Abstract

An alternative scheme for a recombination x-ray laser based on optical-field-induced ionization is presented. The initial state in the ionization process is an atomic Rydberg state (n = 8) instead of the atomic or the ionic ground state. The intense optical laser field ionizes the core electrons, but because of various stabilization mechanisms the Rydberg electron is not ionized. The ionic Rydberg state will act as the initial state of a decay process leading to x-ray emission. The problem of slow recombination of hot electrons into Rydberg states, which frustrates efficient x-ray lasing, is thus circumvented. The feasibility of the proposed scheme for a H-like Li x-ray laser is discussed in detail. Experimental evidence for the proposed mechanism of inner-electron ionization is presented in the case of Ba Rydberg atoms.

© 1996 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
X-ray laser studies of recombining lithium plasmas created by optical field ionization

K. M. Krushelnick, W. Tighe, and S. Suckewer
J. Opt. Soc. Am. B 13(2) 306-311 (1996)

X-ray lasers from Inner-shell transitions pumped by the Free-electron laser

J. Zhao, Q. L. Dong, S. J. Wang, L. Zhang, and J. Zhang
Opt. Express 16(6) 3546-3559 (2008)

Investigations of collisionally pumped optical field ionization soft-x-ray lasers

Stéphane Sebban, Lee M. Upcraft, Philippe Balcou, Moana Pittman, Romain Haroutunian, Georges Grillon, Constance Valentin, Antoine Rousse, Jean-Philippe Rousseau, Laurent Notebaert, Danièle Hulin, Tomas Mocek, Bedrich Rus, David Ros, Annie Klisnick, Antoine Carillon, and Gérard Jamelot
J. Opt. Soc. Am. B 20(1) 195-202 (2003)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (3)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Tables (1)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (12)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription