of free electrons in wide-gap optical materials at 1064 nm,” Phys. Rev. Lett. 62, 2711–2713 (1989).
[CrossRef] [PubMed]

S. C. Jones, P. Braunlich, R. T. Casper, X.-A. Shen, and P. Kelly, “Recent progress on laser-induced modifications and intrinsic bulk damage of wide-gap optical materials,” Opt. Eng. 28, 1039–1068 (1989).
[CrossRef]

Bräunlich, P.

A. Schmid, P. Kelly, and P. Bräunlich, “Optical breakdown in alkali halides,” Phys. Rev. B 16, 4569–4582 (1977).
[CrossRef]

Britten, J. A.

Brunel, F.

P. B. Corkum, F. Brunel, N. K. Sherman, and T. Srinivasan-Rao, “Thermal response of metals to ultrashort-pulse laser excitation,” Phys. Rev. Lett. 61, 2886–2889 (1988); N. K. Sherman, F. Brunel, P. B. Corkum, and F. A. Hegmann, “Transient response of metals to ultrashort pulse excitation,” Opt. Eng. 28, 1114–1121 (1989).
[CrossRef] [PubMed]

Campbell, J.

J. Campbell, F. Rainer, M. Kozlowski, C. R. Wolfe, I. Thomas, and F. Milanovich, “Damage resistance optics for a mega-joule solid-state laser,” in Laser-Induced Damage in Optical Materials: 1990, H. E. Bennett, L. L. Chase, A. H. Guenther, B. E. Newnam, and M. J. Soileau, eds., Proc. Soc. Photo-Opt. Instrum. Eng.1441, 444–456 (1991).

Cartier, E.

D. Arnold, E. Cartier, and D. J. DiMaria, “Acoustic-phonon runaway and impact ionization by hot electrons in silicon dioxide,” Phys. Rev. A 45, 1477–1480 (1992).

Casper, R. T.

S. C. Jones, P. Braunlich, R. T. Casper, X.-A. Shen, and P. Kelly, “Recent progress on laser-induced modifications and intrinsic bulk damage of wide-gap optical materials,” Opt. Eng. 28, 1039–1068 (1989).
[CrossRef]

Chow, R.

M. R. Kozlowski and R. Chow, “The role of defects in laser damage of multilayer coatings,” in Laser-Induced Damage in Optical Materials: 1993, H. E. Bennett, L. L. Chase, A. H. Guenther, B. E. Newnam, and M. J. Soileau, eds., Proc. Soc. Photo-Opt. Instrum. Eng.2114, 640–649 (1994).

Corkum, P. B.

P. B. Corkum, F. Brunel, N. K. Sherman, and T. Srinivasan-Rao, “Thermal response of metals to ultrashort-pulse laser excitation,” Phys. Rev. Lett. 61, 2886–2889 (1988); N. K. Sherman, F. Brunel, P. B. Corkum, and F. A. Hegmann, “Transient response of metals to ultrashort pulse excitation,” Opt. Eng. 28, 1114–1121 (1989).
[CrossRef] [PubMed]

Decker, D.

Decker, D. E.

Delone, N. B.

M. V. Ammosov, N. B. Delone, and V. P. Krainov, “Tunnel ionization of complex atoms and of atomic ions in an alternating electromagnetic field,” Sov. Phys JETP 64, 1191–1194 (1986).

DiMaria, D. J.

D. Arnold, E. Cartier, and D. J. DiMaria, “Acoustic-phonon runaway and impact ionization by hot electrons in silicon dioxide,” Phys. Rev. A 45, 1477–1480 (1992).

Ditmire, T.

Du, D.

D. Du, X. Liu, G. Korn, J. Squier, and G. Mourou, “Laser-induced breakdown by impact ionization in SiO2 with pulse widths from 7 ns to 150 fs,” Appl. Phys. Lett. 64, 3071–3073 (1994).
[CrossRef]

Epifanov, A. S.

B. G. Gorshkov, A. S. Epifanov, and A. A. Manenkov, “Avalanche ionization produced in solids by large radiation quanta and relative role of multiphoton ionization in laser-induced breakdown,” Sov. Phys. JETP 49, 309–315 (1979).

A. S. Epifanov, A. A. Manenkov, and A. M. Prokhorov, “Theory of avalanche ionization induced in transparent dielectrics by an electromagnetic field,” Sov. Phys. JETP 43, 377–382 (1976).

Feit, M. D.

B. C. Stuart, M. D. Feit, A. M. Rubenchik, B. W. Shore, and M. D. Perry, “Laser-induced damage in dielectrics with nanosecond to subpicosecond pulses,” Phys. Rev. Lett. 74, 2248–2251 (1995).
[CrossRef] [PubMed]

Figeria, J. F.

J. F. Figeria and S. J. Thomas, “Damage thresholds at metal surfaces for short pulse IR lasers,” IEEE J. Quantum Electron. QE-18, 1381–1386 (1982).
[CrossRef]

Foltyn, S. R.

S. R. Foltyn and L. J. Jolin, “Long-range pulselength scaling of 351 nm laser damage thresholds,” in Laser-Induced Damage in Optical Materials: 1986, H. E. Bennett, A. H. Guenther, D. Milam, and B. E. Newnam, eds., Natl. Inst. Stand. Technol. (U.S.) Spec. Publ.752, 336–343 (1988).

Fradin, D. W.

L. H. Holway and D. W. Fradin, “Electron avalanche breakdown by laser radiation in insulating crystals,” J. Appl. Phys. 46, 279–291 (1975).
[CrossRef]

Gerhardt, H.

K. Mann, H. Gerhardt, G. Pfeifer, and R. Wolf, “Influence of the laser pulse length and shape on the damage threshold of UV optics,” in Laser-Induced Damage in Optical Materials: 1991, H. E. Bennett, L. L. Chase, A. H. Guenther, B. E. Newnam, and M. J. Soileau, eds., Proc. Soc. Photo-Opt. Instrum. Eng.1624, 436–443 (1992).

Gorshkov, B. G.

B. G. Gorshkov, A. S. Epifanov, and A. A. Manenkov, “Avalanche ionization produced in solids by large radiation quanta and relative role of multiphoton ionization in laser-induced breakdown,” Sov. Phys. JETP 49, 309–315 (1979).

Guenther, A. H.

T. W. Walker, A. H. Guenther, and P. E. Nielsen, “Pulsed laser-induced damage to thin-film optical coatings—Part I: Experimental,” IEEE J. Quantum Electron. QE-17, 2041–2052 (1981).
[CrossRef]

A. Vaidyanathan, T. W. Walker, and A. H. Guenther, “The relative roles of avalanche multiplication and multiphoton absorption in laser-induced damage of dielectrics,” IEEE J. Quantum Electron. QE-16, 89–93 (1980).
[CrossRef]

J. R. Bettis, R. A. House, and A. H. Guenther, “Spot size and pulse duration dependence of laser-induced damage,” in Laser-Induced Damage in Optical Materials: 1976, A. J. Glass and A. H. Guenther, eds., Natl. Bur. Stand. Spec. Publ.462, 338–345 (1976).

Herman, S.

B. C. Stuart, S. Herman, and M. D. Perry, “Chirped-pulse amplification in Ti:Sapphire beyond 1 μm,” IEEE J. Quantum Electron. 31, 528–538 (1995).
[CrossRef]

Holstein, T.

M. Sparks, D. L. Mills, R. Warren, T. Holstein, A. A. Maradudin, L. J. Sham, E. Loh, and D. F. King, “Theory of electron-avalanche breakdown in solids,” Phys. Rev. B 24, 3519–3536 (1981).
[CrossRef]

Holway, L. H.

L. H. Holway and D. W. Fradin, “Electron avalanche breakdown by laser radiation in insulating crystals,” J. Appl. Phys. 46, 279–291 (1975).
[CrossRef]

House, R. A.

J. R. Bettis, R. A. House, and A. H. Guenther, “Spot size and pulse duration dependence of laser-induced damage,” in Laser-Induced Damage in Optical Materials: 1976, A. J. Glass and A. H. Guenther, eds., Natl. Bur. Stand. Spec. Publ.462, 338–345 (1976).

Jolin, L. J.

S. R. Foltyn and L. J. Jolin, “Long-range pulselength scaling of 351 nm laser damage thresholds,” in Laser-Induced Damage in Optical Materials: 1986, H. E. Bennett, A. H. Guenther, D. Milam, and B. E. Newnam, eds., Natl. Inst. Stand. Technol. (U.S.) Spec. Publ.752, 336–343 (1988).

Jones, S. C.

S. C. Jones, P. Braunlich, R. T. Casper, X.-A. Shen, and P. Kelly, “Recent progress on laser-induced modifications and intrinsic bulk damage of wide-gap optical materials,” Opt. Eng. 28, 1039–1068 (1989).
[CrossRef]

X. A. Shen, S. C. Jones, and P. Braunlich, “Laser heating of free electrons in wide-gap optical materials at 1064 nm,” Phys. Rev. Lett. 62, 2711–2713 (1989).
[CrossRef] [PubMed]

Keldysh, L. V.

L. V. Keldysh, “Ionization in the field of a strong electromagnetic wave,” Sov. Phys., JETP 20, 1307–1314 (1965).

Kelly, P.

S. C. Jones, P. Braunlich, R. T. Casper, X.-A. Shen, and P. Kelly, “Recent progress on laser-induced modifications and intrinsic bulk damage of wide-gap optical materials,” Opt. Eng. 28, 1039–1068 (1989).
[CrossRef]

A. Schmid, P. Kelly, and P. Bräunlich, “Optical breakdown in alkali halides,” Phys. Rev. B 16, 4569–4582 (1977).
[CrossRef]

King, D. F.

M. Sparks, D. L. Mills, R. Warren, T. Holstein, A. A. Maradudin, L. J. Sham, E. Loh, and D. F. King, “Theory of electron-avalanche breakdown in solids,” Phys. Rev. B 24, 3519–3536 (1981).
[CrossRef]

Korn, G.

D. Du, X. Liu, G. Korn, J. Squier, and G. Mourou, “Laser-induced breakdown by impact ionization in SiO2 with pulse widths from 7 ns to 150 fs,” Appl. Phys. Lett. 64, 3071–3073 (1994).
[CrossRef]

Kozlowski, M.

J. Campbell, F. Rainer, M. Kozlowski, C. R. Wolfe, I. Thomas, and F. Milanovich, “Damage resistance optics for a mega-joule solid-state laser,” in Laser-Induced Damage in Optical Materials: 1990, H. E. Bennett, L. L. Chase, A. H. Guenther, B. E. Newnam, and M. J. Soileau, eds., Proc. Soc. Photo-Opt. Instrum. Eng.1441, 444–456 (1991).

Kozlowski, M. R.

M. R. Kozlowski, M. Staggs, F. Rainer, and J. H. Stathis, “Laser conditioning and electronic defect measurements of HfO2 and SiO2 thin films,” in Laser-Induced Damage in Optical Materials: 1990, H. E. Bennett, L. L. Chase, A. H. Guenther, B. E. Newnam, and M. J. Soileau, eds., Proc.1441, 269–282 (1991).

M. R. Kozlowski and R. Chow, “The role of defects in laser damage of multilayer coatings,” in Laser-Induced Damage in Optical Materials: 1993, H. E. Bennett, L. L. Chase, A. H. Guenther, B. E. Newnam, and M. J. Soileau, eds., Proc. Soc. Photo-Opt. Instrum. Eng.2114, 640–649 (1994).

Krainov, V. P.

M. V. Ammosov, N. B. Delone, and V. P. Krainov, “Tunnel ionization of complex atoms and of atomic ions in an alternating electromagnetic field,” Sov. Phys JETP 64, 1191–1194 (1986).

Li, L.

Liu, X.

D. Du, X. Liu, G. Korn, J. Squier, and G. Mourou, “Laser-induced breakdown by impact ionization in SiO2 with pulse widths from 7 ns to 150 fs,” Appl. Phys. Lett. 64, 3071–3073 (1994).
[CrossRef]

Loh, E.

M. Sparks, D. L. Mills, R. Warren, T. Holstein, A. A. Maradudin, L. J. Sham, E. Loh, and D. F. King, “Theory of electron-avalanche breakdown in solids,” Phys. Rev. B 24, 3519–3536 (1981).
[CrossRef]

M. Sparks and E. Loh, “Temperature dependence of absorption in laser damage of metallic mirrors: I. melting; II. Vaporization and heating the vapor,” J. Opt. Soc. Am. 69, 847–858, 859–868 (1979).
[CrossRef]

Lowdermilk, W. H.

W. H. Lowdermilk and D. Milam, “Laser-induced surface and coating damage,” IEEE J. Quantum Electron. QE-17, 1888–1903 (1981).
[CrossRef]

Manenkov, A. A.

A. A. Manenkov and A. M. Prokhorov, “Laser-induced damage in solids,” Sov. Phys. Usp. 29, 104–122 (1986).
[CrossRef]

B. G. Gorshkov, A. S. Epifanov, and A. A. Manenkov, “Avalanche ionization produced in solids by large radiation quanta and relative role of multiphoton ionization in laser-induced breakdown,” Sov. Phys. JETP 49, 309–315 (1979).

A. S. Epifanov, A. A. Manenkov, and A. M. Prokhorov, “Theory of avalanche ionization induced in transparent dielectrics by an electromagnetic field,” Sov. Phys. JETP 43, 377–382 (1976).

Mann, K.

K. Mann, H. Gerhardt, G. Pfeifer, and R. Wolf, “Influence of the laser pulse length and shape on the damage threshold of UV optics,” in Laser-Induced Damage in Optical Materials: 1991, H. E. Bennett, L. L. Chase, A. H. Guenther, B. E. Newnam, and M. J. Soileau, eds., Proc. Soc. Photo-Opt. Instrum. Eng.1624, 436–443 (1992).

Maradudin, A. A.

M. Sparks, D. L. Mills, R. Warren, T. Holstein, A. A. Maradudin, L. J. Sham, E. Loh, and D. F. King, “Theory of electron-avalanche breakdown in solids,” Phys. Rev. B 24, 3519–3536 (1981).
[CrossRef]

Milam, D.

W. H. Lowdermilk and D. Milam, “Laser-induced surface and coating damage,” IEEE J. Quantum Electron. QE-17, 1888–1903 (1981).
[CrossRef]

Milanovich, F.

J. Campbell, F. Rainer, M. Kozlowski, C. R. Wolfe, I. Thomas, and F. Milanovich, “Damage resistance optics for a mega-joule solid-state laser,” in Laser-Induced Damage in Optical Materials: 1990, H. E. Bennett, L. L. Chase, A. H. Guenther, B. E. Newnam, and M. J. Soileau, eds., Proc. Soc. Photo-Opt. Instrum. Eng.1441, 444–456 (1991).

Mills, D. L.

M. Sparks, D. L. Mills, R. Warren, T. Holstein, A. A. Maradudin, L. J. Sham, E. Loh, and D. F. King, “Theory of electron-avalanche breakdown in solids,” Phys. Rev. B 24, 3519–3536 (1981).
[CrossRef]

Mourou, G.

M. D. Perry and G. Mourou, “Terawatt to petawatt subpicosecond lasers,” Science 264, 917–924 (1994).
[CrossRef] [PubMed]

D. Du, X. Liu, G. Korn, J. Squier, and G. Mourou, “Laser-induced breakdown by impact ionization in SiO2 with pulse widths from 7 ns to 150 fs,” Appl. Phys. Lett. 64, 3071–3073 (1994).
[CrossRef]

D. Strickland and G. Mourou, “Compression of amplified chirped optical pulses,” Opt. Comun. 56, 219–221 (1985); P. Maine, D. Strickland, P. Bado, M. Pessot, and G. Mourou, “Generation of ultrahigh peak power pulses by chirped pulse amplification,” IEEE J. Quantum Electron. 24, 398–403 (1988).
[CrossRef]

Nguyen, H.

Nielsen, P. E.

T. W. Walker, A. H. Guenther, and P. E. Nielsen, “Pulsed laser-induced damage to thin-film optical coatings—Part I: Experimental,” IEEE J. Quantum Electron. QE-17, 2041–2052 (1981).
[CrossRef]

Perry, M. D.

