Abstract

We present a theoretical model that describes holographic ionic fixing and storage dynamics in photorefractive crystals. Holographic gratings that are based on charge redistribution inevitably decay because of ionic and electronic conduction. Relevant decay rates and transient hologram field expressions are derived. Ionic gratings are partially screened by trapped electrons on readout. The lifetimes of fixed ionic holograms are limited by the finite ionic conductivity at low (i.e., room) temperatures. Only under certain and restricted conditions can these decay times be acceptably long. A significant increase in fixed ionic hologram lifetime is realized in lithium niobate with a low hydrogen-impurity content. The residual ionic conductivity (decay-time constant) in these samples exhibits 1.4-eV activation energy and is not due to protonic conduction. Fixed hologram lifetimes of 2 years at room temperature in dehydrated lithium niobate crystals are projected.

© 1996 Optical Society of America

Full Article  |  PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (7)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (46)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription