Abstract

We present a theoretical model that describes holographic ionic fixing and storage dynamics in photorefractive crystals. Holographic gratings that are based on charge redistribution inevitably decay because of ionic and electronic conduction. Relevant decay rates and transient hologram field expressions are derived. Ionic gratings are partially screened by trapped electrons on readout. The lifetimes of fixed ionic holograms are limited by the finite ionic conductivity at low (i.e., room) temperatures. Only under certain and restricted conditions can these decay times be acceptably long. A significant increase in fixed ionic hologram lifetime is realized in lithium niobate with a low hydrogen-impurity content. The residual ionic conductivity (decay-time constant) in these samples exhibits 1.4-eV activation energy and is not due to protonic conduction. Fixed hologram lifetimes of 2 years at room temperature in dehydrated lithium niobate crystals are projected.

© 1996 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. F. Heanue, M. C. Bashaw, and L. Hesselink, “Volume holographic storage and retrieval of digital data,” Science 265, 749–752 (1994).
    [CrossRef] [PubMed]
  2. D. Psaltis and F. Mok, “Holographic memories,” Sci. Am. 273, 70–76 (1995).
    [CrossRef]
  3. J. H. Hong, I. McMichael, T. Y. Chang, W. Christian, and E. G. Paek, “Volume holographic memory systems: techniques and architectures,” Opt. Eng. 34, 2193–2203 (1995).
    [CrossRef]
  4. J. J. Amodei and D. L. Staebler, “Holographic pattern fixing in electrooptic crystals,” Appl. Phys. Lett. 18, 540–542 (1971).
    [CrossRef]
  5. F. Micheron and G. Bismuth, “Electrical control of fixation and erasure of holographic patterns in ferroelectric materials,” Appl. Phys. Lett. 20, 79–81 (1972).
    [CrossRef]
  6. D. Kirillov and J. Feinberg, “Fixable complementary gratings in photorefractive BaTiO3,” Opt. Lett. 16, 1520–1522 (1991).
    [CrossRef] [PubMed]
  7. G. Montemezzani and P. Günter, “Thermal hologram fixing in pure and doped KNbO3 crystals,” J. Opt. Soc. Am. B 7, 2323–2328 (1990).
    [CrossRef]
  8. G. Montemezzani, M. Zgonik, and P. Günter, “Photorefractive charge compensation at elevated temperature and application to KNbO3,” J. Opt. Soc. Am. B 10, 171–185 (1993).
    [CrossRef]
  9. A. Yariv, S. Orlov, G. Rakuljic, and V. Leyva, “Holographic fixing, readout, and storage dynamics in photorefractive materials,” Opt. Lett. 20, 1334–1336 (1995).
    [CrossRef] [PubMed]
  10. S. Orlov, D. Psaltis, and R. R. Neurgaonkar, “Dynamic electronic compensation of fixed gratings in photorefractive media,” Appl. Phys. Lett. 63, 2466–2468 (1993).
    [CrossRef]
  11. M. Carrascosa and F. Agullo-Lopez, “Theoretical modeling of the fixing and developing of holographic gratings in LiNbO3,” J. Opt. Soc. Am. B 7, 2317–2322 (1990).
    [CrossRef]
  12. R. Matull and R. A. Rupp, “Microphotometric investigation of fixed holograms,” J. Phys. D 21, 1556–1565 (1988).
    [CrossRef]
  13. V. V. Kulikov and S. I. Stepanov, “Mechanisms of holographic recording and thermal fixing in photorefractive LiNbO3:Fe,” Sov. Phys. Solid State 21, 1849–1851 (1979).
  14. P. Hertel, K. H. Ringhofer, and R. Sommerfeldt, “Theory of thermal hologram fixing and application to LiNbO3:Cu,” Phys. Status Solidi A 104, 855–862 (1987).
    [CrossRef]
  15. N. K. Kukhtarev, “Kinetics of hologram recording and erasure in electrooptic crystals,” Sov. Tech. Phys. Lett. 2, 438–440 (1976).
  16. W. Bollmann, “Diffusion of hydrogen (OH- ions) in LiNbO3 crystals,” Phys. Status Solidi A 104, 643–648 (1987).
    [CrossRef]
  17. C. Gu, J. Hong, H. Y. Li, D. Psaltis, and P. Yeh, “Dynamics of grating formation in photovoltaic media,” J. Appl. Phys. 69, 1167–1172 (1991).
    [CrossRef]
  18. W. Bollmann and H. J. Stöhr, “Incorporation and mobility of OH- ions in LiNbO3 crystals,” Phys. Status Solidi A 39, 477–484 (1977).
    [CrossRef]
  19. H. Vormann, G. Weber, S. Kapphan, and M. Wöhlecke, “Hydrogen as origin of thermal fixing in LiNbO3:Fe,” Solid State Commun. 57, 543–545 (1981).
    [CrossRef]
  20. L. Arizmendi, P. D. Townsend, M. Carrascosa, J. Baquedano, and J. M. Cabrera, “Photorefractive fixing and related thermal effects in LiNbO3,” J. Phys. Condens. Matter. 3, 5399–5406 (1991).
    [CrossRef]
  21. M. Carrascosa and L. Arizmendi, “High-temperature photorefractive effects in LiNbO3:Fe,” J. Appl. Phys. 73, 2709–2713 (1993).
    [CrossRef]
  22. R. Müller, L. Arizmendi, M. Carrascosa, and J. M. Cabrera, “Time evolution of grating decay during photorefractive fixing processes in LiNbO3,” J. Appl. Phys. 77, 308–312 (1995).
    [CrossRef]
  23. O. F. Schirmer, O. Thiemann, and M. Wöhlecke, “Defects in LiNbO3—I. Experimental aspects,” J. Phys. Chem. Solids 52, 185–200 (1991).
    [CrossRef]
  24. T. Volk, N. Rubinina, and M. Wöhlecke, “Optical-damage-resistant impurities in lithium niobate,” J. Opt. Soc. Am. B 11, 1681–1687 (1994).
    [CrossRef]
  25. S. Klauer, M. Wöhlecke, and S. Kapphan, “Influence of H–D isotopic substitution on the protonic conductivity of LiNbO3,” Phys. Rev. B 45, 2786–2799 (1992).
    [CrossRef]
  26. J. R. Herrington, B. Dischler, A. Rauber, and J. Schneider, “An optical study of the stretching absorption band near 3 microns from OH- defects in LiNbO3,” Solid State Commun. 12, 351–354 (1973).
    [CrossRef]
  27. A. Yariv, V. Leyva, and G. A. Rakuljic, “Relaxation and lifetime of ‘fixed’ charge holograms,” in Technical Digest, 1994 IEEE Nonlinear Optics, Materials, Fundamentals, and Applications (Institute of Electrical and Electronics Engineers, New York, 1994), postdeadline paper PD6.
  28. G. A. Rakuljic and A. Yariv, “Photorefractive systems and methods,” U. S. patent5,440,669 (August8, 1995).
  29. D. L. Staebler, W. J. Burke, W. Phillips, and J. J. Amodei, “Multiple storage and erasure of fixed holograms in Fe-doped LiNbO3,” Appl. Phys. Lett. 26, 182–184 (1975).
    [CrossRef]
  30. A. Mehta, E. K. Chang, and D. M. Smyth, “Ionic transport in LiNbO3,” J. Mater. Res. 6, 851–854 (1991).
    [CrossRef]
  31. P. F. Bordui, R. G. Norwood, D. H. Jundt, and M. M. Fejer, “Preparation and characterization of off-congruent lithium niobate crystals,” J. Appl. Phys. 71, 875–879 (1992).
    [CrossRef]
  32. D. H. Jundt, M. M. Fejer, R. G. Norwood, and P. F. Bordui, “Composition dependence of lithium diffusivity in lithium niobate at high temperature,” J. Appl. Phys. 72, 3468–3473 (1992).
    [CrossRef]
  33. S. C. Abrahams and P. Marsh, “Defect structure dependence on composition in lithium niobate,” Acta Crystallogr. Sect. B 42, 61–68 (1986).
    [CrossRef]
  34. U. Schlarb and K. Betzler, “Refractive indices of lithium niobate as a function of temperature, wavelength, and composition: a generalized fit,” Phys. Rev. B 48, 15613–15620 (1993).
    [CrossRef]
  35. L. Kovàcs and K. Polgar, in Properties of Lithium Niobate, Vol. 5 of Electronic Materials Information Service Data Review Series (Institution of Electrical Engineers, London, 1989), p. 109.

1995 (4)

D. Psaltis and F. Mok, “Holographic memories,” Sci. Am. 273, 70–76 (1995).
[CrossRef]

J. H. Hong, I. McMichael, T. Y. Chang, W. Christian, and E. G. Paek, “Volume holographic memory systems: techniques and architectures,” Opt. Eng. 34, 2193–2203 (1995).
[CrossRef]

A. Yariv, S. Orlov, G. Rakuljic, and V. Leyva, “Holographic fixing, readout, and storage dynamics in photorefractive materials,” Opt. Lett. 20, 1334–1336 (1995).
[CrossRef] [PubMed]

R. Müller, L. Arizmendi, M. Carrascosa, and J. M. Cabrera, “Time evolution of grating decay during photorefractive fixing processes in LiNbO3,” J. Appl. Phys. 77, 308–312 (1995).
[CrossRef]

1994 (2)

T. Volk, N. Rubinina, and M. Wöhlecke, “Optical-damage-resistant impurities in lithium niobate,” J. Opt. Soc. Am. B 11, 1681–1687 (1994).
[CrossRef]

J. F. Heanue, M. C. Bashaw, and L. Hesselink, “Volume holographic storage and retrieval of digital data,” Science 265, 749–752 (1994).
[CrossRef] [PubMed]

1993 (4)

S. Orlov, D. Psaltis, and R. R. Neurgaonkar, “Dynamic electronic compensation of fixed gratings in photorefractive media,” Appl. Phys. Lett. 63, 2466–2468 (1993).
[CrossRef]

G. Montemezzani, M. Zgonik, and P. Günter, “Photorefractive charge compensation at elevated temperature and application to KNbO3,” J. Opt. Soc. Am. B 10, 171–185 (1993).
[CrossRef]

M. Carrascosa and L. Arizmendi, “High-temperature photorefractive effects in LiNbO3:Fe,” J. Appl. Phys. 73, 2709–2713 (1993).
[CrossRef]

U. Schlarb and K. Betzler, “Refractive indices of lithium niobate as a function of temperature, wavelength, and composition: a generalized fit,” Phys. Rev. B 48, 15613–15620 (1993).
[CrossRef]

1992 (3)

P. F. Bordui, R. G. Norwood, D. H. Jundt, and M. M. Fejer, “Preparation and characterization of off-congruent lithium niobate crystals,” J. Appl. Phys. 71, 875–879 (1992).
[CrossRef]

D. H. Jundt, M. M. Fejer, R. G. Norwood, and P. F. Bordui, “Composition dependence of lithium diffusivity in lithium niobate at high temperature,” J. Appl. Phys. 72, 3468–3473 (1992).
[CrossRef]

S. Klauer, M. Wöhlecke, and S. Kapphan, “Influence of H–D isotopic substitution on the protonic conductivity of LiNbO3,” Phys. Rev. B 45, 2786–2799 (1992).
[CrossRef]

1991 (5)

O. F. Schirmer, O. Thiemann, and M. Wöhlecke, “Defects in LiNbO3—I. Experimental aspects,” J. Phys. Chem. Solids 52, 185–200 (1991).
[CrossRef]

L. Arizmendi, P. D. Townsend, M. Carrascosa, J. Baquedano, and J. M. Cabrera, “Photorefractive fixing and related thermal effects in LiNbO3,” J. Phys. Condens. Matter. 3, 5399–5406 (1991).
[CrossRef]

A. Mehta, E. K. Chang, and D. M. Smyth, “Ionic transport in LiNbO3,” J. Mater. Res. 6, 851–854 (1991).
[CrossRef]

C. Gu, J. Hong, H. Y. Li, D. Psaltis, and P. Yeh, “Dynamics of grating formation in photovoltaic media,” J. Appl. Phys. 69, 1167–1172 (1991).
[CrossRef]

D. Kirillov and J. Feinberg, “Fixable complementary gratings in photorefractive BaTiO3,” Opt. Lett. 16, 1520–1522 (1991).
[CrossRef] [PubMed]

1990 (2)

1988 (1)

R. Matull and R. A. Rupp, “Microphotometric investigation of fixed holograms,” J. Phys. D 21, 1556–1565 (1988).
[CrossRef]