M. D. Perry, R. D. Boyd, J. A. Britten, D. Decker, B. W. Shore, C. Shannon, E. Shults, and L. Li, “High-efficiency multilayer dielectric diffraction gratings,” Opt. Lett. 20, 940–942 (1995).
[CrossRef] [PubMed]

B. C. Stuart, S. Herman, and M. D. Perry, “Chirped-pulse amplification in Ti:Sapphire beyond 1 μm,” IEEE J. Quantum Electron. 31, 528–538 (1995).
[CrossRef]

B. C. Stuart, M. D. Feit, A. M. Rubenchik, B. W. Shore, and M. D. Perry, “Laser-induced damage in dielectrics with nanosecond to subpicosecond pulses,” Phys. Rev. Lett. 74, 2248–2251 (1995).
[CrossRef] [PubMed]

R. D. Boyd, J. A. Britten, D. E. Decker, B. W. Shore, B. C. Stuart, and M. D. Perry, “High-efficiency metallic diffraction grating for laser applications,” Appl. Opt. 34, 1697–1706 (1995).
[CrossRef] [PubMed]

T. Ditmire, H. Nguyen, and M. D. Perry, “Design and performance of a multiterawatt Cr:LiSrAlF6 laser system,” J. Opt. Soc. Am. B 11, 580–590 (1994).
[CrossRef]

M. D. Perry and G. Mourou, “Terawatt to petawatt subpicosecond lasers,” Science 264, 917–924 (1994).
[CrossRef] [PubMed]

M. D. Perry, “High-order multiphoton ionization of the noble gases,” Ph.D. dissertation, UCRL-53852, (University of California, Berkeley, Calif., 1987).

Pfeifer, G.

K. Mann, H. Gerhardt, G. Pfeifer, and R. Wolf, “Influence of the laser pulse length and shape on the damage threshold of UV optics,” in Laser-Induced Damage in Optical Materials: 1991, H. E. Bennett, L. L. Chase, A. H. Guenther, B. E. Newnam, and M. J. Soileau, eds., Proc. Soc. Photo-Opt. Instrum. Eng.1624, 436–443 (1992).

Prokhorov, A. M.

A. A. Manenkov and A. M. Prokhorov, “Laser-induced damage in solids,” Sov. Phys. Usp. 29, 104–122 (1986).
[CrossRef]

A. S. Epifanov, A. A. Manenkov, and A. M. Prokhorov, “Theory of avalanche ionization induced in transparent dielectrics by an electromagnetic field,” Sov. Phys. JETP 43, 377–382 (1976).

Rainer, F.

J. Campbell, F. Rainer, M. Kozlowski, C. R. Wolfe, I. Thomas, and F. Milanovich, “Damage resistance optics for a mega-joule solid-state laser,” in Laser-Induced Damage in Optical Materials: 1990, H. E. Bennett, L. L. Chase, A. H. Guenther, B. E. Newnam, and M. J. Soileau, eds., Proc. Soc. Photo-Opt. Instrum. Eng.1441, 444–456 (1991).

M. R. Kozlowski, M. Staggs, F. Rainer, and J. H. Stathis, “Laser conditioning and electronic defect measurements of HfO2 and SiO2 thin films,” in Laser-Induced Damage in Optical Materials: 1990, H. E. Bennett, L. L. Chase, A. H. Guenther, B. E. Newnam, and M. J. Soileau, eds., Proc.1441, 269–282 (1991).

Raizer, Y. P.

Y. P. Raizer, “Breakdown and heating of gases under the influence of a laser beam,” Sov. Phys. Usp. 8, 650–673 (1966)
[CrossRef]

Ridley, B. K.

B. K. Ridley, Quantum Processes in Semiconductors (Clarendon, Oxford, 1993), pp. 276–278.

Rubenchik, A. M.

B. C. Stuart, M. D. Feit, A. M. Rubenchik, B. W. Shore, and M. D. Perry, “Laser-induced damage in dielectrics with nanosecond to subpicosecond pulses,” Phys. Rev. Lett. 74, 2248–2251 (1995).
[CrossRef] [PubMed]

Schmid, A.

A. Schmid, P. Kelly, and P. Bräunlich, “Optical breakdown in alkali halides,” Phys. Rev. B 16, 4569–4582 (1977).
[CrossRef]

Sham, L. J.

M. Sparks, D. L. Mills, R. Warren, T. Holstein, A. A. Maradudin, L. J. Sham, E. Loh, and D. F. King, “Theory of electron-avalanche breakdown in solids,” Phys. Rev. B 24, 3519–3536 (1981).
[CrossRef]

Shannon, C.

Shen, X. A.

X. A. Shen, S. C. Jones, and P. Braunlich, “Laser heating of free electrons in wide-gap optical materials at 1064 nm,” Phys. Rev. Lett. 62, 2711–2713 (1989).
[CrossRef] [PubMed]

Shen, X.-A.

S. C. Jones, P. Braunlich, R. T. Casper, X.-A. Shen, and P. Kelly, “Recent progress on laser-induced modifications and intrinsic bulk damage of wide-gap optical materials,” Opt. Eng. 28, 1039–1068 (1989).
[CrossRef]

Sherman, N. K.

P. B. Corkum, F. Brunel, N. K. Sherman, and T. Srinivasan-Rao, “Thermal response of metals to ultrashort-pulse laser excitation,” Phys. Rev. Lett. 61, 2886–2889 (1988); N. K. Sherman, F. Brunel, P. B. Corkum, and F. A. Hegmann, “Transient response of metals to ultrashort pulse excitation,” Opt. Eng. 28, 1114–1121 (1989).
[CrossRef] [PubMed]

Shore, B. W.

