Abstract

Combining femtosecond pump–probe techniques with optical microscopy, we have studied laser-induced optical breakdown in optically transparent solids with high temporal and spatial resolution. The threshold of plasma formation has been determined from measurements of the changes of the optical reflectivity associated with the developing plasma. It is shown that plasma generation occurs at the surface. We have observed a remarkable resistance to optical breakdown and material damage in the interaction of femtosecond laser pulses with bulk optical materials.

© 1996 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. J. O’Dwyer, The Theory of Electrical Conduction and Breakdown in Solids and Dielectrics (Clarendon, Oxford, 1973).
  2. W. L. Smith, Opt. Eng. 17, 489 (1978).
  3. For a review of this research see N. Bloembergen, IEEE J. Quantum Electron. QE-10, 375 (1974).
    [CrossRef]
  4. D. W. Fradin, N. Bloembergen, and J. P. Letellier, Appl. Phys. Lett. 22, 636 (1973).
  5. M. J. Soileau, W. E. Williams, N. Mansour, and E. W. Van Stryland, Opt. Eng. 28, 1133 (1989).
    [CrossRef]
  6. D. Du, X. Liu, G. Korn, J. Squier, and G. Mourou, Appl. Phys. Lett. 64, 3071 (1994).
    [CrossRef]
  7. B. C. Stuart, S. Herman, B. W. Shore, and M. D. Perry, in High Field Interactions and Short Wavelength Generation, Vol. 16 of 1994 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1994), p. 228.
  8. J. M. Liu, Opt. Lett. 7, 196 (1977).
    [CrossRef]
  9. J. P. Anthes and M. Bass, Appl. Phys. Lett. 31, 412 (1977).
    [CrossRef]
  10. O. F. Schirmer and D. von der Linde, Appl. Phys. Lett. 33, 35 (1978).
    [CrossRef]
  11. O. M. Efimov, Yu. A. Matveev, and A. M. Mekryukov, Quantum Electron. 24, 311 (1994).
    [CrossRef]
  12. W. L. Smith, J. H. Bechtel, and N. Bloembergen, Phys. Rev. B 15, 4039 (1977).
    [CrossRef]
  13. N. Bloembergen, Appl. Opt. 12, 661 (1973).
    [CrossRef] [PubMed]
  14. E. Yablonovich and N. Bloembergen, Phys. Rev. Lett. 29, 907 (1972).
    [CrossRef]
  15. D. Strickland and P. Corkum, J. Opt. Soc. Am. B 11, 492 (1994).
    [CrossRef]

1994 (3)

D. Du, X. Liu, G. Korn, J. Squier, and G. Mourou, Appl. Phys. Lett. 64, 3071 (1994).
[CrossRef]

O. M. Efimov, Yu. A. Matveev, and A. M. Mekryukov, Quantum Electron. 24, 311 (1994).
[CrossRef]

D. Strickland and P. Corkum, J. Opt. Soc. Am. B 11, 492 (1994).
[CrossRef]

1989 (1)

M. J. Soileau, W. E. Williams, N. Mansour, and E. W. Van Stryland, Opt. Eng. 28, 1133 (1989).
[CrossRef]

1978 (2)

O. F. Schirmer and D. von der Linde, Appl. Phys. Lett. 33, 35 (1978).
[CrossRef]

W. L. Smith, Opt. Eng. 17, 489 (1978).

1977 (3)

J. M. Liu, Opt. Lett. 7, 196 (1977).
[CrossRef]

J. P. Anthes and M. Bass, Appl. Phys. Lett. 31, 412 (1977).
[CrossRef]

W. L. Smith, J. H. Bechtel, and N. Bloembergen, Phys. Rev. B 15, 4039 (1977).
[CrossRef]

1974 (1)

For a review of this research see N. Bloembergen, IEEE J. Quantum Electron. QE-10, 375 (1974).
[CrossRef]

1973 (2)

D. W. Fradin, N. Bloembergen, and J. P. Letellier, Appl. Phys. Lett. 22, 636 (1973).

N. Bloembergen, Appl. Opt. 12, 661 (1973).
[CrossRef] [PubMed]

1972 (1)

E. Yablonovich and N. Bloembergen, Phys. Rev. Lett. 29, 907 (1972).
[CrossRef]

Anthes, J. P.

J. P. Anthes and M. Bass, Appl. Phys. Lett. 31, 412 (1977).
[CrossRef]

Bass, M.

J. P. Anthes and M. Bass, Appl. Phys. Lett. 31, 412 (1977).
[CrossRef]

Bechtel, J. H.

W. L. Smith, J. H. Bechtel, and N. Bloembergen, Phys. Rev. B 15, 4039 (1977).
[CrossRef]

Bloembergen, N.

W. L. Smith, J. H. Bechtel, and N. Bloembergen, Phys. Rev. B 15, 4039 (1977).
[CrossRef]

For a review of this research see N. Bloembergen, IEEE J. Quantum Electron. QE-10, 375 (1974).
[CrossRef]

D. W. Fradin, N. Bloembergen, and J. P. Letellier, Appl. Phys. Lett. 22, 636 (1973).

N. Bloembergen, Appl. Opt. 12, 661 (1973).
[CrossRef] [PubMed]

E. Yablonovich and N. Bloembergen, Phys. Rev. Lett. 29, 907 (1972).
[CrossRef]

Corkum, P.

Du, D.

D. Du, X. Liu, G. Korn, J. Squier, and G. Mourou, Appl. Phys. Lett. 64, 3071 (1994).
[CrossRef]

Efimov, O. M.

O. M. Efimov, Yu. A. Matveev, and A. M. Mekryukov, Quantum Electron. 24, 311 (1994).
[CrossRef]

Fradin, D. W.

D. W. Fradin, N. Bloembergen, and J. P. Letellier, Appl. Phys. Lett. 22, 636 (1973).

Herman, S.

B. C. Stuart, S. Herman, B. W. Shore, and M. D. Perry, in High Field Interactions and Short Wavelength Generation, Vol. 16 of 1994 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1994), p. 228.

Korn, G.

D. Du, X. Liu, G. Korn, J. Squier, and G. Mourou, Appl. Phys. Lett. 64, 3071 (1994).
[CrossRef]

Letellier, J. P.

D. W. Fradin, N. Bloembergen, and J. P. Letellier, Appl. Phys. Lett. 22, 636 (1973).

Liu, J. M.

Liu, X.

D. Du, X. Liu, G. Korn, J. Squier, and G. Mourou, Appl. Phys. Lett. 64, 3071 (1994).
[CrossRef]

Mansour, N.

M. J. Soileau, W. E. Williams, N. Mansour, and E. W. Van Stryland, Opt. Eng. 28, 1133 (1989).
[CrossRef]

Matveev, Yu. A.

O. M. Efimov, Yu. A. Matveev, and A. M. Mekryukov, Quantum Electron. 24, 311 (1994).
[CrossRef]

Mekryukov, A. M.

O. M. Efimov, Yu. A. Matveev, and A. M. Mekryukov, Quantum Electron. 24, 311 (1994).
[CrossRef]

Mourou, G.

D. Du, X. Liu, G. Korn, J. Squier, and G. Mourou, Appl. Phys. Lett. 64, 3071 (1994).
[CrossRef]

O’Dwyer, J. J.

J. J. O’Dwyer, The Theory of Electrical Conduction and Breakdown in Solids and Dielectrics (Clarendon, Oxford, 1973).

Perry, M. D.

B. C. Stuart, S. Herman, B. W. Shore, and M. D. Perry, in High Field Interactions and Short Wavelength Generation, Vol. 16 of 1994 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1994), p. 228.

Schirmer, O. F.

O. F. Schirmer and D. von der Linde, Appl. Phys. Lett. 33, 35 (1978).
[CrossRef]

Shore, B. W.

B. C. Stuart, S. Herman, B. W. Shore, and M. D. Perry, in High Field Interactions and Short Wavelength Generation, Vol. 16 of 1994 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1994), p. 228.

Smith, W. L.

W. L. Smith, Opt. Eng. 17, 489 (1978).

W. L. Smith, J. H. Bechtel, and N. Bloembergen, Phys. Rev. B 15, 4039 (1977).
[CrossRef]

Soileau, M. J.

M. J. Soileau, W. E. Williams, N. Mansour, and E. W. Van Stryland, Opt. Eng. 28, 1133 (1989).
[CrossRef]

Squier, J.

D. Du, X. Liu, G. Korn, J. Squier, and G. Mourou, Appl. Phys. Lett. 64, 3071 (1994).
[CrossRef]

Strickland, D.

Stuart, B. C.