1987 (2)

P. Hertel, K. H. Ringhofer, and R. Sommerfeldt, “Theory of thermal hologram fixing and application to LiNbO3:Cu,” Phys. Status Solidi A 104, 855–862 (1987).
[CrossRef]

W. Bollmann, “Diffusion of hydrogen (OH- ions) in LiNbO3 crystals,” Phys. Status Solidi A 104, 643–648 (1987).
[CrossRef]

1986 (1)

S. C. Abrahams and P. Marsh, “Defect structure dependence on composition in lithium niobate,” Acta Crystallogr. Sect. B 42, 61–68 (1986).
[CrossRef]

1981 (1)

H. Vormann, G. Weber, S. Kapphan, and M. Wöhlecke, “Hydrogen as origin of thermal fixing in LiNbO3:Fe,” Solid State Commun. 57, 543–545 (1981).
[CrossRef]

1979 (1)

V. V. Kulikov and S. I. Stepanov, “Mechanisms of holographic recording and thermal fixing in photorefractive LiNbO3:Fe,” Sov. Phys. Solid State 21, 1849–1851 (1979).

1977 (1)

W. Bollmann and H. J. Stöhr, “Incorporation and mobility of OH- ions in LiNbO3 crystals,” Phys. Status Solidi A 39, 477–484 (1977).
[CrossRef]

1976 (1)

N. K. Kukhtarev, “Kinetics of hologram recording and erasure in electrooptic crystals,” Sov. Tech. Phys. Lett. 2, 438–440 (1976).

1975 (1)

D. L. Staebler, W. J. Burke, W. Phillips, and J. J. Amodei, “Multiple storage and erasure of fixed holograms in Fe-doped LiNbO3,” Appl. Phys. Lett. 26, 182–184 (1975).
[CrossRef]

1973 (1)

J. R. Herrington, B. Dischler, A. Rauber, and J. Schneider, “An optical study of the stretching absorption band near 3 microns from OH- defects in LiNbO3,” Solid State Commun. 12, 351–354 (1973).
[CrossRef]

1972 (1)

F. Micheron and G. Bismuth, “Electrical control of fixation and erasure of holographic patterns in ferroelectric materials,” Appl. Phys. Lett. 20, 79–81 (1972).
[CrossRef]

1971 (1)

J. J. Amodei and D. L. Staebler, “Holographic pattern fixing in electrooptic crystals,” Appl. Phys. Lett. 18, 540–542 (1971).
[CrossRef]

Abrahams, S. C.

S. C. Abrahams and P. Marsh, “Defect structure dependence on composition in lithium niobate,” Acta Crystallogr. Sect. B 42, 61–68 (1986).
[CrossRef]

Agullo-Lopez, F.

Amodei, J. J.

D. L. Staebler, W. J. Burke, W. Phillips, and J. J. Amodei, “Multiple storage and erasure of fixed holograms in Fe-doped LiNbO3,” Appl. Phys. Lett. 26, 182–184 (1975).
[CrossRef]

J. J. Amodei and D. L. Staebler, “Holographic pattern fixing in electrooptic crystals,” Appl. Phys. Lett. 18, 540–542 (1971).
[CrossRef]

Arizmendi, L.

R. Müller, L. Arizmendi, M. Carrascosa, and J. M. Cabrera, “Time evolution of grating decay during photorefractive fixing processes in LiNbO3,” J. Appl. Phys. 77, 308–312 (1995).
[CrossRef]

M. Carrascosa and L. Arizmendi, “High-temperature photorefractive effects in LiNbO3:Fe,” J. Appl. Phys. 73, 2709–2713 (1993).
[CrossRef]

L. Arizmendi, P. D. Townsend, M. Carrascosa, J. Baquedano, and J. M. Cabrera, “Photorefractive fixing and related thermal effects in LiNbO3,” J. Phys. Condens. Matter. 3, 5399–5406 (1991).
[CrossRef]

Baquedano, J.

L. Arizmendi, P. D. Townsend, M. Carrascosa, J. Baquedano, and J. M. Cabrera, “Photorefractive fixing and related thermal effects in LiNbO3,” J. Phys. Condens. Matter. 3, 5399–5406 (1991).
[CrossRef]

Bashaw, M. C.

J. F. Heanue, M. C. Bashaw, and L. Hesselink, “Volume holographic storage and retrieval of digital data,” Science 265, 749–752 (1994).
[CrossRef] [PubMed]

Betzler, K.

U. Schlarb and K. Betzler, “Refractive indices of lithium niobate as a function of temperature, wavelength, and composition: a generalized fit,” Phys. Rev. B 48, 15613–15620 (1993).
[CrossRef]

Bismuth, G.

F. Micheron and G. Bismuth, “Electrical control of fixation and erasure of holographic patterns in ferroelectric materials,” Appl. Phys. Lett. 20, 79–81 (1972).
[CrossRef]

Bollmann, W.

W. Bollmann, “Diffusion of hydrogen (OH- ions) in LiNbO3 crystals,” Phys. Status Solidi A 104, 643–648 (1987).
[CrossRef]

W. Bollmann and H. J. Stöhr, “Incorporation and mobility of OH- ions in LiNbO3 crystals,” Phys. Status Solidi A 39, 477–484 (1977).
[CrossRef]

Bordui, P. F.

D. H. Jundt, M. M. Fejer, R. G. Norwood, and P. F. Bordui, “Composition dependence of lithium diffusivity in lithium niobate at high temperature,” J. Appl. Phys. 72, 3468–3473 (1992).
[CrossRef]

P. F. Bordui, R. G. Norwood, D. H. Jundt, and M. M. Fejer, “Preparation and characterization of off-congruent lithium niobate crystals,” J. Appl. Phys. 71, 875–879 (1992).
[CrossRef]

Burke, W. J.

D. L. Staebler, W. J. Burke, W. Phillips, and J. J. Amodei, “Multiple storage and erasure of fixed holograms in Fe-doped LiNbO3,” Appl. Phys. Lett. 26, 182–184 (1975).
[CrossRef]

Cabrera, J. M.

