Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Enhancement of short-pulse recombination-pumped gain by soft-x-ray photoionization of the ground state

Not Accessible

Your library or personal account may give you access

Abstract

The gain achieved in lasing to the ground state following short-pulse field ionization by a pump laser is highly transient. It will usually persist for only tens of picoseconds because of the rapid filling and negligible emptying of the ground state. Employing a detailed atomic model of lasing in hydrogen, we show that the removal of ground-state population by an appropriate broadband ionizing radiation field can enhance and prolong the gain in such a laser.

© 1996 Optical Society of America

Full Article  |  PDF Article
More Like This
Photoionization lasers pumped by broadband soft-x-ray flux from laser-produced plasmas

W. T. Silfvast and O. R. Wood
J. Opt. Soc. Am. B 4(4) 609-618 (1987)

X-ray laser studies of recombining lithium plasmas created by optical field ionization

K. M. Krushelnick, W. Tighe, and S. Suckewer
J. Opt. Soc. Am. B 13(2) 306-311 (1996)

Rydberg x-ray laser based on inner-electron optical-field ionization

R. B. Vrijen and L. D. Noordam
J. Opt. Soc. Am. B 13(1) 189-196 (1996)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (2)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (2)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.