Abstract

We propose nonlinear Faraday rotation as a mechanism for achieving stable polarization mode locking of a soliton laser. We analyze by perturbation theory and beam-propagation simulations the interplay between bandwidth-limited gain, gain dichroism, and linear and nonlinear Faraday rotation.

© 1996 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. A. Haus, IEEE J. Quantum Electron. QE-11, 736 (1975).
    [CrossRef]
  2. J. Frey, R. Frey, C. Flytzanis, and R. Triboulet, J. Opt. Soc. Am. B 9, 132 (1992).
    [CrossRef]
  3. M. Hofer, M. E. Fernmann, F. Haberl, M. H. Ober, and A. J. Schmidt, Opt. Lett. 16, 502 (1991).
    [CrossRef] [PubMed]
  4. V. J. Matsas, T. P. Newson, D. J. Richardson, and D. N. Payne, Electron. Lett. 28, 1391 (1992).
    [CrossRef]
  5. C. De Angelis, M. Santagiustina, and S. Wabnitz, Opt. Commun. 122, 23 (1995).
    [CrossRef]
  6. A. M. Smith, Appl. Opt. 17, 53 (1978).
  7. S. V. Manakov, Sov. Phys. JETP 38, 248 (1974).
  8. C. Tziligakis, C. Buss, S. Hugonnard-Bruyère, R. Frey, and C. Flytzanis, Nonl. Opt. 13, 215 (1995).
  9. A. Bondeson, M. Lisak, and D. Anderson, Phys. Scr. 20, 479 (1979).
    [CrossRef]
  10. G. Wagnière, J. Chem. Phys. 77, 2786 (1982).
    [CrossRef]
  11. W. R. Cook and H. Jaffe, American Institute of Physics Handbook, 3rd ed. (McGraw-Hill, New York, 1972), Chap. 6, p. 231.
  12. R. Wolfe, W.-K. Wang, D. J. DiGiovanni, and A. M. Vengsarkar, Opt. Lett. 20, 1740 (1995).
    [CrossRef]

1995 (3)

C. De Angelis, M. Santagiustina, and S. Wabnitz, Opt. Commun. 122, 23 (1995).
[CrossRef]

C. Tziligakis, C. Buss, S. Hugonnard-Bruyère, R. Frey, and C. Flytzanis, Nonl. Opt. 13, 215 (1995).

R. Wolfe, W.-K. Wang, D. J. DiGiovanni, and A. M. Vengsarkar, Opt. Lett. 20, 1740 (1995).
[CrossRef]

1992 (2)

J. Frey, R. Frey, C. Flytzanis, and R. Triboulet, J. Opt. Soc. Am. B 9, 132 (1992).
[CrossRef]

V. J. Matsas, T. P. Newson, D. J. Richardson, and D. N. Payne, Electron. Lett. 28, 1391 (1992).
[CrossRef]

1991 (1)

1982 (1)

G. Wagnière, J. Chem. Phys. 77, 2786 (1982).
[CrossRef]

1979 (1)

A. Bondeson, M. Lisak, and D. Anderson, Phys. Scr. 20, 479 (1979).
[CrossRef]

1978 (1)

A. M. Smith, Appl. Opt. 17, 53 (1978).

1975 (1)

H. A. Haus, IEEE J. Quantum Electron. QE-11, 736 (1975).
[CrossRef]

1974 (1)

S. V. Manakov, Sov. Phys. JETP 38, 248 (1974).

Anderson, D.

A. Bondeson, M. Lisak, and D. Anderson, Phys. Scr. 20, 479 (1979).
[CrossRef]

Bondeson, A.

A. Bondeson, M. Lisak, and D. Anderson, Phys. Scr. 20, 479 (1979).
[CrossRef]

Buss, C.

C. Tziligakis, C. Buss, S. Hugonnard-Bruyère, R. Frey, and C. Flytzanis, Nonl. Opt. 13, 215 (1995).

Cook, W. R.

W. R. Cook and H. Jaffe, American Institute of Physics Handbook, 3rd ed. (McGraw-Hill, New York, 1972), Chap. 6, p. 231.

De Angelis, C.

C. De Angelis, M. Santagiustina, and S. Wabnitz, Opt. Commun. 122, 23 (1995).
[CrossRef]

DiGiovanni, D. J.

Fernmann, M. E.

Flytzanis, C.

C. Tziligakis, C. Buss, S. Hugonnard-Bruyère, R. Frey, and C. Flytzanis, Nonl. Opt. 13, 215 (1995).

J. Frey, R. Frey, C. Flytzanis, and R. Triboulet, J. Opt. Soc. Am. B 9, 132 (1992).
[CrossRef]

Frey, J.

Frey, R.

C. Tziligakis, C. Buss, S. Hugonnard-Bruyère, R. Frey, and C. Flytzanis, Nonl. Opt. 13, 215 (1995).

J. Frey, R. Frey, C. Flytzanis, and R. Triboulet, J. Opt. Soc. Am. B 9, 132 (1992).
[CrossRef]

Haberl, F.

Haus, H. A.

H. A. Haus, IEEE J. Quantum Electron. QE-11, 736 (1975).
[CrossRef]

Hofer, M.