R. Müller, L. Arizmendi, M. Carrascosa, and J. M. Cabrera, “Time evolution of grating decay during photorefractive fixing processes in LiNbO3,” J. Appl. Phys. 77, 308–312 (1995).
[CrossRef]

L. Arizmendi, P. D. Townsend, M. Carrascosa, J. Baquedano, and J. M. Cabrera, “Photorefractive fixing and related thermal effects in LiNbO3,” J. Phys. Condens. Matter. 3, 5399–5406 (1991).
[CrossRef]

Carrascosa, M.

R. Müller, L. Arizmendi, M. Carrascosa, and J. M. Cabrera, “Time evolution of grating decay during photorefractive fixing processes in LiNbO3,” J. Appl. Phys. 77, 308–312 (1995).
[CrossRef]

M. Carrascosa and L. Arizmendi, “High-temperature photorefractive effects in LiNbO3:Fe,” J. Appl. Phys. 73, 2709–2713 (1993).
[CrossRef]

L. Arizmendi, P. D. Townsend, M. Carrascosa, J. Baquedano, and J. M. Cabrera, “Photorefractive fixing and related thermal effects in LiNbO3,” J. Phys. Condens. Matter. 3, 5399–5406 (1991).
[CrossRef]

M. Carrascosa and F. Agullo-Lopez, “Theoretical modeling of the fixing and developing of holographic gratings in LiNbO3,” J. Opt. Soc. Am. B 7, 2317–2322 (1990).
[CrossRef]

Chang, E. K.

A. Mehta, E. K. Chang, and D. M. Smyth, “Ionic transport in LiNbO3,” J. Mater. Res. 6, 851–854 (1991).
[CrossRef]

Chang, T. Y.

J. H. Hong, I. McMichael, T. Y. Chang, W. Christian, and E. G. Paek, “Volume holographic memory systems: techniques and architectures,” Opt. Eng. 34, 2193–2203 (1995).
[CrossRef]

Christian, W.

J. H. Hong, I. McMichael, T. Y. Chang, W. Christian, and E. G. Paek, “Volume holographic memory systems: techniques and architectures,” Opt. Eng. 34, 2193–2203 (1995).
[CrossRef]

Dischler, B.

J. R. Herrington, B. Dischler, A. Rauber, and J. Schneider, “An optical study of the stretching absorption band near 3 microns from OH- defects in LiNbO3,” Solid State Commun. 12, 351–354 (1973).
[CrossRef]

Feinberg, J.

Fejer, M. M.

P. F. Bordui, R. G. Norwood, D. H. Jundt, and M. M. Fejer, “Preparation and characterization of off-congruent lithium niobate crystals,” J. Appl. Phys. 71, 875–879 (1992).
[CrossRef]

D. H. Jundt, M. M. Fejer, R. G. Norwood, and P. F. Bordui, “Composition dependence of lithium diffusivity in lithium niobate at high temperature,” J. Appl. Phys. 72, 3468–3473 (1992).
[CrossRef]

Gu, C.

C. Gu, J. Hong, H. Y. Li, D. Psaltis, and P. Yeh, “Dynamics of grating formation in photovoltaic media,” J. Appl. Phys. 69, 1167–1172 (1991).
[CrossRef]

Günter, P.

Heanue, J. F.

J. F. Heanue, M. C. Bashaw, and L. Hesselink, “Volume holographic storage and retrieval of digital data,” Science 265, 749–752 (1994).
[CrossRef] [PubMed]

Herrington, J. R.

J. R. Herrington, B. Dischler, A. Rauber, and J. Schneider, “An optical study of the stretching absorption band near 3 microns from OH- defects in LiNbO3,” Solid State Commun. 12, 351–354 (1973).
[CrossRef]

Hertel, P.

P. Hertel, K. H. Ringhofer, and R. Sommerfeldt, “Theory of thermal hologram fixing and application to LiNbO3:Cu,” Phys. Status Solidi A 104, 855–862 (1987).
[CrossRef]

Hesselink, L.

J. F. Heanue, M. C. Bashaw, and L. Hesselink, “Volume holographic storage and retrieval of digital data,” Science 265, 749–752 (1994).
[CrossRef] [PubMed]

Hong, J.

C. Gu, J. Hong, H. Y. Li, D. Psaltis, and P. Yeh, “Dynamics of grating formation in photovoltaic media,” J. Appl. Phys. 69, 1167–1172 (1991).
[CrossRef]

Hong, J. H.

J. H. Hong, I. McMichael, T. Y. Chang, W. Christian, and E. G. Paek, “Volume holographic memory systems: techniques and architectures,” Opt. Eng. 34, 2193–2203 (1995).
[CrossRef]

Jundt, D. H.

P. F. Bordui, R. G. Norwood, D. H. Jundt, and M. M. Fejer, “Preparation and characterization of off-congruent lithium niobate crystals,” J. Appl. Phys. 71, 875–879 (1992).
[CrossRef]

D. H. Jundt, M. M. Fejer, R. G. Norwood, and P. F. Bordui, “Composition dependence of lithium diffusivity in lithium niobate at high temperature,” J. Appl. Phys. 72, 3468–3473 (1992).
[CrossRef]

Kapphan, S.

S. Klauer, M. Wöhlecke, and S. Kapphan, “Influence of H–D isotopic substitution on the protonic conductivity of LiNbO3,” Phys. Rev. B 45, 2786–2799 (1992).
[CrossRef]

H. Vormann, G. Weber, S. Kapphan, and M. Wöhlecke, “Hydrogen as origin of thermal fixing in LiNbO3:Fe,” Solid State Commun. 57, 543–545 (1981).
[CrossRef]

Kirillov, D.

Klauer, S.

S. Klauer, M. Wöhlecke, and S. Kapphan, “Influence of H–D isotopic substitution on the protonic conductivity of LiNbO3,” Phys. Rev. B 45, 2786–2799 (1992).
[CrossRef]

Kovàcs, L.

L. Kovàcs and K. Polgar, in Properties of Lithium Niobate, Vol. 5 of Electronic Materials Information Service Data Review Series (Institution of Electrical Engineers, London, 1989), p. 109.

Kukhtarev, N. K.

N. K. Kukhtarev, “Kinetics of hologram recording and erasure in electrooptic crystals,” Sov. Tech. Phys. Lett. 2, 438–440 (1976).

Kulikov, V. V.

V. V. Kulikov and S. I. Stepanov, “Mechanisms of holographic recording and thermal fixing in photorefractive LiNbO3:Fe,” Sov. Phys. Solid State 21, 1849–1851 (1979).

Leyva, V.

A. Yariv, S. Orlov, G. Rakuljic, and V. Leyva, “Holographic fixing, readout, and storage dynamics in photorefractive materials,” Opt. Lett. 20, 1334–1336 (1995).
[CrossRef] [PubMed]

A. Yariv, V. Leyva, and G. A. Rakuljic, “Relaxation and lifetime of ‘fixed’ charge holograms,” in Technical Digest, 1994 IEEE Nonlinear Optics, Materials, Fundamentals, and Applications (Institute of Electrical and Electronics Engineers, New York, 1994), postdeadline paper PD6.

Li, H. Y.

C. Gu, J. Hong, H. Y. Li, D. Psaltis, and P. Yeh, “Dynamics of grating formation in photovoltaic media,” J. Appl. Phys. 69, 1167–1172 (1991).
[CrossRef]

Marsh, P.

S. C. Abrahams and P. Marsh, “Defect structure dependence on composition in lithium niobate,” Acta Crystallogr. Sect. B 42, 61–68 (1986).
[CrossRef]

Matull, R.

R. Matull and R. A. Rupp, “Microphotometric investigation of fixed holograms,” J. Phys. D 21, 1556–1565 (1988).
[CrossRef]

McMichael, I.

J. H. Hong, I. McMichael, T. Y. Chang, W. Christian, and E. G. Paek, “Volume holographic memory systems: techniques and architectures,” Opt. Eng. 34, 2193–2203 (1995).
[CrossRef]

Mehta, A.

A. Mehta, E. K. Chang, and D. M. Smyth, “Ionic transport in LiNbO3,” J. Mater. Res. 6, 851–854 (1991).
[CrossRef]

Micheron, F.

F. Micheron and G. Bismuth, “Electrical control of fixation and erasure of holographic patterns in ferroelectric materials,” Appl. Phys. Lett. 20, 79–81 (1972).
[CrossRef]

Mok, F.

D. Psaltis and F. Mok, “Holographic memories,” Sci. Am. 273, 70–76 (1995).
[CrossRef]

Montemezzani, G.

Müller, R.

R. Müller, L. Arizmendi, M. Carrascosa, and J. M. Cabrera, “Time evolution of grating decay during photorefractive fixing processes in LiNbO3,” J. Appl. Phys. 77, 308–312 (1995).
[CrossRef]

Neurgaonkar, R. R.

S. Orlov, D. Psaltis, and R. R. Neurgaonkar, “Dynamic electronic compensation of fixed gratings in photorefractive media,” Appl. Phys. Lett. 63, 2466–2468 (1993).
[CrossRef]

Norwood, R. G.

P. F. Bordui, R. G. Norwood, D. H. Jundt, and M. M. Fejer, “Preparation and characterization of off-congruent lithium niobate crystals,” J. Appl. Phys. 71, 875–879 (1992).
[CrossRef]

D. H. Jundt, M. M. Fejer, R. G. Norwood, and P. F. Bordui, “Composition dependence of lithium diffusivity in lithium niobate at high temperature,” J. Appl. Phys. 72, 3468–3473 (1992).
[CrossRef]

Orlov, S.

A. Yariv, S. Orlov, G. Rakuljic, and V. Leyva, “Holographic fixing, readout, and storage dynamics in photorefractive materials,” Opt. Lett. 20, 1334–1336 (1995).
[CrossRef] [PubMed]

S. Orlov, D. Psaltis, and R. R. Neurgaonkar, “Dynamic electronic compensation of fixed gratings in photorefractive media,” Appl. Phys. Lett. 63, 2466–2468 (1993).
[CrossRef]

Paek, E. G.

J. H. Hong, I. McMichael, T. Y. Chang, W. Christian, and E. G. Paek, “Volume holographic memory systems: techniques and architectures,” Opt. Eng. 34, 2193–2203 (1995).
[CrossRef]

Phillips, W.

D. L. Staebler, W. J. Burke, W. Phillips, and J. J. Amodei, “Multiple storage and erasure of fixed holograms in Fe-doped LiNbO3,” Appl. Phys. Lett. 26, 182–184 (1975).
[CrossRef]

Polgar, K.

L. Kovàcs and K. Polgar, in Properties of Lithium Niobate, Vol. 5 of Electronic Materials Information Service Data Review Series (Institution of Electrical Engineers, London, 1989), p. 109.

Psaltis, D.

D. Psaltis and F. Mok, “Holographic memories,” Sci. Am. 273, 70–76 (1995).
[CrossRef]

S. Orlov, D. Psaltis, and R. R. Neurgaonkar, “Dynamic electronic compensation of fixed gratings in photorefractive media,” Appl. Phys. Lett. 63, 2466–2468 (1993).
[CrossRef]

C. Gu, J. Hong, H. Y. Li, D. Psaltis, and P. Yeh, “Dynamics of grating formation in photovoltaic media,” J. Appl. Phys. 69, 1167–1172 (1991).
[CrossRef]

Rakuljic, G.

Rakuljic, G. A.

A. Yariv, V. Leyva, and G. A. Rakuljic, “Relaxation and lifetime of ‘fixed’ charge holograms,” in Technical Digest, 1994 IEEE Nonlinear Optics, Materials, Fundamentals, and Applications (Institute of Electrical and Electronics Engineers, New York, 1994), postdeadline paper PD6.

G. A. Rakuljic and A. Yariv, “Photorefractive systems and methods,” U. S. patent5,440,669 (August8, 1995).

Rauber, A.

J. R. Herrington, B. Dischler, A. Rauber, and J. Schneider, “An optical study of the stretching absorption band near 3 microns from OH- defects in LiNbO3,” Solid State Commun. 12, 351–354 (1973).
[CrossRef]

Ringhofer, K. H.

P. Hertel, K. H. Ringhofer, and R. Sommerfeldt, “Theory of thermal hologram fixing and application to LiNbO3:Cu,” Phys. Status Solidi A 104, 855–862 (1987).
[CrossRef]

Rubinina, N.

Rupp, R. A.

R. Matull and R. A. Rupp, “Microphotometric investigation of fixed holograms,” J. Phys. D 21, 1556–1565 (1988).
[CrossRef]

Schirmer, O. F.