Shults, E.

Smirl, A. L.

M. J. Soileau, W. E. Williams, E. W. Van Stryland, T. F. Boggess, and A. L. Smirl, “Temporal dependence of laser-induced breakdown in NaCl and SiO2,” in Laser-Induced Damage in Optical Materials: 1982, H. E. Bennett, A. H. Guenther, D. Milam, and B. E. Newnam, eds., Natl. Bur. Stand. (U.S.) Spec. Publ.669, 387–405 (1984).

Smith, W. L.

W. L. Smith, J. H. Bechtel, and N. Bloembergen, “Picosecond laser-induced breakdown at 5321 and 3547 Å: Observation of frequency-dependent behavior,” Phys. Rev. B 15, 4039–4055 (1977).
[CrossRef]

Soileau, M. J.

M. J. Soileau, W. E. Williams, E. W. Van Stryland, T. F. Boggess, and A. L. Smirl, “Temporal dependence of laser-induced breakdown in NaCl and SiO2,” in Laser-Induced Damage in Optical Materials: 1982, H. E. Bennett, A. H. Guenther, D. Milam, and B. E. Newnam, eds., Natl. Bur. Stand. (U.S.) Spec. Publ.669, 387–405 (1984).

Sparks, M.

M. Sparks, D. L. Mills, R. Warren, T. Holstein, A. A. Maradudin, L. J. Sham, E. Loh, and D. F. King, “Theory of electron-avalanche breakdown in solids,” Phys. Rev. B 24, 3519–3536 (1981).
[CrossRef]

M. Sparks and E. Loh, “Temperature dependence of absorption in laser damage of metallic mirrors: I. melting; II. Vaporization and heating the vapor,” J. Opt. Soc. Am. 69, 847–858, 859–868 (1979).
[CrossRef]

Squier, J.

D. Du, X. Liu, G. Korn, J. Squier, and G. Mourou, “Laser-induced breakdown by impact ionization in SiO2 with pulse widths from 7 ns to 150 fs,” Appl. Phys. Lett. 64, 3071–3073 (1994).
[CrossRef]

Srinivasan-Rao, T.

P. B. Corkum, F. Brunel, N. K. Sherman, and T. Srinivasan-Rao, “Thermal response of metals to ultrashort-pulse laser excitation,” Phys. Rev. Lett. 61, 2886–2889 (1988); N. K. Sherman, F. Brunel, P. B. Corkum, and F. A. Hegmann, “Transient response of metals to ultrashort pulse excitation,” Opt. Eng. 28, 1114–1121 (1989).
[CrossRef] [PubMed]

Staggs, M.

M. R. Kozlowski, M. Staggs, F. Rainer, and J. H. Stathis, “Laser conditioning and electronic defect measurements of HfO2 and SiO2 thin films,” in Laser-Induced Damage in Optical Materials: 1990, H. E. Bennett, L. L. Chase, A. H. Guenther, B. E. Newnam, and M. J. Soileau, eds., Proc.1441, 269–282 (1991).

Stathis, J. H.

M. R. Kozlowski, M. Staggs, F. Rainer, and J. H. Stathis, “Laser conditioning and electronic defect measurements of HfO2 and SiO2 thin films,” in Laser-Induced Damage in Optical Materials: 1990, H. E. Bennett, L. L. Chase, A. H. Guenther, B. E. Newnam, and M. J. Soileau, eds., Proc.1441, 269–282 (1991).

Strickland, D.

D. Strickland and G. Mourou, “Compression of amplified chirped optical pulses,” Opt. Comun. 56, 219–221 (1985); P. Maine, D. Strickland, P. Bado, M. Pessot, and G. Mourou, “Generation of ultrahigh peak power pulses by chirped pulse amplification,” IEEE J. Quantum Electron. 24, 398–403 (1988).
[CrossRef]

Stuart, B. C.

R. D. Boyd, J. A. Britten, D. E. Decker, B. W. Shore, B. C. Stuart, and M. D. Perry, “High-efficiency metallic diffraction grating for laser applications,” Appl. Opt. 34, 1697–1706 (1995).
[CrossRef] [PubMed]

B. C. Stuart, M. D. Feit, A. M. Rubenchik, B. W. Shore, and M. D. Perry, “Laser-induced damage in dielectrics with nanosecond to subpicosecond pulses,” Phys. Rev. Lett. 74, 2248–2251 (1995).
[CrossRef] [PubMed]

B. C. Stuart, S. Herman, and M. D. Perry, “Chirped-pulse amplification in Ti:Sapphire beyond 1 μm,” IEEE J. Quantum Electron. 31, 528–538 (1995).
[CrossRef]

Thomas, I.

J. Campbell, F. Rainer, M. Kozlowski, C. R. Wolfe, I. Thomas, and F. Milanovich, “Damage resistance optics for a mega-joule solid-state laser,” in Laser-Induced Damage in Optical Materials: 1990, H. E. Bennett, L. L. Chase, A. H. Guenther, B. E. Newnam, and M. J. Soileau, eds., Proc. Soc. Photo-Opt. Instrum. Eng.1441, 444–456 (1991).

Thomas, S. J.

J. F. Figeria and S. J. Thomas, “Damage thresholds at metal surfaces for short pulse IR lasers,” IEEE J. Quantum Electron. QE-18, 1381–1386 (1982).
[CrossRef]

Vaidyanathan, A.

A. Vaidyanathan, T. W. Walker, and A. H. Guenther, “The relative roles of avalanche multiplication and multiphoton absorption in laser-induced damage of dielectrics,” IEEE J. Quantum Electron. QE-16, 89–93 (1980).
[CrossRef]

Van Stryland, E. W.