Hugonnard-Bruyère, S.

C. Tziligakis, C. Buss, S. Hugonnard-Bruyère, R. Frey, and C. Flytzanis, Nonl. Opt. 13, 215 (1995).

Jaffe, H.

W. R. Cook and H. Jaffe, American Institute of Physics Handbook, 3rd ed. (McGraw-Hill, New York, 1972), Chap. 6, p. 231.

Lisak, M.

A. Bondeson, M. Lisak, and D. Anderson, Phys. Scr. 20, 479 (1979).
[CrossRef]

Manakov, S. V.

S. V. Manakov, Sov. Phys. JETP 38, 248 (1974).

Matsas, V. J.

V. J. Matsas, T. P. Newson, D. J. Richardson, and D. N. Payne, Electron. Lett. 28, 1391 (1992).
[CrossRef]

Newson, T. P.

V. J. Matsas, T. P. Newson, D. J. Richardson, and D. N. Payne, Electron. Lett. 28, 1391 (1992).
[CrossRef]

Ober, M. H.

Payne, D. N.

V. J. Matsas, T. P. Newson, D. J. Richardson, and D. N. Payne, Electron. Lett. 28, 1391 (1992).
[CrossRef]

Richardson, D. J.

V. J. Matsas, T. P. Newson, D. J. Richardson, and D. N. Payne, Electron. Lett. 28, 1391 (1992).
[CrossRef]

Santagiustina, M.

C. De Angelis, M. Santagiustina, and S. Wabnitz, Opt. Commun. 122, 23 (1995).
[CrossRef]

Schmidt, A. J.

Smith, A. M.

A. M. Smith, Appl. Opt. 17, 53 (1978).

Triboulet, R.

Tziligakis, C.

C. Tziligakis, C. Buss, S. Hugonnard-Bruyère, R. Frey, and C. Flytzanis, Nonl. Opt. 13, 215 (1995).

Vengsarkar, A. M.

Wabnitz, S.

C. De Angelis, M. Santagiustina, and S. Wabnitz, Opt. Commun. 122, 23 (1995).
[CrossRef]

Wagnière, G.

G. Wagnière, J. Chem. Phys. 77, 2786 (1982).
[CrossRef]

Wang, W.-K.

Wolfe, R.

Appl. Opt. (1)

A. M. Smith, Appl. Opt. 17, 53 (1978).

Electron. Lett. (1)

V. J. Matsas, T. P. Newson, D. J. Richardson, and D. N. Payne, Electron. Lett. 28, 1391 (1992).
[CrossRef]

IEEE J. Quantum Electron. (1)

H. A. Haus, IEEE J. Quantum Electron. QE-11, 736 (1975).
[CrossRef]

J. Chem. Phys. (1)

G. Wagnière, J. Chem. Phys. 77, 2786 (1982).
[CrossRef]

J. Opt. Soc. Am. B (1)

Nonl. Opt. (1)

C. Tziligakis, C. Buss, S. Hugonnard-Bruyère, R. Frey, and C. Flytzanis, Nonl. Opt. 13, 215 (1995).

Opt. Commun. (1)

C. De Angelis, M. Santagiustina, and S. Wabnitz, Opt. Commun. 122, 23 (1995).
[CrossRef]

Opt. Lett. (2)

Phys. Scr. (1)

A. Bondeson, M. Lisak, and D. Anderson, Phys. Scr. 20, 479 (1979).
[CrossRef]

Sov. Phys. JETP (1)

S. V. Manakov, Sov. Phys. JETP 38, 248 (1974).

Other (1)

W. R. Cook and H. Jaffe, American Institute of Physics Handbook, 3rd ed. (McGraw-Hill, New York, 1972), Chap. 6, p. 231.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Mode-locking stability domain. The filtering strength β is plotted against the nonlinear Faraday-rotation coefficient σ.

Fig. 2
Fig. 2

Evolution of the linearly polarized amplitudes in the laser: (a), (b) soliton rotation; (c), (d) soliton locking.

Fig. 3
Fig. 3

Fraction of initial energy in the parallel (solid curve) and the orthogonal linear polarizations at the distance Z=Zc = 5π/2 for σ=0.2: (a) no polarization dispersion; (b) v=0.2.

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

ipZ+12pTT+(|p|2+|q|2)p=iRp=iαp+iγq+ρp+ivpT+iβpTT+σ(|p|2+2|q|2)p,
iqZ+12qTT+(|q|2+|p|2)q=iRq=iαq+iγp-ρq-ivqT+iβqTT-σ(|q|2+2|p|2)q.
(p0,q0)=η[cos(ϕ),sin(ϕ)]sech[η(T-ξ)]×expi-κ(T-ξ)+ψ±12δ.
L00dT=2ηκξ˙+ψ˙+δ˙2cos(2ϕ)+ηκ2-η33,
η˙=2αη-2βηη23+κ2+2γη cos(δ)sin(2ϕ),
κ˙=-43βκη2,
ϕ˙=γ cos(δ)cos(2ϕ),
δ˙=-2[ρ+η2σ+γ csc2ϕsin(δ)].

Metrics