O. F. Schirmer, O. Thiemann, and M. Wöhlecke, “Defects in LiNbO3—I. Experimental aspects,” J. Phys. Chem. Solids 52, 185–200 (1991).
[CrossRef]

Schlarb, U.

U. Schlarb and K. Betzler, “Refractive indices of lithium niobate as a function of temperature, wavelength, and composition: a generalized fit,” Phys. Rev. B 48, 15613–15620 (1993).
[CrossRef]

Schneider, J.

J. R. Herrington, B. Dischler, A. Rauber, and J. Schneider, “An optical study of the stretching absorption band near 3 microns from OH- defects in LiNbO3,” Solid State Commun. 12, 351–354 (1973).
[CrossRef]

Smyth, D. M.

A. Mehta, E. K. Chang, and D. M. Smyth, “Ionic transport in LiNbO3,” J. Mater. Res. 6, 851–854 (1991).
[CrossRef]

Sommerfeldt, R.

P. Hertel, K. H. Ringhofer, and R. Sommerfeldt, “Theory of thermal hologram fixing and application to LiNbO3:Cu,” Phys. Status Solidi A 104, 855–862 (1987).
[CrossRef]

Staebler, D. L.

D. L. Staebler, W. J. Burke, W. Phillips, and J. J. Amodei, “Multiple storage and erasure of fixed holograms in Fe-doped LiNbO3,” Appl. Phys. Lett. 26, 182–184 (1975).
[CrossRef]

J. J. Amodei and D. L. Staebler, “Holographic pattern fixing in electrooptic crystals,” Appl. Phys. Lett. 18, 540–542 (1971).
[CrossRef]

Stepanov, S. I.

V. V. Kulikov and S. I. Stepanov, “Mechanisms of holographic recording and thermal fixing in photorefractive LiNbO3:Fe,” Sov. Phys. Solid State 21, 1849–1851 (1979).

Stöhr, H. J.

W. Bollmann and H. J. Stöhr, “Incorporation and mobility of OH- ions in LiNbO3 crystals,” Phys. Status Solidi A 39, 477–484 (1977).
[CrossRef]

Thiemann, O.

O. F. Schirmer, O. Thiemann, and M. Wöhlecke, “Defects in LiNbO3—I. Experimental aspects,” J. Phys. Chem. Solids 52, 185–200 (1991).
[CrossRef]

Townsend, P. D.

L. Arizmendi, P. D. Townsend, M. Carrascosa, J. Baquedano, and J. M. Cabrera, “Photorefractive fixing and related thermal effects in LiNbO3,” J. Phys. Condens. Matter. 3, 5399–5406 (1991).
[CrossRef]

Volk, T.

Vormann, H.

H. Vormann, G. Weber, S. Kapphan, and M. Wöhlecke, “Hydrogen as origin of thermal fixing in LiNbO3:Fe,” Solid State Commun. 57, 543–545 (1981).
[CrossRef]

Weber, G.

H. Vormann, G. Weber, S. Kapphan, and M. Wöhlecke, “Hydrogen as origin of thermal fixing in LiNbO3:Fe,” Solid State Commun. 57, 543–545 (1981).
[CrossRef]

Wöhlecke, M.

T. Volk, N. Rubinina, and M. Wöhlecke, “Optical-damage-resistant impurities in lithium niobate,” J. Opt. Soc. Am. B 11, 1681–1687 (1994).
[CrossRef]

S. Klauer, M. Wöhlecke, and S. Kapphan, “Influence of H–D isotopic substitution on the protonic conductivity of LiNbO3,” Phys. Rev. B 45, 2786–2799 (1992).
[CrossRef]

O. F. Schirmer, O. Thiemann, and M. Wöhlecke, “Defects in LiNbO3—I. Experimental aspects,” J. Phys. Chem. Solids 52, 185–200 (1991).
[CrossRef]

H. Vormann, G. Weber, S. Kapphan, and M. Wöhlecke, “Hydrogen as origin of thermal fixing in LiNbO3:Fe,” Solid State Commun. 57, 543–545 (1981).
[CrossRef]

Yariv, A.

A. Yariv, S. Orlov, G. Rakuljic, and V. Leyva, “Holographic fixing, readout, and storage dynamics in photorefractive materials,” Opt. Lett. 20, 1334–1336 (1995).
[CrossRef] [PubMed]

A. Yariv, V. Leyva, and G. A. Rakuljic, “Relaxation and lifetime of ‘fixed’ charge holograms,” in Technical Digest, 1994 IEEE Nonlinear Optics, Materials, Fundamentals, and Applications (Institute of Electrical and Electronics Engineers, New York, 1994), postdeadline paper PD6.

G. A. Rakuljic and A. Yariv, “Photorefractive systems and methods,” U. S. patent5,440,669 (August8, 1995).

Yeh, P.

C. Gu, J. Hong, H. Y. Li, D. Psaltis, and P. Yeh, “Dynamics of grating formation in photovoltaic media,” J. Appl. Phys. 69, 1167–1172 (1991).
[CrossRef]

Zgonik, M.

Acta Crystallogr. Sect. B (1)

S. C. Abrahams and P. Marsh, “Defect structure dependence on composition in lithium niobate,” Acta Crystallogr. Sect. B 42, 61–68 (1986).
[CrossRef]

Appl. Phys. Lett. (4)

D. L. Staebler, W. J. Burke, W. Phillips, and J. J. Amodei, “Multiple storage and erasure of fixed holograms in Fe-doped LiNbO3,” Appl. Phys. Lett. 26, 182–184 (1975).
[CrossRef]

J. J. Amodei and D. L. Staebler, “Holographic pattern fixing in electrooptic crystals,” Appl. Phys. Lett. 18, 540–542 (1971).
[CrossRef]

F. Micheron and G. Bismuth, “Electrical control of fixation and erasure of holographic patterns in ferroelectric materials,” Appl. Phys. Lett. 20, 79–81 (1972).
[CrossRef]

S. Orlov, D. Psaltis, and R. R. Neurgaonkar, “Dynamic electronic compensation of fixed gratings in photorefractive media,” Appl. Phys. Lett. 63, 2466–2468 (1993).
[CrossRef]

J. Appl. Phys. (5)

C. Gu, J. Hong, H. Y. Li, D. Psaltis, and P. Yeh, “Dynamics of grating formation in photovoltaic media,” J. Appl. Phys. 69, 1167–1172 (1991).
[CrossRef]