M. J. Soileau, W. E. Williams, E. W. Van Stryland, T. F. Boggess, and A. L. Smirl, “Temporal dependence of laser-induced breakdown in NaCl and SiO2,” in Laser-Induced Damage in Optical Materials: 1982, H. E. Bennett, A. H. Guenther, D. Milam, and B. E. Newnam, eds., Natl. Bur. Stand. (U.S.) Spec. Publ.669, 387–405 (1984).

Walker, T. W.

T. W. Walker, A. H. Guenther, and P. E. Nielsen, “Pulsed laser-induced damage to thin-film optical coatings—Part I: Experimental,” IEEE J. Quantum Electron. QE-17, 2041–2052 (1981).
[CrossRef]

A. Vaidyanathan, T. W. Walker, and A. H. Guenther, “The relative roles of avalanche multiplication and multiphoton absorption in laser-induced damage of dielectrics,” IEEE J. Quantum Electron. QE-16, 89–93 (1980).
[CrossRef]

Warren, R.

M. Sparks, D. L. Mills, R. Warren, T. Holstein, A. A. Maradudin, L. J. Sham, E. Loh, and D. F. King, “Theory of electron-avalanche breakdown in solids,” Phys. Rev. B 24, 3519–3536 (1981).
[CrossRef]

Williams, W. E.

M. J. Soileau, W. E. Williams, E. W. Van Stryland, T. F. Boggess, and A. L. Smirl, “Temporal dependence of laser-induced breakdown in NaCl and SiO2,” in Laser-Induced Damage in Optical Materials: 1982, H. E. Bennett, A. H. Guenther, D. Milam, and B. E. Newnam, eds., Natl. Bur. Stand. (U.S.) Spec. Publ.669, 387–405 (1984).

Wolf, R.

K. Mann, H. Gerhardt, G. Pfeifer, and R. Wolf, “Influence of the laser pulse length and shape on the damage threshold of UV optics,” in Laser-Induced Damage in Optical Materials: 1991, H. E. Bennett, L. L. Chase, A. H. Guenther, B. E. Newnam, and M. J. Soileau, eds., Proc. Soc. Photo-Opt. Instrum. Eng.1624, 436–443 (1992).

Wolfe, C. R.

J. Campbell, F. Rainer, M. Kozlowski, C. R. Wolfe, I. Thomas, and F. Milanovich, “Damage resistance optics for a mega-joule solid-state laser,” in Laser-Induced Damage in Optical Materials: 1990, H. E. Bennett, L. L. Chase, A. H. Guenther, B. E. Newnam, and M. J. Soileau, eds., Proc. Soc. Photo-Opt. Instrum. Eng.1441, 444–456 (1991).

Appl. Opt. (1)

Appl. Phys. Lett. (1)

D. Du, X. Liu, G. Korn, J. Squier, and G. Mourou, “Laser-induced breakdown by impact ionization in SiO2 with pulse widths from 7 ns to 150 fs,” Appl. Phys. Lett. 64, 3071–3073 (1994).
[CrossRef]

IEEE J. Quantum Electron. (6)

B. C. Stuart, S. Herman, and M. D. Perry, “Chirped-pulse amplification in Ti:Sapphire beyond 1 μm,” IEEE J. Quantum Electron. 31, 528–538 (1995).
[CrossRef]

J. F. Figeria and S. J. Thomas, “Damage thresholds at metal surfaces for short pulse IR lasers,” IEEE J. Quantum Electron. QE-18, 1381–1386 (1982).
[CrossRef]

N. Bloembergen, “Laser-induced breakdown in solids,” IEEE J. Quantum Electron. QE-10, 375–386 (1974).
[CrossRef]

A. Vaidyanathan, T. W. Walker, and A. H. Guenther, “The relative roles of avalanche multiplication and multiphoton absorption in laser-induced damage of dielectrics,” IEEE J. Quantum Electron. QE-16, 89–93 (1980).
[CrossRef]

W. H. Lowdermilk and D. Milam, “Laser-induced surface and coating damage,” IEEE J. Quantum Electron. QE-17, 1888–1903 (1981).
[CrossRef]

T. W. Walker, A. H. Guenther, and P. E. Nielsen, “Pulsed laser-induced damage to thin-film optical coatings—Part I: Experimental,” IEEE J. Quantum Electron. QE-17, 2041–2052 (1981).
[CrossRef]

J. Appl. Phys. (1)

L. H. Holway and D. W. Fradin, “Electron avalanche breakdown by laser radiation in insulating crystals,” J. Appl. Phys. 46, 279–291 (1975).
[CrossRef]

J. Opt. Soc. Am. (1)

J. Opt. Soc. Am. B (1)

Opt. Comun. (1)

D. Strickland and G. Mourou, “Compression of amplified chirped optical pulses,” Opt. Comun. 56, 219–221 (1985); P. Maine, D. Strickland, P. Bado, M. Pessot, and G. Mourou, “Generation of ultrahigh peak power pulses by chirped pulse amplification,” IEEE J. Quantum Electron. 24, 398–403 (1988).
[CrossRef]

Opt. Eng. (1)

S. C. Jones, P. Braunlich, R. T. Casper, X.-A. Shen, and P. Kelly, “Recent progress on laser-induced modifications and intrinsic bulk damage of wide-gap optical materials,” Opt. Eng. 28, 1039–1068 (1989).
[CrossRef]

Opt. Lett. (1)

Opto-Electronics (1)

E. S. Bliss, “Pulse duration dependence of laser damage mechanisms,” Opto-Electronics 3, 99–108 (1971).
[CrossRef]

Phys. Rev. A (1)

D. Arnold, E. Cartier, and D. J. DiMaria, “Acoustic-phonon runaway and impact ionization by hot electrons in silicon dioxide,” Phys. Rev. A 45, 1477–1480 (1992).