B. C. Stuart, S. Herman, B. W. Shore, and M. D. Perry, in High Field Interactions and Short Wavelength Generation, Vol. 16 of 1994 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1994), p. 228.

Van Stryland, E. W.

M. J. Soileau, W. E. Williams, N. Mansour, and E. W. Van Stryland, Opt. Eng. 28, 1133 (1989).
[CrossRef]

von der Linde, D.

O. F. Schirmer and D. von der Linde, Appl. Phys. Lett. 33, 35 (1978).
[CrossRef]

Williams, W. E.

M. J. Soileau, W. E. Williams, N. Mansour, and E. W. Van Stryland, Opt. Eng. 28, 1133 (1989).
[CrossRef]

Yablonovich, E.

E. Yablonovich and N. Bloembergen, Phys. Rev. Lett. 29, 907 (1972).
[CrossRef]

Appl. Opt. (1)

Appl. Phys. Lett. (4)

J. P. Anthes and M. Bass, Appl. Phys. Lett. 31, 412 (1977).
[CrossRef]

O. F. Schirmer and D. von der Linde, Appl. Phys. Lett. 33, 35 (1978).
[CrossRef]

D. W. Fradin, N. Bloembergen, and J. P. Letellier, Appl. Phys. Lett. 22, 636 (1973).

D. Du, X. Liu, G. Korn, J. Squier, and G. Mourou, Appl. Phys. Lett. 64, 3071 (1994).
[CrossRef]

IEEE J. Quantum Electron. (1)

For a review of this research see N. Bloembergen, IEEE J. Quantum Electron. QE-10, 375 (1974).
[CrossRef]

J. Opt. Soc. Am. B (1)

Opt. Eng. (2)

M. J. Soileau, W. E. Williams, N. Mansour, and E. W. Van Stryland, Opt. Eng. 28, 1133 (1989).
[CrossRef]

W. L. Smith, Opt. Eng. 17, 489 (1978).

Opt. Lett. (1)

Phys. Rev. B (1)

W. L. Smith, J. H. Bechtel, and N. Bloembergen, Phys. Rev. B 15, 4039 (1977).
[CrossRef]

Phys. Rev. Lett. (1)

E. Yablonovich and N. Bloembergen, Phys. Rev. Lett. 29, 907 (1972).
[CrossRef]

Quantum Electron. (1)

O. M. Efimov, Yu. A. Matveev, and A. M. Mekryukov, Quantum Electron. 24, 311 (1994).
[CrossRef]

Other (2)

B. C. Stuart, S. Herman, B. W. Shore, and M. D. Perry, in High Field Interactions and Short Wavelength Generation, Vol. 16 of 1994 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1994), p. 228.

J. J. O’Dwyer, The Theory of Electrical Conduction and Breakdown in Solids and Dielectrics (Clarendon, Oxford, 1973).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Schematic of the experimental setup.

Fig. 2
Fig. 2

Determination of the threshold fluence (see text).

Fig. 3
Fig. 3

Top: micrograph of the surface of a magnesium fluoride sample 200 fs after the pump-pulse maximum. The bright ellipsoidal area represents the surface plasma. Bottom: spatial profile of the optical reflectivity along the vertical direction.

Fig. 4
Fig. 4

Measured time dependence of the optical reflectivity of a glass sample for a pump intensity of 1014 W/cm2. Inset: optical reflectivity as a function of pump intensity for a probe-pulse delay of 200 fs.

Fig. 5
Fig. 5

Measured diameter of the high-reflectivity area as a function of pump intensity for glass, magnesium fluoride, and sapphire. Probe-pulse delay time, 200 fs.

Fig. 6
Fig. 6

Same as Fig. 5, but comparing two independent measurements on sapphire.

Fig. 7
Fig. 7

Optical transmission of a fused-silica sample as a function of the position z of the focal plane for different intensities. The intensity values are given for focusing in vacuum. The inset shows the experimental arrangement. The collector lens picks up the total transmitted light, including a white-light continuum.

Fig. 8
Fig. 8

Micrographs of bulk glass samples after their exposure to a series of intense femtosecond laser pulses. Top: dye-laser pulses (120-fs pulses and 1 mJ). Center: pulse from a titanium sapphire laser (130-fs pulses and 10 mJ). Bottom: pulses from a titanium sapphire laser before compression (0.4 ns and 10 mJ).

Tables (1)

Tables Icon

Table 1 Threshold Intensities and Breakdown Fields

Metrics