M. Carrascosa and L. Arizmendi, “High-temperature photorefractive effects in LiNbO3:Fe,” J. Appl. Phys. 73, 2709–2713 (1993).
[CrossRef]

R. Müller, L. Arizmendi, M. Carrascosa, and J. M. Cabrera, “Time evolution of grating decay during photorefractive fixing processes in LiNbO3,” J. Appl. Phys. 77, 308–312 (1995).
[CrossRef]

P. F. Bordui, R. G. Norwood, D. H. Jundt, and M. M. Fejer, “Preparation and characterization of off-congruent lithium niobate crystals,” J. Appl. Phys. 71, 875–879 (1992).
[CrossRef]

D. H. Jundt, M. M. Fejer, R. G. Norwood, and P. F. Bordui, “Composition dependence of lithium diffusivity in lithium niobate at high temperature,” J. Appl. Phys. 72, 3468–3473 (1992).
[CrossRef]

J. Mater. Res. (1)

A. Mehta, E. K. Chang, and D. M. Smyth, “Ionic transport in LiNbO3,” J. Mater. Res. 6, 851–854 (1991).
[CrossRef]

J. Opt. Soc. Am. B (4)

J. Phys. Chem. Solids (1)

O. F. Schirmer, O. Thiemann, and M. Wöhlecke, “Defects in LiNbO3—I. Experimental aspects,” J. Phys. Chem. Solids 52, 185–200 (1991).
[CrossRef]

J. Phys. Condens. Matter. (1)

L. Arizmendi, P. D. Townsend, M. Carrascosa, J. Baquedano, and J. M. Cabrera, “Photorefractive fixing and related thermal effects in LiNbO3,” J. Phys. Condens. Matter. 3, 5399–5406 (1991).
[CrossRef]

J. Phys. D (1)

R. Matull and R. A. Rupp, “Microphotometric investigation of fixed holograms,” J. Phys. D 21, 1556–1565 (1988).
[CrossRef]

Opt. Eng. (1)

J. H. Hong, I. McMichael, T. Y. Chang, W. Christian, and E. G. Paek, “Volume holographic memory systems: techniques and architectures,” Opt. Eng. 34, 2193–2203 (1995).
[CrossRef]

Opt. Lett. (2)

Phys. Rev. B (2)

U. Schlarb and K. Betzler, “Refractive indices of lithium niobate as a function of temperature, wavelength, and composition: a generalized fit,” Phys. Rev. B 48, 15613–15620 (1993).
[CrossRef]

S. Klauer, M. Wöhlecke, and S. Kapphan, “Influence of H–D isotopic substitution on the protonic conductivity of LiNbO3,” Phys. Rev. B 45, 2786–2799 (1992).
[CrossRef]

Phys. Status Solidi A (3)

P. Hertel, K. H. Ringhofer, and R. Sommerfeldt, “Theory of thermal hologram fixing and application to LiNbO3:Cu,” Phys. Status Solidi A 104, 855–862 (1987).
[CrossRef]

W. Bollmann, “Diffusion of hydrogen (OH- ions) in LiNbO3 crystals,” Phys. Status Solidi A 104, 643–648 (1987).
[CrossRef]

W. Bollmann and H. J. Stöhr, “Incorporation and mobility of OH- ions in LiNbO3 crystals,” Phys. Status Solidi A 39, 477–484 (1977).
[CrossRef]

Sci. Am. (1)

D. Psaltis and F. Mok, “Holographic memories,” Sci. Am. 273, 70–76 (1995).
[CrossRef]

Science (1)

J. F. Heanue, M. C. Bashaw, and L. Hesselink, “Volume holographic storage and retrieval of digital data,” Science 265, 749–752 (1994).
[CrossRef] [PubMed]

Solid State Commun. (2)

H. Vormann, G. Weber, S. Kapphan, and M. Wöhlecke, “Hydrogen as origin of thermal fixing in LiNbO3:Fe,” Solid State Commun. 57, 543–545 (1981).
[CrossRef]

J. R. Herrington, B. Dischler, A. Rauber, and J. Schneider, “An optical study of the stretching absorption band near 3 microns from OH- defects in LiNbO3,” Solid State Commun. 12, 351–354 (1973).
[CrossRef]

Sov. Phys. Solid State (1)

V. V. Kulikov and S. I. Stepanov, “Mechanisms of holographic recording and thermal fixing in photorefractive LiNbO3:Fe,” Sov. Phys. Solid State 21, 1849–1851 (1979).

Sov. Tech. Phys. Lett. (1)

N. K. Kukhtarev, “Kinetics of hologram recording and erasure in electrooptic crystals,” Sov. Tech. Phys. Lett. 2, 438–440 (1976).

Other (3)

A. Yariv, V. Leyva, and G. A. Rakuljic, “Relaxation and lifetime of ‘fixed’ charge holograms,” in Technical Digest, 1994 IEEE Nonlinear Optics, Materials, Fundamentals, and Applications (Institute of Electrical and Electronics Engineers, New York, 1994), postdeadline paper PD6.

G. A. Rakuljic and A. Yariv, “Photorefractive systems and methods,” U. S. patent5,440,669 (August8, 1995).

L. Kovàcs and K. Polgar, in Properties of Lithium Niobate, Vol. 5 of Electronic Materials Information Service Data Review Series (Institution of Electrical Engineers, London, 1989), p. 109.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Typical life history of a hologram in a photorefractive material. The Roman numerals are phase numbers.

Fig. 2
Fig. 2

Diffraction efficiency versus time for a hologram recorded and stored in iron-doped LiNbO3 (partially reduced) at 130 °C. The grating spacing is 2π/K=1.15 µm. Two stages of the dark decay can be identified as ionic compensation (fast stage of the decay, phase I) and a much slower decay owing to conduction by the thermally excited electrons (phase II).

Fig. 3
Fig. 3

Ionic fixing in oxidized dehydrated LiNbO3 crystals with the percentages of iron doping indicated. Initial diffraction efficiencies are 25%, and the grating spacing is 2π/K1 µm in both cases.

Fig. 4
Fig. 4

Ionic fixing in oxidized dehydrated LiNbO3 crystals with the percentages of iron doping indicated. The holograms were recorded for 1 h until the saturation was reached. The oscillations in the recording curve in (b) are due to the sin2 dependence of η on index perturbation δn and to beam coupling of recording beams. The grating spacing is 2π/K1 µm in both cases.