Phys. Rev. B (3)

W. L. Smith, J. H. Bechtel, and N. Bloembergen, “Picosecond laser-induced breakdown at 5321 and 3547 Å: Observation of frequency-dependent behavior,” Phys. Rev. B 15, 4039–4055 (1977).
[CrossRef]

A. Schmid, P. Kelly, and P. Bräunlich, “Optical breakdown in alkali halides,” Phys. Rev. B 16, 4569–4582 (1977).
[CrossRef]

M. Sparks, D. L. Mills, R. Warren, T. Holstein, A. A. Maradudin, L. J. Sham, E. Loh, and D. F. King, “Theory of electron-avalanche breakdown in solids,” Phys. Rev. B 24, 3519–3536 (1981).
[CrossRef]

Phys. Rev. Lett. (3)

X. A. Shen, S. C. Jones, and P. Braunlich, “Laser heating of free electrons in wide-gap optical materials at 1064 nm,” Phys. Rev. Lett. 62, 2711–2713 (1989).
[CrossRef] [PubMed]

P. B. Corkum, F. Brunel, N. K. Sherman, and T. Srinivasan-Rao, “Thermal response of metals to ultrashort-pulse laser excitation,” Phys. Rev. Lett. 61, 2886–2889 (1988); N. K. Sherman, F. Brunel, P. B. Corkum, and F. A. Hegmann, “Transient response of metals to ultrashort pulse excitation,” Opt. Eng. 28, 1114–1121 (1989).
[CrossRef] [PubMed]

B. C. Stuart, M. D. Feit, A. M. Rubenchik, B. W. Shore, and M. D. Perry, “Laser-induced damage in dielectrics with nanosecond to subpicosecond pulses,” Phys. Rev. Lett. 74, 2248–2251 (1995).
[CrossRef] [PubMed]

Science (1)

M. D. Perry and G. Mourou, “Terawatt to petawatt subpicosecond lasers,” Science 264, 917–924 (1994).
[CrossRef] [PubMed]

Sov. Phys JETP (1)

M. V. Ammosov, N. B. Delone, and V. P. Krainov, “Tunnel ionization of complex atoms and of atomic ions in an alternating electromagnetic field,” Sov. Phys JETP 64, 1191–1194 (1986).

Sov. Phys. JETP (2)

A. S. Epifanov, A. A. Manenkov, and A. M. Prokhorov, “Theory of avalanche ionization induced in transparent dielectrics by an electromagnetic field,” Sov. Phys. JETP 43, 377–382 (1976).

B. G. Gorshkov, A. S. Epifanov, and A. A. Manenkov, “Avalanche ionization produced in solids by large radiation quanta and relative role of multiphoton ionization in laser-induced breakdown,” Sov. Phys. JETP 49, 309–315 (1979).

Sov. Phys. Usp. (2)

A. A. Manenkov and A. M. Prokhorov, “Laser-induced damage in solids,” Sov. Phys. Usp. 29, 104–122 (1986).
[CrossRef]

Y. P. Raizer, “Breakdown and heating of gases under the influence of a laser beam,” Sov. Phys. Usp. 8, 650–673 (1966)
[CrossRef]

Sov. Phys., JETP (1)

L. V. Keldysh, “Ionization in the field of a strong electromagnetic wave,” Sov. Phys., JETP 20, 1307–1314 (1965).

Other (9)

M. D. Perry, “High-order multiphoton ionization of the noble gases,” Ph.D. dissertation, UCRL-53852, (University of California, Berkeley, Calif., 1987).

B. K. Ridley, Quantum Processes in Semiconductors (Clarendon, Oxford, 1993), pp. 276–278.

M. R. Kozlowski and R. Chow, “The role of defects in laser damage of multilayer coatings,” in Laser-Induced Damage in Optical Materials: 1993, H. E. Bennett, L. L. Chase, A. H. Guenther, B. E. Newnam, and M. J. Soileau, eds., Proc. Soc. Photo-Opt. Instrum. Eng.2114, 640–649 (1994).

M. R. Kozlowski, M. Staggs, F. Rainer, and J. H. Stathis, “Laser conditioning and electronic defect measurements of HfO2 and SiO2 thin films,” in Laser-Induced Damage in Optical Materials: 1990, H. E. Bennett, L. L. Chase, A. H. Guenther, B. E. Newnam, and M. J. Soileau, eds., Proc.1441, 269–282 (1991).

J. R. Bettis, R. A. House, and A. H. Guenther, “Spot size and pulse duration dependence of laser-induced damage,” in Laser-Induced Damage in Optical Materials: 1976, A. J. Glass and A. H. Guenther, eds., Natl. Bur. Stand. Spec. Publ.462, 338–345 (1976).

M. J. Soileau, W. E. Williams, E. W. Van Stryland, T. F. Boggess, and A. L. Smirl, “Temporal dependence of laser-induced breakdown in NaCl and SiO2,” in Laser-Induced Damage in Optical Materials: 1982, H. E. Bennett, A. H. Guenther, D. Milam, and B. E. Newnam, eds., Natl. Bur. Stand. (U.S.) Spec. Publ.669, 387–405 (1984).