Fig. 5
Fig. 5

Arrhenius plot of the hologram’s dark electronic decay time. A plot of ionic compensation also shown for comparison.

Fig. 6
Fig. 6

Recording, ionic compensation, developing, and final decay of the holograms in oxidized dehydrated LiNbO3 crystals with iron doping as indicated. In (b) the fixed grating decay is 5 times slower than the ionic compensation (ionic dark decay) because of stronger electronic screening, whereas in (a) they are almost equal. The ratio between the ionic compensation rate in the dark and the decay rate of the fixed ionic grating on readout is preserved as long as the ionic conductivity is much smaller than the electronic photoconductivity (i.e., for T100 C°). The grating spacing is 2π/K1 µm in both cases.

Fig. 7
Fig. 7

Arrhenius plot of the ionic hologram lifetime in (a) as-grown (Ea=1.2 eV) crystal; (b), (c) samples with low hydrogen-impurity content and different iron doping (Ea=1.4 eV); (d) Li2O equilibrated (VTE processed) crystal. The falloff in the hologram lifetime in the low-temperature range (i.e., when T<70 C°) is due to the electronic decay caused by the shallow trap (NbLi4+ small polaron defect) thermal electronic conduction in nonstoichiometric LiNbO3.

Equations (46)

Equations on this page are rendered with MathJax. Learn more.

Nd+t=(σ/hνI0+β)(Nd-Nd+)-γeNd+ne,
net=Nd+t+1ex×eμeneE+eDenex+κσI0(Nd-Nd+),
nit=-1exeμiniE-eDinix,
0Ex=e(Nd+-Na+ni-ni0-ne).
ne=ne0+[ne1 exp(-iKx)+c.c.],
Nd+=Na+[Nd1+ exp(-iKx)+c.c.],
ni=ni0+[ni1 exp(-iKx)+c.c.],
E=E0+[E1 exp(-iKx)+c.c.].
Nd1+t=-(σ/hνI0+β)NdNaNd1+-γeNane1,
ne1t=-(σ/hνI0+β)NdNa+μene0e+iκσI0KeNd1+-γeNa+μene0e+DeK2+iμeKE0ne1+μene0eni1,
ni1t=-μini0e+DiK2+iμiKE0ni1+μini0e(ne1-Nd1+),
E1=ieK(Nd1++ni1-ne1),
Nd1+t=-Nd1+ωeγeNa+σhνI0+βNdNa(DeK2-iμeKE0)-iKκσhνI0γeNaγeNa+DeK2-iμeKE0-ni1ωeγeNaγeNa+DeK2-iμeKE0,
ni1t=-ni1(ωi+DiK2+iμiKE0)-Nd1+ωi,
E1=ieK(Nd1++ni1),
ωeeμene0=eμeσhνI0+β(Nd-Na)γeNa
ωieμini0
E1(I)(t)=E1(0)(0)DiK2+iKμiE0ωi+DiK2+iKμiE0+ωiωi+DiK2+iKμiE0×exp[-(ωi+DiK2,+iKμiE0)t],
τI=(ωi+DiK2+iKμiE0)-1.
E1(1)=DiK2+iKμiE0ωi+DiK2+iKμiE0E1(0).
ni0kbTK2e2.
ni1Nd1+=-ωiωi+DiK2.
E1(II)(t)=ieK[Nd1+(t)+ni1(t)]=E1(0)DiK2ωi+DiK2×exp-ωeDiK2DiK2+ωi+K2d2t,
ωe=eμeβ(Nd-Na)γeNa, d2NdkTNa(Nd-Na)e2,
ωdecay(II)=ωeDiK2ωi+DiK2+K2d2
ni1Nd1+=-ωiωi+DiK2+iKμiE0,
E1(II)(t)=E1(0)DiK2+iKμiE0ωi+DiK2+iKμiE0×exp-ωeDiK2+iKμiE0ωi+DiK2+iKμiE0+K2d2+iKμeE0t,
ωdecay(II)=ωeDiK2+iKμiE0ωi+DiK2+iKμiE0+K2d2+iKμeE0.
E1(III)(t)=ieKEd-iEp.v.Na/NdEd+Eq-iEp.v.Na/Ndni1(t1)+Nd1+(t1)+EqEd+Eq-iEp.v.Na/Ndni1(t1)×exp(-ω1t).
ω1ωe1+K2d2-iEp.v.EqNaNd,
Ep.v.κσ/hνI0(Nd-Na)eμene0=κγeNaeμe,
EqeNa(1-Na/Nd)K,
EdDeKμe=KkbTe.
E1(2)=ieKni1(t1)Ed-iEp.v.Na/NdEd+Eq-iEp.v.Na/Nd
ni1(t1)-Nd1+(t0), E1(2)ieKni1(t1).
|Ed-i(Na/Nd)Ep.v.|Eq.
E1(III)(t)=ieKEd+iEp.v.(Nd-Na)/NdEd+Eq+iEp.v.(Nd-Na)/Ndni1(t1)+Nd1+(t1)+EqEd+Eq+iEp.v.(Nd-Na)/Ndni1(t1)×exp(-ω1t).
ω1=ωe1+K2d2+iEp.v.Eq(Nd-Na)Nd.
Nd1+(t)ni1(t)=-EqEd+Eq-iEp.v.Na/Nd.
ni1(IV)(t)=ni1(t2)exp-ωiEd-iEp.v.Na/NdEd+Eq-iEp.v.Na/Nd+DiK2t
E1(IV)(t)=ieKEd-iEp.v.Na/NdEd+Eq-iEp.v.Na/Ndni1(t1)×exp-ωiEd-iEp.v.Na/NdEd+Eq-iEp.v.Na/Nd+DiK2t.
Nd1+(t)ni1(t)=-EqEd+Eq+iEp.v.(Nd-Na)/Nd,
E1(IV)(t)
=ieKEd+iEp.v.(Nd-Na)/NdEd+Eq+iEp.v.(Nd-Na)/Ndni1(t1)×exp-ωiEd+iEp.v.(Nd-Na)/NdEd+Eq+iEp.v.(Nd-Na)/Nd+DiK2t.
σi=eniμ0 exp(-Ea/kbT),
Eq=e[Fe3+][Fe2+]K([Fe3+]+[Fe2+])e[Fe2+]K.

Metrics