S. R. Foltyn and L. J. Jolin, “Long-range pulselength scaling of 351 nm laser damage thresholds,” in Laser-Induced Damage in Optical Materials: 1986, H. E. Bennett, A. H. Guenther, D. Milam, and B. E. Newnam, eds., Natl. Inst. Stand. Technol. (U.S.) Spec. Publ.752, 336–343 (1988).

J. Campbell, F. Rainer, M. Kozlowski, C. R. Wolfe, I. Thomas, and F. Milanovich, “Damage resistance optics for a mega-joule solid-state laser,” in Laser-Induced Damage in Optical Materials: 1990, H. E. Bennett, L. L. Chase, A. H. Guenther, B. E. Newnam, and M. J. Soileau, eds., Proc. Soc. Photo-Opt. Instrum. Eng.1441, 444–456 (1991).

K. Mann, H. Gerhardt, G. Pfeifer, and R. Wolf, “Influence of the laser pulse length and shape on the damage threshold of UV optics,” in Laser-Induced Damage in Optical Materials: 1991, H. E. Bennett, L. L. Chase, A. H. Guenther, B. E. Newnam, and M. J. Soileau, eds., Proc. Soc. Photo-Opt. Instrum. Eng.1624, 436–443 (1992).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (18)

Fig. 1
Fig. 1

Damage to gold film with 1053-nm pulses: (a) long pulse, 900 ps; (b) short pulse, 0.6 ps.

Fig. 2
Fig. 2

Temperature distribution as a function of depth and pulse duration for an absorbed fluence of 500 mJ/cm2 delivered to a 100-nm-thick gold film. The melting (mp) and boiling (bp) temperatures for gold are indicated.

Fig. 3
Fig. 3

Predicted and measured 1053-nm damage thresholds for gold films deposited onto photoresist. Circles are long pulse (800 ps); triangles are short pulse (600 fs). Curves show theoretical predictions.

Fig. 4
Fig. 4

Pulse-width dependence of damage threshold of a gold grating and a gold mirror at 1053 nm.

Fig. 5
Fig. 5

Pulsewidth dependence of threshold damage fluence for fused silica at 1053 nm (●) and 825 nm (◆).

Fig. 6
Fig. 6

Laser damage spots on fused silica created by (a) a long pulse, 900 ps, 300-μm diameter; (b) a short pulse, 0.4 ps, 500-μm diameter.

Fig. 7
Fig. 7

Edges of laser damage spots of Fig. 4: (a) long pulse, 900 ps; (b) short pulse, 0.4 ps.

Fig. 8
Fig. 8

Damage threshold fluence of fused silica with 0.4-ps pulses of varying diameter gives consistent values.

Fig. 9
Fig. 9

Single-shot damage spot size (●) approaches zero as the laser fluence is reduced to our multiple-shot threshold value (◆).

Fig. 10
Fig. 10

Electron densities produced by multiphoton ionization alone and in combination with avalanche ionization, plotted along with the Gaussian pulse shape. Seed electrons are produced by multiphoton ionization at the peak of the pulse, after which an avalanche produces a critical density.

Fig. 11
Fig. 11

Time dependence of the density n and average kinetic energy 〈〉 of electrons subjected to a constant laser intensity. The electron density grows exponentially after a very short transient.

Fig. 12
Fig. 12

With a time-varying (Gaussian) pulse, after a short transient the electron growth rate is proportional to the laser intensity. From this slope we find the value of α.

Fig. 13
Fig. 13

Comparison of solutions of the full kinetic equation and the corresponding rate equation for generation of critical density plasma with no seed electrons.

Fig. 14
Fig. 14

Measured and calculated (solid curves) damage fluence for fused silica at 1053 and 526 nm. The dashed curve indicates the calculated limit of damage from multiphoton ionization alone.

Fig. 15
Fig. 15

Pulse-width dependence of threshold damage fluence for calcium fluoride.

Fig. 16
Fig. 16

Laser damage morphology of calcium fluoride for (a) 900-ps (b) 0.4-ps pulses.

Fig. 17
Fig. 17

Pulse-width dependence of threshold damage fluence for two different HfO2/SiO2 multilayer dielectric samples on relatively clean areas: (●) 57° S polarizer, (▲) 45° S mirror.

Fig. 18
Fig. 18

Laser damage morphology of a multilayer dielectric mirror for (a) 900-ps and (b) 0.4-ps pulses.

Equations (15)

Equations on this page are rendered with MathJax. Learn more.

T ( x , t ) t = α 2 T ( x , t ) x 2 .
f ( , t ) t + [ V ( ) f ( , t ) D ( ) f ( , t ) ] f ( , t ) t + J ( , t ) = S ( , t ) ,
V ( ) = σ ( ) E 2 ( t ) 3 U phon γ ( )
σ ( ) = e 2 τ m m * ( 1 + ω 2 τ m 2 ) .
D ( ) = 2 σ ( ) E 2 3 .
S ( , t ) = R imp ( , t ) + R pi ( , t ) .
R imp ( , t ) = ν i ( ) f ( ) + 4 ν i ( 2 + U I ) f ( 2 + U I ) .
n = 0 f ( ) d ,
n = 0 f ( ) d .
f ( , t ) = g ( ) exp ( t β d t ) .
d n d t = β n = α I ( t ) n .
n t = β ( I ) n + P ( I )
n = n 0 exp ( 0 β d t ) = n 0 exp ( α 2 Ω ) ,
Φ cr = 2 α ln ( n cr n 0 ) .
Φ cr τ ( m 1 ) / m n cr 1 / m ,

Metrics